

Microsoft DynamicsTM NAV

The Development Environment

in Microsoft DynamicsTM NAV

Date: Feb, 2007

Development

2

THE DEVELOPMENT ENVIRONMENT IN MICROSOFT DYNAMICS NAV

Table of Contents

The Development Environment in Microsoft DynamicsTM NAV.............. 1

Introduction ... 3

The Three-Tier Architecture .. 3
The New UI .. 4
Designing for the New User Interface ... 5

Using the Development Environment ... 7

Page Designer ... 8
Personalization ... 16

Report Designer ... 17

Creating a Report .. 17

Web Services .. 22

Working with Microsoft Dynamics NAV Web Services ... 23
Service-enabling Codeunits that Expose Complex Data .. 24

Migrating to the Microsoft Dynamics NAV Role Tailored Client 25

The Transformation Tool .. 25
Methodologies ... 26

Features that have been Redesigned ... 28

Appendix .. 34

3

THE DEVELOPMENT ENVIRONMENT IN MICROSOFT DYNAMICS NAV

Introduction

The next release of Microsoft Dynamics NAV introduces some significant changes in the underlying

architecture. The Dynamics NAV Service Architecture adds a true middle tier server that runs exclusively

on Microsoft SQL Server and uses Web services as the communication protocol for Microsoft Dynamics

NAV clients that connect with it. This document describes the underlying architecture, the new features

in the development environment and explains the main benefits that are gained by writing applications

for the Service Architecture. Despite the extensive changes that have been made to the system

infrastructure, the core aspects of developing solutions for Microsoft Dynamics NAV remain

unchanged. Indeed the Object Designer has been extended to incorporate new features that allow you

to create objects for the new User Interface, Web Services and powerful new reports.

The Three-Tier Architecture

The Dynamics NAV Service Architecture is a classic 3 tier model with Microsoft SQL Server providing

the data layer, the Microsoft Dynamics NAV Service providing the business logic layer and the new thin

client providing the front end.

The Service runs as a Web service enabled application on Microsoft Internet Information Services. As a

Web service system, the Service can serve multiple clients and support different types of client. This

release supports a Winforms client (known as the RoleTailored Client) and a SharePoint client (the

Microsoft DynamicsTM NAV Portal for Microsoft SharePoint®) as well as inherently supporting any

custom built Web Services that are made and published by developers for this system.

The fundamental difference between the existing C/SIDE architecture and the new Service architecture

is that the business logic now runs on the Service and no longer runs on the client. In the C/SIDE

architecture, the client is responsible for both the presentation layer (Forms) and executing the C/AL

code. In the new Service Architecture, clients are responsible for rendering the presentation (Pages)

and for forwarding requests to the Service to run C/AL code. The Service is capable of executing

multiple client requests in parallel as well as serving other clients by providing Web service access to

authenticated clients that are running the RoleTailored Client, the Microsoft Dynamics NAV Portal and

Web Service clients.

4

THE DEVELOPMENT ENVIRONMENT IN MICROSOFT DYNAMICS NAV

The Service also acts as an additional layer of security between the clients and the database. It

leverages the authentication features of Microsoft Internet Information Services (IIS) as another layer of

user authentication while using impersonation to ensure that the business logic is executed in a process

that has been instantiated by the user who submitted the request. This ensures that the direct and

indirect permissions that have been granted to the user in the Microsoft Dynamics NAV security system

are respected, as well as maintaining an audit trail of user activity.

There are two significant changes to the underlying system that are worth mentioning even though

they are both hidden from developers and users. Firstly, while you still write all your code in the Object

Designer, the C/AL code is no longer executed within the Dynamics NAV client runtime. Instead, C/AL

is converted at compilation time to a .NET language before being compiled into a Microsoft

Intermediate Language (MSIL) assembly. This assembly is linked with private libraries that continue to

provide the functions offered by the Dynamics NAV runtime. The impact of this change is negligible for

developers – the assemblies can be compiled independently because they are late bound and the code

runs with the same result as always. Microsoft Dynamics NAV has taken an enormous step forward by

supporting .NET and in the future we will expose more native .NET functionality to developers and

possibly even allow C/AL functions to be accessed from other .NET applications!

The second important change is a result of moving to more model driven development that relies

heavily on Metadata. In the Classic Client, forms are designed in a WYSIWYG fashion. The RoleTailored

Client displays information in Pages and creating a Page is more like writing an HTML page. The Page

elements are listed in their relative display order and the properties associated with each element are

used to specify special presentation features, thereby allowing the client to decide how to best display

the page. This small change in focus from WYSIWIG to relative grouping actually allows a page to be

consumed by different clients. It’s up to each particular client to determine how to render the page.

Metadata is not only restricted to Pages. Function descriptions in Codeunits, Table definitions and any

type of properties on objects are all examples of Metadata. Understanding that clients speak to the

server in terms of metadata requests helps explain some of the system’s behavior. For example, writing

Pages feels more like writing XML and the new field properties in tables change the way the

RoleTailored Client displays data.

The new architecture provides greater scalability by allowing you to install several Services that access

the same database and also allows you to balance your system by dedicating different Services to

particular application areas or to different clients.

The New UI

One of the key features of the new Microsoft Dynamics NAV release is the RoleTailored Client. After

extensive research into understanding how our customers work, their business goals and their

departmental organization, Microsoft Dynamics has created a new interface with new behavior that

supports working in a role oriented, task focused manner.

We have introduced a new object type, the Page, which you design in the Object Designer and can be

displayed on clients that run on the Microsoft Dynamics Service. Pages contain new types of controls

that enable the advanced representation of system data and shortcuts to system features.

There are no specific subtypes of Pages but just as you are able to build card and list forms today, there

are some broad generalizations in the type of Page that you can make for the RoleTailored Client.

These categories spring from a User Experience research program that has been carried out within

Microsoft Dynamics and aims to provide a unified UI to the users of all the Dynamics applications.

