
Contents

 Welcome to the Developer and IT-Pro Help for Dynamics 365 Business Central
 Get started
 Frequently asked questions
 Features not implemented in on-premises deployments
 Help and Support

 Resources for Help and Support
 Configuring technical support
 Help system

 User assistance model
 Extend, Customize, and Collaborate on the Help
 Configure Context-Sensitive Help

 Deployment
 Deployment Overview
 Configuring the Help Experience
 Online

 Choosing Your Development Sandbox Environment
 Embed App

 Embed App Overview
 Microsoft Responsibilities
 Qualification and Onboarding
 Managing in Microsoft Lifecycle Services
 Components
 Platform
 Licensing
 Customer Sign-up
 AppSource
 Sandbox
 Ecosystem Features

 On-Premises

file:///T:/q4ru/deployment/Deployment.html

 System requirements
 Software lifecycle policy and on-premises releases
 Running a Container-Based Development Environment
 Components
 Planning
 Deployment Topologies

 Deployment Topologies Overview
 Deploying Demonstration Environment
 Deploying Single-Computer
 Deploying on Two-Computers
 Deploying on Three Computers

 Installing Using Setup
 Provisioning a Service Account
 Securing Remote Connections Using Certificates

 Business Central Web Server
 Business Central Web Server Overview

 Configuring Web Server Instances
 Configure IIS
 Configure SSL
 Setting Up Multiple Web Server Instances

 Migrating to Multitenancy
 Database

 Installation Considerations for SQL Server
 Configuring Database Authentication
 Creating and Altering Databases
 Deploying to Azure SQL Database

 Administration
 Online

 Administration of Business Central Online
 Administration Center

 Administration Center Overview
 Managing Environments

file:///T:/q4ru/deployment/Migrating-to-Multitenancy.html

 Tenant Notifications
 Environment Telemetry
 Administration Center API

 Automation
 Introduction to Automation APIs
 Automation API Overview

 On-Premises
 Intelligent Insights

 Connect to the Intelligent Cloud from On-Premises
 Replicating On-Premises Data
 Managing your Intelligent Cloud Environment
 Frequently Asked Questions about Connecting to the Intelligent Cloud

 Server Administration Tool
 Windows PowerShell Cmdlets

 Windows PowerShell Cmdlets for Business Central
 Administration Cmdlets
 Administration Cmdlets for Extensions
 Development Cmdlets
 Development Cmdlets for Extensions

 Authentication and Credential Types
 Configuring Business Central Server
 Configuring Business Central Web Server

 Configuring Business Central Web Server Instances
 Setting Up Multiple Web Server Instances

 Configuring Database Authentication
 Monitoring Business Central Server

 Monitoring Performance Counters
 Monitoring Server Events

 Monitoring Server Events Overview
 Trace Events List
 Admin and Operational Events List
 Using Event Viewer

file:///T:/q4ru/administration/FAQ-Intelligent-Cloud.html
https://docs.microsoft.com/en-us/powershell/business-central/overview
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.management
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.apps.management
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.model.tools
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.apps.tools

 Using Performance Monitor
 Using PerView
 Using LogMan
 Using PowerShell
 Turn Off or Limit Telemetry

 Monitoring Long Running SQL Queries
 SQL Server Performance

 Optimizing SQL Server Performance
 Compatibility Level
 Data Access
 Table Keys and Performance
 Bulk Inserts
 AL Database Methods
 Query Objects
 Troubleshooting: Analyzing Long Running SQL Queries Involving FlowFields
 Troubleshooting: Using the Event Log to Monitor Long Running SQL Queries

 Understanding Session Timeouts
 Preparing Dynamics 365 for Sales for Integration

 Development
 Development in AL
 Getting Started

 Getting Started with AL
 Choosing Your Development Sandbox Environment
 Building Your First Sample Extension With Extension Objects, Install Code, and

Upgrade Code
 Using Designer
 Keyboard Shortcuts
 AL Formatter
 AL Outline View
 AL Code Navigation
 AL Code Actions
 Object Ranges
 Adding Help Links from Pages, Reports, and XMLports

file:///T:/q4ru/administration/optimize-sql-al-Database-methods-and-performance-on-server.html

 Working with Translation Files
 Ready to Go

 Getting Onboarded through Ready to Go
 The “Ready to Go” Online Learning Catalog
 Add-On Apps - Getting You Started

 AppSource Validation
 Marketing Validation Checklist
 Technical Validation Checklist
 How to Make Compelling Videos
 How to Create an Effective Sales Landing Page