5

THE DEVELOPMENT ENVIRONMENT IN MICROSOFT DYNAMICS NAV

The general types of Page include:

 Role Center – This type of page is the starting point for the user. It links the user to all the

tasks and processes that constitute their role in the company. The role center should provide a

task-oriented navigation structure that reduces the complexity of the information that the user

has to sift-through and allows them to focus on the key work areas that are associated with

their role. You should build each individual Role Center with a specific type of user in mind.

 List places – This type of page helps users focus and prioritize their work by showing the tasks

they must perform and the related information that they need to perform these tasks together

in the same window. List places are very similar to List Forms in the Classic Client.

 Task pages – This type of page contains all the tasks that are part of each process. For

example, the Quick Access pane promotes the commands that are most frequently used within

a given context. Task pages are very similar to Card forms in the Classic Client.

 Fact boxes – This type of page is like a mini-card that provides supplemental information to

List places, Task pages and Role Centers. Fact Boxes reduce the amount of time that the user

spends searching by presenting all the information that they need for a given context in one

window.

Designing for the New User Interface

Many of the concepts involved in creating Pages are similar to those involved in creating Forms for the

Classic Client. When you design for the RoleTailored Client, you must consider which users are most

likely to use the page and what information they will need to access. The source table for the Page

should be the table that contains the primary set of data that the Page will display.

Additionally, you should consider any supplemental sources of information that will add value to the

Page and add these as Fact Boxes or add any existing Fact Boxes that support your design. Lastly, you

should add links to the Navigation Bar so that users can access this new Page.

The following Role Center highlights three Fact Boxes each of which draws in different information for

the user. The stacks of paper seen in the central Fact Box are known as Cues. When you click a cue, it

opens a task page where you can perform the function associated with that cue. Completing tasks from

Cues reduces the size of the paper stack and allows users to see how much work they have left to do.

6

THE DEVELOPMENT ENVIRONMENT IN MICROSOFT DYNAMICS NAV

The Accounts Payable Coordinator’s Role Center

Notice also how Microsoft Outlook is integrated into the Role Centre. Adding a user’s Outlook Fact Box

to their Role Center is as easy as creating a new Fact Box for them. These are just a few of the new

features that are available when you build applications for Microsoft Dynamics NAV.

7

THE DEVELOPMENT ENVIRONMENT IN MICROSOFT DYNAMICS NAV

Using the Development Environment

You have always used the Object Designer to develop solutions for Microsoft Dynamics NAV and the

new development environment features are also available in the Object Designer.

The following screenshot shows the new designers and the subsequent table summarizes the changes

that have been made to the designer and compares the runtime behavior of the objects in the Classic

Client and their behavior in the RoleTailored Client.

Object Service Architecture Classic Client

Table Tables are designed and executed in

the same way as they always have

been in the Classic Client. All the same

triggers and properties are available.

Some new properties such as

ExtendedDataType allow you to add

metadata to fields and this changes

how the fields are rendered on the

RoleTailored Client.

Same as previous versions of the Classic

Client. Some new properties such as

ExtendedDataType have been added but

have no affect on the behavior of tables in

the Classic Client.

Forms Not supported. Same as previous versions of the Classic

Client. All code on Forms continues to

run.

Pages New object type that contains many

properties and methods like those

used by forms. The Page Designer

looks similar to the XMLport Designer.

Not supported.

Web Services Web Services are designed by creating

or reusing a Page or Page and

Codeunit objects together. XMLports

are used to parameterize complex

data types through Codeunits.

Not supported.

Codeunits Codeunits are designed and executed

in the same way as they always have

been in the Classic Client. The key

Same as previous versions of the Classic

Client.

8

THE DEVELOPMENT ENVIRONMENT IN MICROSOFT DYNAMICS NAV

difference is that code now runs on

the Service and not on the client. Any

functions that run on the local

computer use the Service environment

rather than the RoleTailored Client.

New functions have been added to

stream files and data between the

RoleTailored Client and the Service.

New functions have been added to

stream files and data between the

RoleTailored Client and the Service. These

functions can run on the Classic Client but

do nothing.

Reports Report datasets and sections are

designed in the C/SIDE Report

Designer.

The report layout is designed using a

Report Definition Language (RDL)

editor like Visual Studio. The layout

information from the RDL file is stored

in the new properties in the Report

Object.

Same as previous versions of the Classic

Client.

Reports have 3 new properties that are

ignored on the C/SIDE client but contain

report layout information for reports that

run on the Service Architecture.

Dataports Not supported. Same as previous versions of the Classic

Client.

XMLports XMLports are designed and execute as

they do in the Classic Client.

Furthermore, they have been

extended with functionality similar to

Dataports to cover the ability to

import and export structured files.

Same as previous versions of the Classic

Client.

MenuSuite MenuSuite behaves in the same way

in both the RoleTailored Client and in

the Classic Client.

Same as previous versions of the Classic

Client.

Page Designer

The Microsoft Dynamics NAV RoleTailored Client displays data in pages. There are several different

kinds of pages, including, Role Centers, List Pages and Fact Boxes. These pages are designed in the

Page Designer on the Classic Client.

9

THE DEVELOPMENT ENVIRONMENT IN MICROSOFT DYNAMICS NAV

Once you have decided what the design of a page should be; creating it is simple using the Page

Designer. When you design pages, you specify a hierarchy of page elements. You determine the details

of how data is displayed by adjusting the properties of each of the elements in the page.

By only specifying the content that should be shown and how it should be presented, you are freed

from the static layout of form-based designers and the tedious pixel-level editing that they entail. The

central activity in page design is specifying the contents of the page in relation to the different

Microsoft Dynamics NAV page types: List, Card, Journal, and Worksheet.

In the following example, you will see how to create and modify pages in Microsoft Dynamics NAV. The

example starts by adding a new field to the Customer table and goes on to show the changes that

must be made to the Customer List page and the Customer Card page before they can display this

new table field. Lastly, you are shown how to create a new Fact Box that displays some details about

the customer that is currently selected in the Customer List page.

Step 1: Adding a New Field to the Customer Table
For the following examples, we have created a new table called VIP. This table contains the VIP status

settings (Bronze, Silver, Gold, and Diamond) that you can assign to your customers. In the following

examples, we will show you how to integrate this table into the Microsoft Dynamics NAV application.

Open a Classic Client and use the Table Designer to extend the Customer table by adding a field called

VIP Code. This field contains information about each customer’s VIP status. Make the VIP Code field

link to the VIP Code table.

10

THE DEVELOPMENT ENVIRONMENT IN MICROSOFT DYNAMICS NAV

Step 2: Modifying the Customer List Page
The next step is to add the information about the new VIP Code field to the Customer List page.

In the Object Designer, Open the Customer List page in the new Page Designer.

Pages have a hierarchical structure that allows you to organize the contents of the page into groups

called Containers. The first element or line in the Page Designer defines the page’s primary group and

in this example it is called Customer List Content Area. This element has the subtype ContentArea. This

means that the contents of this group are displayed in the Content Area when it is displayed in the

Microsoft Dynamics NAV role-based client. Other important subtypes are InfoParts and HomeParts.

These subtypes are used later in this example.

The hierarchical structure of the page is determined by the indentation of the rows shown in the Page

Designer. Customer List has elements indented below it and is a separate group within the Customer

List Content Area container. In this example, the Customer List group contains the fields that will appear

as column headers in the Customer List page.

11

THE DEVELOPMENT ENVIRONMENT IN MICROSOFT DYNAMICS NAV

In the Page Designer, add a new line, VIP Code to the Customer List group. This adds a new column to

the Customer List page. Place the VIP Code relative to where you would like the column shown in the

list.

To define the properties for the new element you have added to the page, open the Properties

window for VIP Code. The Customer table is the source table for the Customer List page and you

must set the VIP Code field in the Customer table as the SourceExpr for the new VIP Code control.

After you have added the VIP Code field to the Customer List group, you must compile the modified

page. When you compile the page, the system is updated and a RoleTailored Client that connects to

the database will read the updated Page object.

To see the changes, open the RoleTailored Client, and open the Customer List and note the new VIP

Code column.

12

THE DEVELOPMENT ENVIRONMENT IN MICROSOFT DYNAMICS NAV

Step 3: Modifying the Customer Card Page
List places are non editable. To allow end-users to view and update the VIP Code field, you must also

modify the Customer Card page. Modifying the Customer Card page is similar to the previous steps

but there are some minor differences, mainly because a card is a different kind of page. Cards contain

Fast Tabs and input fields rather than the columns and rows that lists have.

In the Object Designer, open the Customer Card in the Page Designer. Place the cursor in the blank

row at the bottom of the Page Designer and open the Properties window to see which type of page

this is. It is the PageType property that determines which type of page this is and how the groups of

elements in the page appear in the RoleTailored Client.

For example, when the PageType is Card, each group in the page is displayed as a Fast Tab and when

the PageType is List, as it was in the previous example, each group contains the columns that are

displayed in a list.

13

THE DEVELOPMENT ENVIRONMENT IN MICROSOFT DYNAMICS NAV

In the Page Designer, add a new field to General Customer Group by inserting a row in the appropriate

position. Open the Properties window and modify the properties of this new field. The Customer table

is also the source table for the Customer Card page. Set the VIP Code field in the Customer table as

the SourceExpr for the new VIP Code control in the Customer Card.

Set the TableRelation property to ―VIP Code‖ to enable the RoleTailored Client to look up and display

the choices that have been defined for this field.

14

THE DEVELOPMENT ENVIRONMENT IN MICROSOFT DYNAMICS NAV

Save and compile the page object and the modified Customer Card is automatically deployed on the

service tier.

Step 4: Adding a New Fact Box to the Customer List Page
To complete this example, we must create a new Fact Box and add it to the Customer List page. The

Fact Box should show details about the customer that is currently selected in the list. By making this

information readily available, we ensure that the end-user has access more information when they

need it and save them from having to open the Customer Card just to see some basic information

such as phone number, e-mail address, and so on.

In the Object Designer, open the Customer List Insert a new row and call it My Customer Details Fact

Box. Open the Properties window for this new row and ensure that the PagePartID property value is

set to page 9084, Customer Details InfoPart. This is one of the Fact Boxes that are shipped with

Microsoft Dynamics NAV.

Fact Boxes are bound to the main contents of a page in much the same way as forms and subforms are

linked together. Use the SubFormLink property in the My Customer Details Fact Box - Properties

window to define the relation between the page and the source of the Fact Box.

15

THE DEVELOPMENT ENVIRONMENT IN MICROSOFT DYNAMICS NAV

Close, save and compile the Customer List page and open the RoleTailored Client to see the changes

that we have made.

16

THE DEVELOPMENT ENVIRONMENT IN MICROSOFT DYNAMICS NAV

Personalization

End-users can customize the appearance of the pages that are available to them. For example, in list

pages they can choose to hide or show both columns and specify which Fact Boxes should be

displayed. Similarly end-users can change the display order of Fact Boxes – or choose to hide non-

relevant Fact Boxes for their Role Center or a particular Page.

When you are designing pages in Microsoft Dynamics NAV you should keep the fact that users can

customize the final page in mind. The Personalization tool does not allow users to access any parts of

the system that they have not been given permission to. However, it does let users remove page

elements that they would prefer not to see. This means that as a page designer, you should include a

comprehensive list of page elements and keep in mind that the most common changes a user will

make is to remove elements from rather than add elements to the page you’re designing.

17

THE DEVELOPMENT ENVIRONMENT IN MICROSOFT DYNAMICS NAV

Report Designer

Designing reports for Microsoft Dynamics NAV clients is different depending on whether you are

targeting the RoleTailored Client or building reports for the Classic Client. Although the two ways of

designing reports are different, some steps are the same and all reports are stored in the same type of

object. It is also possible to build a single report object that can run on both the Classic Client and on

the RoleTailored Client.