 Getting Started with AL for On-Premises
 Getting Started with C/SIDE and AL Side-by-Side for On-Premises
 Running C/SIDE and AL Side-by-Side
 Creating Runtime Packages for Business Central On-Premises

 Manifest Files
 JSON Files
 Security Setting and IP Protection
 Developing for Multiple Platform Versions

 Debugging
 Debugging in AL
 RAD publishing in AL

 Converting, Upgrading, and Installing Extensions
 The Lifecycle of Apps and Extensions for Business Central
 Converting from Extensions V1 to Extensions V2
 The Txt2Al Conversion Tool
 Generating Delta Files
 Exporting Data for Extensions
 Writing Extension Install Code
 Upgrading Extensions
 Publish and Install an Extension V2
 Upgrading AppSource Apps in Production

 Signing an App Package File

 Deploying a Tenant Customization
 Extending the Base Application

 Extending Application Areas
 Extending Item Charge Distribution Methods

 Events
 Events in AL
 Event Types
 Publishing Events
 Raising Events
 Subscribing to Events
 Discover Events Using the Event Recorder

 Notifications
 Task Scheduler
 Tables

 Tables Overview
 Table Object
 Table Extension Object
 Setting Relationships Between Tables
 View Table Data
 Insert, Modify, ModifyAll, Delete, and DeleteAll Methods
 Get, Find, and Next Methods
 Retaining Table Data after Publishing
 Classifying Data
 Enabling Sales Tables for Extension Development

 Pages
 Pages Overview
 Page Object
 Page Extension Object
 Page Customization Object
 API Page Type
 Role Centers

 Designing Role Centers

 Sample Role Center
 Adding links to the Navigation menu
 Headlines
 Cues and Action Tiles

 Designing Pages
 List Pages

 Designing List Pages
 Sample List Page
 Displaying Data as Tiles
 Views
 Adding Filter Tokens

 Card Pages
 Designing Card Pages
 Sample Card Page

 FactBoxes
 Adding Pages to Tell Me

 Fields
 Arranging Fields on a FastTab
 Grid Control
 Fixed Control
 Field Groups
 CalcFields, CalcSums, FieldError, FieldName, Init, TestField, and Validate Methods

 Actions
 Actions in AL
 Adding Actions to a Page
 Promoted Actions

 Inspecting and Troubleshooting Pages
 Control Add-in Style Guide

 Reports
 Reports Overview
 Report Design Overview
 Report Object

 Defining a Report Dataset
 Request Pages
 Adding Reports to Tell Me
 Testing a Report
 How to: Create a Word Layout Report
 How to: Create an RDL Layout Report

 Linking to the Web Client and App
 Web Client URL
 Business Central App URL

 Working with Translation Files
 Developing Connect Apps
 Instrumenting for Telemetry
 .NET in AL

 Getting started with Microsoft .NET Interoperability from AL
 .NET Control Add-Ins
 Subscribing to Events in a .NET Framework Type
 Serializing .NET Framework Types

 Exporting Permission Sets
 Creating and Interacting with an OData V4 Bound Action
 AL Programming

 AL Development Environment
 AL Programming Guide
 AL Simple Statements
 FAQ for Developing in AL
 Working with Multiple AL Project Folders within One Workspace
 Code Analysis

 Using the Code Analysis Tool
 Ruleset for the Code Analysis Tool
 Using the Code Analysis Tools with the Ruleset
 AppSourceCop Analyzer Rules
 CodeCop Analyzer Rules
 PerTenantExtensionCop Analyzer Rules

 UICop Analyzer Rules
 Isolated Storage
 File Handling and Text Encoding
 Flowfields
 FlowFields and FlowFilters
 Extensible Enums
 Objects

 Table Object
 Table Extension Object
 Table Keys
 Page Object
 Page Extension Object
 Page Customization Object
 Report Object
 Profile Object
 Codeunit Object
 Query Object
 XMLPort Object
 Control Add-In Object

 Methods
 Methods Overview
 Array Methods
 Method Attributes
 Procedure Overload
 Action Option Type
 Any Data Type
 BigInteger Data Type
 BigText Data Type
 Blob Data Type
 Boolean Data Type
 Byte Data Type
 Char Data Type