The extra information that the Role Tailored Client needs is recorded in the Report Definition Language

(RDL) and stored in some extra properties in the report object. Because of the way reports are

generated for the two different client types, there are other changes that should be considered. The

most significant of these is that the layout of the reports is defined differently. When you design a

report for the Classic Client, you design the layout in the Section Designer. When you design a report

for the RoleTailored Client, you design the layout in an RDL editor such as Visual Studio.

To create a report for the RoleTailored Client, you define the data items for the report in the usual way

and then export the report to Visual Studio. Visual Studio is used to design the layout of the report, as

well as any post processing such as grouping and totalling. These changes mean that there are some

properties that are not supported in the new architecture. In general, these are the properties that deal

with the layout of the report, totalling, grouping and printer specifications.

Creating a Report

In this example, you will create a report that runs through the Customer table and for each customer

specified in the report filter, the report then runs through the entire Sales Line table and lists these

customers and the orders they have placed.

Step 1: Defining the Data Model
In the Report Designer, select the Customer table as the first data item, the Sales Line table as the

second data item and the VIP Code table as the third data item. Indent the Sales Line and VIP Code

data items:

Open the Properties window for the Sales Line data item. Set the DataItemLinkReference property to

the name of the parent data item (Customer) that the indented data item (Sales Line) must be related

to. In most cases, this is the default.

18

THE DEVELOPMENT ENVIRONMENT IN MICROSOFT DYNAMICS NAV

Set the DataItemLink property to point to the Sell-to Customer No. field from the Sales Line table. In

the Reference Field, select the No. field from the Customer table.

In the Properties window for the VIP Code data item set the DataItemLink property to point to the VIP

Code field. In the Reference Field, select the No. field from the Customer table.

In the Properties window for the Customer data item, set the PrintOnlyIfDetail property to Yes. This

ensures that the Customer body sections are only printed if there is data to print from the Sales Line

table.

The data model now works like this:

 The report runs through the Customer data item.

 For each record in the Customer data item, records in the Sales Line data item are selected if

the Sell-to Customer No. field has the same value as the No. field in the Customer data item.

 If there are no Sales Line records for a Customer, nothing is printed – not even the information

from the Customer data item.

 It runs through the VIP Code table and prints the VIP code that has been assigned to each

customer.

Now you can select the fields that you want to appear in the report.

In the Report Designer, select the Customer data item, open the Section Designer and then open the

Field Menu window and add the No., Name, Address and Phone No. fields.

Select the Sales Line data item and add the Document No., Shipment Date, Description, Quantity,

Unit Price and Amount fields to the report.

Select the VIP Code data item and add the VIP Code field to the report.

Note

If you create sections in the Microsoft Dynamics NAV Report Designer, all the fields that you add to

these sections will appear in the new report layout. Furthermore, all the fields included in the primary

key of the tables that are used as data items in the report will appear in the new report layout.

Click Tools, Transform Layout and the layout of the report is transformed and opened in Visual Studio

Report Designer:

19

THE DEVELOPMENT ENVIRONMENT IN MICROSOFT DYNAMICS NAV

You can now design the layout of the report.

Step 2: Designing the Report
You design the layout of the report in Visual Studio as well as specify any grouping and totalling that

you want the report to perform. It therefore makes sense to add any grouping and totalling to the

report before you design the layout of the report.

Adding a Group

In Visual Studio, click any field in the report to make the handles for the columns and rows appear.

Right-click the handle of any row, click Insert Group and enter the value shown in the following

screenshot to specify that you want the entries grouped by customer number.

In the Sorting tab, select the field value that you want the group sorted by.

20

THE DEVELOPMENT ENVIRONMENT IN MICROSOFT DYNAMICS NAV

Sorting the Detailed Entries in the Report

Open the Table Properties window and in the Sorting tab, select the field value that you want the

detailed data entries sorted by.

You have now specified that you want the report to sort the sales line for each customer by their

shipment date.

Adding a Subtotal

You can also easily add aggregate functions to your report in Visual Studio.

Add a row below the Sales Line row. In the last cell in this new row, add the following expression:

=Sum(Fields!Sales_Line_Amount.Value). This will calculate the total amount ordered by each

customer.

Formatting and Style

You can easily format the appearance of many fields in your reports, including date and currency fields.

In the Properties window, select the Format tab. Click the ellipse button and in the Choose Format

window, select the format that you want the dates to appear in.

To format the table headers so that they stand out from the rest of the report, select the header rows.

You can now change the style, color, size and so on of the font as well as the background color of the

cells. When you are finished the report should look something like this:

When you are satisfied with the layout of the report, save and close the project.

21

THE DEVELOPMENT ENVIRONMENT IN MICROSOFT DYNAMICS NAV

In the Classic Client, when you open this report in the Report Designer, a message appears informing

you that the .rdlc file for this report has changed and asks you if you want to load the changes. Click

yes to save the changes in the database. Compile the report.

The database now contains two versions of this report – a C/SIDE version for the Classic Client and a

.NET version that can be displayed in the RoleTailored Client.

Important

If you want to further modify the design of the report, you must open the report in the C/SIDE report

designer and click View, Layout. If you click Tools, Transform Layout you will convert the original

C/SIDE version of the report again and won’t be able to see the changes that you have already made.

Furthermore, you must remember that the C/SIDE Report Designer and Visual Studio are not closely

integrated and that any changes made in one environment will not be visible in the other. You must

save any changes that you make in either of the development environments and import or export the

changes in the other environment before they will be visible there.

22

THE DEVELOPMENT ENVIRONMENT IN MICROSOFT DYNAMICS NAV

Web Services

A Web service is a standardized way for independent software

systems to communicate with each other. Web services are designed

specifically to facilitate the highly dynamic data interchange that is

required in business transactions. Standardized integration

technologies — such as Web services — bring value to businesses by

breaking down the de-facto ‖data silos‖ that are created by

proprietary integration options. These proprietary integration

technologies make it difficult to get information in and out of the

different systems.

Microsoft Dynamics NAV supports Web services out-of-the-box

thereby making it easy to integrate Microsoft Dynamics NAV with

other systems. Specifically, Web service integration with Microsoft

Dynamics NAV is facilitated via service-enabled codeunits and pages.

With proper authentication and authorization, external systems can

read and write data on pages and call codeunits in the

straightforward fashion defined by the common Web service

protocols. The Web service capabilities in Microsoft Dynamics NAV

help customers reap the benefits of a service-oriented architecture

(SOA).

Microsoft Dynamics NAV Web services are immediately useful to

customers and partners who want to utilize business logic or use a

standard interface to access data from outside Microsoft Dynamics

NAV. You can use most major software development environments,

such as Microsoft Visual Studio, to build applications that use Web

services. Furthermore, because Web services are XML-based you can

also build Web services across platforms and programming

languages.

Web Services in Microsoft Dynamics NAV
The way in which Microsoft Dynamics NAV integrates Web services

spares developers the complex task of manually setting up Web

service frameworks, for example, managing the WSDL descriptions

(See sidebar). Publishing a particular page or codeunit as a Web

service is a simple matter of adding it to the Web Service table. No

additional steps are required.

The difference between
Web Services and the World
Wide Web
HTTP and HTML were designed to support

interactive browsing of content that is

generally static or at least highly

cacheable. In contrast, the Web services

architecture is designed for dynamic

program-to-program interaction. In the

Web services architecture, many kinds of

distributed systems can be implemented.

Examples of Web service systems include

synchronous and asynchronous messaging

systems, distributed computational

clusters, mobile-networked systems, grid

systems, and peer-to-peer environments.

The broad spectrum of requirements for

program-to-program interactions means

that the protocols used by Web services

must be much more flexible than the first

Web protocols. However, like the World

Wide Web, Web services also rely on a

small number of specific protocols, most

prominently SOAP, Simple Object Access

Protocol.

Web Service Descriptions
To provide a robust development and

operational environment, Web services are

described using machine-readable

metadata. Web service metadata serves

several purposes. The metadata is used to

describe the message interchange formats

that a Web service can support as well as

the valid message exchange patterns of a

service. Metadata is also used to describe

the capabilities and requirements of a

service. Web Services Description

Language (WSDL) - an XML-based

language for defining Web services – is

used to express the interchange formats

and message exchange patterns of the

Web services.

23

THE DEVELOPMENT ENVIRONMENT IN MICROSOFT DYNAMICS NAV

Pages and codeunits that are added to the Web Service table in Microsoft Dynamics NAV and have

their Published property checked are immediately available for Web service requests over the network.

Consumers of these Web services (systems integrating with Microsoft Dynamics NAV) only need to

know the network name (or address) of the computer running the Microsoft Dynamics NAV Service

and the names given to the individual pages and codeunits. For example, if a server with the name

NAV_Server1 runs the Dynamics NAV Service, the MyCustomer Web service is available at the following

URL:
http://NAV_Server1/NavisionServer/CRONUS_International_Ltd/Page/MyCustomer.

navws

It is important to know that Microsoft Dynamics NAV manages Web service requests in the same way

as it handles requests from end-users. This means that the authorization and validation of access rights,

the validation of input data and the invocation of business logic as well as concurrency control are all

managed in the same way as requests from a Microsoft Dynamics NAV client. This ensures that the

integrity of the Microsoft Dynamics NAV data is not compromised by using Web services. It also means

that developers don’t have to replicate code that validates data or invokes business logic when they

build systems that use the Web services provided by Microsoft Dynamics NAV.

Working with Microsoft Dynamics NAV Web Services

Pages and codeunits that are published as Web services contain a certain set of methods that the

consumers of these Web services can call to access the functions and the data that they contain.

When a Microsoft Dynamics NAV codeunit is published as a Web service, all the functions that it

contains are made available as Web service methods.

Service-enabled

codeunits expose all their

functions as Web service

methods in, for example,

Visual Studio.

24

THE DEVELOPMENT ENVIRONMENT IN MICROSOFT DYNAMICS NAV

When a Microsoft Dynamics NAV page is published as a Web service, a fixed set of 8 methods is made

available to developers so that they can manage the common record handling operations, such as

Insert, Modify, Find, and so on.

Service-enabling Codeunits that Expose Complex Data

A few extra steps are required when you need to Web service-enable codeunits with functions that use

complex types in the input or return parameters. In this case, Dynamics NAV Web services depend on

XMLport objects for the definition of the types of data that is exchanged with other systems.

Using XMLports - rather than records - for the definition of these data structures gives developers a

quick and easy way to control the way data from Microsoft Dynamics NAV is available to external

systems via Web services. For example, it is often useful to expose only a subset of the fields in the

Customer table for a specific task. This not only helps keep data confidential, but also optimizes the

performance of transactional systems by not exchanging unnecessary data.

XMLports are eminently suited to the task of providing complex data types for Web services because

many of the entities or pieces of data that you might want to expose have a hierarchical structure. A

typical example is the document type that contains a single header and multiple lines but there are

many other complex types in a Dynamics NAV installation. For example, the Bill of Materials (BOM),

customers with multiple ship-to addresses and even the product catalogues are all better suited to an

XML-like structure rather than a classical .NET structure, such as a C# class.

Service-enabled pages

have a web service

interface that contains

methods for record

handling, including

filtering.

25

THE DEVELOPMENT ENVIRONMENT IN MICROSOFT DYNAMICS NAV

Migrating to the Microsoft Dynamics NAV Role Tailored Client

The new Microsoft Dynamics NAV RoleTailored Client and Microsoft Dynamics NAV Portal for

Microsoft SharePoint both run on Microsoft SQL Server. If you are running the Database Server for

Microsoft Dynamics™ NAV Classic, then moving your system to the SQL Server Option is an essential

part of migrating to the Microsoft Dynamics NAV RoleTailored Client.

As mentioned earlier, in the Role Tailored Client and Portal for SharePoint, forms are replaced by

pages. We have therefore developed a tool to help customers and partners create pages that contain

the same functionality as the forms in their current application. This will help them migrate their

application and all its functionality to the new architecture and take advantage of the features that it

provides.

The Transformation Tool

The Transformation Tool has been designed to help you transform your Microsoft Dynamics NAV

Classic application to one that runs on the new architecture by creating pages that contain the same

functionality as your existing forms. The Transformation Tool creates a new page object for each form

in your application. It does this by analyzing the controls and properties on each form and creating a

page with the corresponding controls and properties. It does not change or delete the existing forms

during the transformation process.

The Transformation Tool is essentially a mapping tool that you use to map all the forms in your current

application to the new page types that are supported by the new architecture. The tool is based on

rules that we have developed for mapping forms to pages. Many of these rules have been hard coded

into the tool and will generate new pages with controls and properties that correspond to particular

new behavior available in the RoleTailored Client. Most of the new page objects that are created will

contain the same functionality as the original forms.

One of the first steps in the transformation process is to map every form in the application to one of

the new page types that have been defined for the new architecture. It is also possible to specify that

certain forms should be ignored for a particular run of the Transformation Tool. Note you can run the

Transformation tool as many times as you need to.

26

THE DEVELOPMENT ENVIRONMENT IN MICROSOFT DYNAMICS NAV

When you run the tool it generates a log file that lists all of the forms that were transformed and

contains details about what was done including logging details about what prevented it from

successfully transforming a form that has an unrecognized structure. This information will be invaluable

when you look at the forms again and need to decide whether or not they should be transformed.

These forms will have to be redesigned before they can be transformed successfully. Alternatively you

can ignore some or all of these forms and create new pages in the Page Designer that contain the

same functionality.

One of the greatest strengths of Microsoft Dynamics NAV is the ease with which it allows you to

customize the application. However, this flexibility has also meant that the upgrade process contains

many manual steps as you must transfer/re-implement all these customizations every time you

upgrade to a newer version of the product.

This is also the case when you migrate to the new architecture. The Transformation Tool can generate a

page from any existing form. However the degree of success achieved by the Transformation Tool

depends greatly on the extent and the type of customizations that you have carried out on any given

form. The more the customizations correspond to the design of the standard application, the easier it

will be to transform them successfully. Conversely, the more complex the customizations, the more

difficult it will be to transform them.

Furthermore, we have changed some forms in the standard application to ensure that pages containing

the same functionality can be easily generated by the Transformation Tool. To take advantage of the

Transformation Tool’s ability to automatically generate pages, you will probably have to re-customize a

subset of forms to ensure that these pages can be generated successfully.

C/AL code now runs on the middle tier server rather than on the client computer and therefore

additional changes may have to be made to your Dynamics NAV application before it can run on the

new architecture. A simple example is the FILE.CREATE function. In the Classic Client, when code like

this was run, files were created on the client. In the new architecture, the files are created on the

Dynamics NAV Service. If the file is meant for a user, you must write extra code to download it to the

client computer.

Pages contain fewer triggers than forms. There are two main reasons for this. Firstly, the RoleTailored

Client has enhanced behavior hard coded into the controls that run on it – some code that used to be

necessary has been made obsolete by these new controls. The second reason is that by taking

advantage of the fact that we no longer need all the triggers, the performance of Pages can be

increased by cutting down on communication between the Client and the Service.

The Transformation Tool never deletes code when it generates a page from a form. However, if a form

has a trigger that contains code and no corresponding trigger exists on a Page, the code is either

moved to a similar trigger or to the log file.

Careful preparation and the appropriate design changes will ensure that the Transformation Tool can

successfully migrate your application to the new architecture.

Methodologies

When you decide to migrate an application to the new architecture, you must also decide which

methodology is best suited to the application in question. Migrating to the new architecture can be an

iterative process where you run the tool a number of times and carefully alter any problematic forms to

ensure that pages can be created containing the required functionality.

27

THE DEVELOPMENT ENVIRONMENT IN MICROSOFT DYNAMICS NAV

It is important to remember that when you transform a form, it is not changed at all. For each form

that you enter into the Transformation Tool, a new page object is created with matching functionality

that can be used by the RoleTailored Client. You then have two objects – a form and a page.

Furthermore, if you run the tool again and transform the same form, the new page that is created will

overwrite the first page object.

If, at a later date, you decide that you want to change the functionality of your application, you can

implement the changes in the form before transforming it again, implement the changes in the

corresponding page or implement the changes in both objects, depending on how your application is

used. Do you use the Classic Client (forms), the RoleTailored Client (pages) or do you run in mixed

mode (both)?

In general, you can choose between the following migration methodologies:

Reactive Method

 Run the Transformation Tool

 Check the log file

 Redesign any forms that did not transform successfully – Matrix forms, wizards, and so on.

 Run the tool again to transform the forms that you have altered.

Proactive Method

 Redesign any forms that you know will not transform satisfactorily

 Run the Transformation Tool

 Check the log file

 Modify any forms that are still causing problems

Start from Scratch Method

 Implement your entire application in the new Page Designer and ignore the transformation

tool.

Combined Method – all of the above

 Transform some forms to pages

 Create some new pages that contain your customizations

 Change some of your customizations and create new pages to get greater benefit from the

new UI.

In short, the method you choose will probably vary from one implementation to another. A good

development practice would be to use a copy of the database in question to test the waters and see

which method or variation of methods achieves the best results for each implementation.

28

THE DEVELOPMENT ENVIRONMENT IN MICROSOFT DYNAMICS NAV

Features that have been Redesigned

A number of Microsoft Dynamics NAV features have been redesigned to ensure that they can be

successfully transformed and run on the Dynamics NAV Service architecture:

Feature Required Redesign

Files File functions used by C/AL are executed on the middle tier server and not

locally on the client computer as is the case in the Classic Client. Therefore,

when you write code for the application, you must remember where the files are

created. Applications that generate files for the client to use must modify their

code so that these files are downloaded to the RoleTailored Client. Similarly,

they must upload files from the client so that they can be processed on the

Service computer.

New functions have been created to facilitate this file transfer. The new

functions are:

 FILE.UPLOAD and FILE.UPLOADINTOSTREAM - are used to send a file

from the RoleTailored Client to the Service computer.

 FILE.DOWNLOAD and FILE.DOWNLOADINFROMSTREAM - are used to

send a file from the Service computer to the RoleTailored Client.

Automation Objects There are four different ways of using Automation Objects in Dynamics NAV:

1: Using a COM component to generate an Excel file for a user.

C/AL code runs on the Service computer to CREATE the automation object and

then SAVES the file on the Service computer. When the RoleTailored Client

needs to use the file, the FILE.DOWNLOAD function sends it from the Service

computer to the client computer.

The COM DLL must be stored and registered on the Service computer.

1: Using a COM component to carry out external processing (for example, call a

Web Service)

C/AL code runs on the Service computer to CREATE an automation object and

then calls the method on the object. When the method is run, any return value

is passed back to the running code.

The COM DLL must be stored and registered on the Service Tier computer.

3: Using a COM component to read from MSMQ message

The RoleTailored Client runs code on the Service computer to CREATE an

automation object and then READ from the message queue. The code is able to

process the result of the READ.

Note: If the location of the queue is specified locally (for example, ―./myqueue‖),

29

THE DEVELOPMENT ENVIRONMENT IN MICROSOFT DYNAMICS NAV

the code will read from a message queue on the Service computer called

―myqueue‖ and not from a message queue of the client computer.

4: Using a visual OCX with its own window

You cannot use an OCX that has its own window (UI) to perform special tasks for

the client.

In the new architecture the client cannot run code or interact with other

components that are also running on the client. To duplicate the behavior of the

existing client, the other applications that run on the client must be redesigned

as Web service based solutions. The client application can then call the Web

service which in turn delivers the information required by the system. You can

also code actions to a page that reads from the database after the Web service

has been called.

Reports Reports are different on the RoleTailored Client than they are on the Classic

Client. In the new architecture, the layout of the report is designed in Microsoft

Visual Studio and totals are also defined in the layout editor in Microsoft Visual

Studio. Furthermore, because the layout is designed in Microsoft Visual Studio

Microsoft Dynamics NAV 5.1 ignores all the code on section triggers

If you have a report that you want to use on the Service Architecture, you must

transform the report and redesign its layout in Microsoft Visual Studio. You

should also consider moving any special code that you have written for a report

from the section triggers to another section in the report or to a codeunit.

Batch Jobs/

Processing-only

Reports

Processing-only reports, also known as batch jobs, require the same work as the

ordinary reports that we have just described. However, since these reports are

also commonly saved to file or printed to file after they have been run, the

comments that we made earlier about files also apply to these reports.

Forms Statistics Forms

Statistics forms that contain more than two columns must be adjusted before

they can be transformed correctly. To transform to a page, the columns must be

grouped like a matrix and the all the cells in the page must be filled. You must

add a placeholder control to empty cells to fill the space.

Recommendation: Consider redesigning some of the current statistics forms as

reports because statistics forms are generally used for data analysis.

Forms with Info Frames and Forms with Filter frames

Forms that contain Info Frames (e.g. the Item Charge Assignment form or Cash

Receipt Journal) or Forms with Filter frames (e.g. the Sales Prices form) must be

redesigned in the same way as Statistics Forms. You must place a frame control

around the Info Frame section to successfully transform it to a page.

If not redesigned the default 2-column layout of the RoleTailored Client is used,

so in some instances you may prefer to rearrange the fields to obtain a more

user-friendly order of field in the RoleTailored Client.

Matrix Forms

The Microsoft Dynamics NAV 5.1 Role Tailored Client does not support matrix

controls. You can map a matrix control on a form to a grid control on a page

but there are limitations:

30

THE DEVELOPMENT ENVIRONMENT IN MICROSOFT DYNAMICS NAV

You must make a new request page that will be used to define the filters and

selections that should be applied and a button to show the result in the grid.

The grid is read only and you cannot make grids/matrix forms in Microsoft

Dynamics NAV 5.1 that are used for data entry.

The grid contains a finite number of columns. The default value can be changed

if you need a larger grid but will always be static for that page.

Journals and worksheets with batches

Journals and worksheets with batches are now accessed through a List Place (of

batches). So adding an ‖Edit Journal‖ command to the batch form is required.

Navigation Panes on RoleCenters should refer to new forms (List Places)

Type-specific filtering on forms

Role-based Client does not support filtering in the Department Page (Menu

Suite). So added new forms (Lists) for ―Type‖ Specific filtering is required, e.g.

Sales List split into 6 new Lists specific to the Document Type.

Wizards

In Microsoft Dynamics NAV 5.0, wizards are supported in a single form. Wizards

must be redesigned and a new page constructed for each ―window‖ of the

wizard before they can run on the Service Architecture.

Display Properties

in Forms

None of the properties that govern fonts – FontSize, FontItalic and so on - are

supported in the new architecture. These properties are ignored by the

RoleTailored Client because the behavior of the UI is controlled by the client.

The Visible, Editable and Enabled properties have also been changed. In

Microsoft Dynamics NAV forms, you can set the Boolean value of the property

from code. In pages, the value is defined in a property of the control but it is

also possible to set the value from an expression. For example, you can set the

value to be true if a certain value is present in a variable or another control has a

particular value.

Infinitely long

running processes

The Microsoft Dynamics NAV Service is not designed to host processes that run

indefinitely. An example of an infinitely long process is a solution that runs on

the Dynamics NAV Application Server and listens for and processes external

COM events.

To build a similar solution, the application must take a more event driven

approach rather than a polling/always on approach. For example, you can

implement most solutions using Web services as the event trigger.

Consider changing your solution to a Web services solution. This will also

increase interoperability and reliability.

31

THE DEVELOPMENT ENVIRONMENT IN MICROSOFT DYNAMICS NAV

32

THE DEVELOPMENT ENVIRONMENT IN MICROSOFT DYNAMICS NAV

Service Tier Architecture and C/SIDE side by side

The Dynamics NAV C/SIDE client and its related cousin, the Dynamics NAV Application Server are able

to run on the same SQL database as is used by the Service Tier Architecture. Such a system allows Role

Tailored Clients and C/SIDE clients to be run within a system simultaneously offering different users

access to the same application. This mix of clients running on the same system is referred to Mixed

Mode. The clearest benefits of such a system are not only that different users in an organization are

able to use different clients but also that any specific solutions that are not immediately migrated to

the Role Tailored Client may still be used within an organization and also any integration solutions

running on the NAV Application Server will continue to function as well.

Mixed Mode however introduces constraints when using Dynamics NAV and such it should be judged

carefully before a decision is taken to deploy such a solution. This section of the paper seeks to raise

the issue of mixed mode and enable you to decide if the benefits of the mixed mode system outweigh

the costs.

You will probably have observed at this point that this entire paper is describing an actual mixed mode

system. It is correct that using the C/SIDE client as the development environment attached to a Service

Tier Architecture is an example of mixed mode. This scenario is supported for two main reasons –

firstly that it is the C/SIDE Client that offers the development environment. It simply must be

supported in order to allow any kind of accelerated development environment where a programmer

can see a change they have made in the application be applied to the running system. The second

reason is that this scenario is simpler from other platform considerations – specifically it is not

necessary to enforce the Dynamics NAV security roles and permissions when working at design time.

The more commonly expected scenario is that of different end users running different types of clients.

The major drawbacks in trying to support a mixed mode system centre mostly on increased complexity

during development for the partner whose role it is to develop and maintain the system.

The two main issues are:

 Application code and Functionality

 Security

Application Code, Application Functionality and Testing

As described earlier in this document, there are differences between the role tailored client and the

C/SIDE client. As the application is defined in code and/or properties from the development

environment, it becomes necessary to write code specifically for one platform or another. Writing code

that targets particular features of each of the platforms results in needing to write (and maintain!) code

that looks like this:

IF (ISSERVICETIER) THEN

 … <service tier code>

ELSE

 … <C/SIDE code>

ENDIF

Writing for specific platforms in such a structure vastly reduces the ease of understanding and

maintenance of the code. In particular, reports are different between the two platforms, as is code that

uses Automation objects and Files. Another example of application functionality that is different

between the C/SIDE and the Role Tailored Client is the Office Integration Stylesheets. Continuing to

33

THE DEVELOPMENT ENVIRONMENT IN MICROSOFT DYNAMICS NAV

develop for the stylesheets feature will require not only double work, but a more complex

understanding of how particular stylesheets should only be applied to one specific platform type .

Both client platforms use the menusuite object for navigation but the design is different. In the C/SIDE

Client, a user opens a card and then can jump to a list. In the Role Tailored Client, the user is presented

with a list and can then select which Page (card) to open. Supporting both these types of designs in a

single application becomes double work to understand and maintain changes.

C/SIDE Client and Role Tailored Client have different implementations of the feature used to record

miscellaneous notes or comments about a document or contact. The C/SIDE Client uses the comments

feature and the Role Tailored Client uses notes. Both provide similar functionality but different users

are not able to see the information entered by another user who uses a different client.

Writing code to run correctly on both platforms will require double the level of testing

Security

Dynamics NAV 4.0 introduced the Enhanced Security Model for the SQL Option for C/SIDE Clients. In

this version each user is assigned an SQL Application Role rather than having a single Application Role

for the whole system.

The Dynamics NAV NST architecture uses the previous single Application Role for enforcing Security.

This is permissible as the Role Tailored Client enforces security and trust on the client and in the

protocol that interacts with the NST. It does mean that any C/SIDE clients in a mixed mode

environment will not be able to run with the Enhanced Security Model.

34

THE DEVELOPMENT ENVIRONMENT IN MICROSOFT DYNAMICS NAV

Appendix

Reports
The following properties and functions are not supported in reports for the RoleTailored Client:

Report Properties:

ShowPrintStatus

TopMargin

BottomMargin

LeftMargin

RightMargin

HorzGrid

VertGrid

Orientation

PaperSize

PaperSourceFirstPage

PaperSourceOtherPages

DeviceFontName

Data Item Properties:

NewPagePerGroup

NewPagePerRecord

TotalFields

GroupTotalFields

Report Functions:

NewPagePerRecord

URL

ObjectID

CurrReport Functions:

CreateTotals

TotalsCausedBy

ShowOutput

PageNo

NewPage

SaveAsXML

PaperSource

NewPagePerRecord

URL

ObjectID

Report Triggers/Functions:

Section triggers

35

THE DEVELOPMENT ENVIRONMENT IN MICROSOFT DYNAMICS NAV

Layout-specific functions and totaling functions

Unsupported functions referred to from other objects (CodeUnits, Tables, etc.)

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication.

Because Microsoft must respond to changing market conditions, this document should not be interpreted to be a commitment on the part of Microsoft,

and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, AS TO THE

INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may

be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying,

recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document.

Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these

patents, trademarks, copyrights, or other intellectual property.

© 2007 Microsoft Corporation. All rights reserved.

Microsoft, The Microsoft Dynamics Logo, Microsoft Navision, Microsoft SQL Server, are either registered

trademarks or trademarks of Microsoft Corporation or Microsoft Business Solutions ApS in the United

States and/or other countries. Microsoft Business Solutions ApS is a subsidiary of Microsoft Corporation.