 ClientType Option Type
 Code Data Type
 Codeunit Data Type
 CodeunitInstance Data Type
 CompanyProperty Data Type
 Database Data Type
 DataClassification Option Type
 DataScope Option Type
 Date Data Type
 DateFormula Data Type
 DateTime Data Type
 Debugger Data Type
 Decimal Data Type
 DefaultLayout Option Type
 Dialog Data Type
 Dictionary Data Type
 DotNet Data Type
 Duration Data Type
 ExecutionContext Option Type
 ExecutionMode Option Type
 FieldClass Option Type
 FieldRef Data Type
 FieldType Option Type
 File Data Type
 FilterPageBuilder Data Type
 Guid Data Type
 HttpClient Data Type
 HttpContent Data Type
 HttpHeaders Data Type
 HttpRequestMessage Data Type
 HttpResponseMessage Data Type
 InStream Data Type

 Integer Data Type
 IsolatedStorage Data Type
 JsonArray Data Type
 JsonObject Data Type
 JsonToken Data Type
 JsonValue Data Type
 KeyRef Data Type
 Label Data Type
 List Data Type
 Media Data Type
 MediaSet Data Type
 ModuleDependencyInfo Data Type
 ModuleInfo Data Type
 NavApp Data Type
 None Data Type
 Notification Data Type
 NotificationScope Option Type
 ObjectType Option Type
 Option Data Type
 OutStream Data Type
 Page Data Type
 ProductName Data Type
 Query Data Type
 Record Data Type
 RecordID Data Type
 RecordRef Data Type
 Report Data Type
 ReportFormat Option Type
 RequestPage Data Type
 SecurityFilter Option Type
 Session Data Type
 SessionSettings Data Type

 String Data Type
 System Data Type
 TableConnectionType Option Type
 TaskScheduler Data Type
 TestAction Data Type
 TestField Data Type
 TestFilter Data Type
 TestFilterField Data Type
 TestPage Data Type
 TestPart Data Type
 TestPermissions Option Type
 TestRequestPage Data Type
 Text Data Type
 TextBuilder Data Type
 TextConst Data Type
 TextEncoding Option Type
 Time Data Type
 TransactionModel Option Type
 TransactionType Option Type
 Variant Data Type
 Verbosity Option Type
 Version Data Type
 WebServiceActionContext Data Type
 WebSeviceActionResultCode Option Type
 XmlAttribute Data Type
 XmlAttributeCollection Data Type
 XmlCData Data Type
 XmlComment Data Type
 XmlDeclaration Data Type
 XmlDocument Data Type
 XmlDocumentType Data Type
 XmlElement Data Type

 XmlNameSpaceManager Data Type
 XmlNameTable Data Type
 XmlNode Data Type
 XmlNodeList Data Type
 XmlPort Data Type
 XmlProcessingInstruction Data Type
 XmlReadOptions Data Type
 XmlText Data Type
 XmlWriteOptions Data Type

 Properties
 Properties Overview
 Table and Table Extension Properties
 Page and Page Extension Properties
 Codeunit Properties
 Query Properties
 Report Properties
 XMLPort Properties
 Control Add-In Properties
 View Properties
 Integrating with Dynamics 365 for Sales

 Triggers
 Triggers Overview
 Table and Field Triggers
 Page and Action Triggers
 Codeunit Triggers
 Report and Data Item Triggers
 XMLPort Triggers
 Query Triggers

 Rules and Guidelines
 Rules and Guidelines for AL Code
 Best Practices for AL
 Benefits and Guidelines for using a Prefix or Suffix

 Testing your Extension
 User Scenario Documentation
 Restrictions on UI for Objects Exposed as Web Services
 Replacing OnBeforeCompanyOpen and OnAfterCompanyOpen
 Building an Advanced Sample Extension
 Testing the Advanced Sample Extension

 Web Services
 General

 Publishing a Web Service
 Handling UI Interaction
 Managing Timezones
 Working with Static Proxy
 Authentication
 Securing Remote Connections Using Certificates
 Best Practices

 SOAP
 SOAP Service URIs
 Basic Operations

 Create
 CreateMultiple
 Delete
 Delete_<part>
 GetRecIdFromKey
 IsUpdated
 Read
 ReadByRecId
 ReadMultiple
 Update
 UpdateMultiple

 Retrieving Companies
 Indicating That a Value Exists in Field

 OData

file:///T:/q4ru/webservices/handling-ui-interaction-when-working-with-web-Services.html
file:///T:/q4ru/webservices/Managing-Time-Zones-with-Web-Services.html
file:///T:/q4ru/webservices/Web-Services-Authentication.html
file:///T:/q4ru/webservices/Web-Services-Best-Practices.html
file:///T:/q4ru/webservices/SOAP-Web-Services.html
file:///T:/q4ru/webservices/SOAP-Web-Service-URIs.html
file:///T:/q4ru/webservices/Basic-Page-Operations.html
file:///T:/q4ru/webservices/Create-Operation.html
file:///T:/q4ru/webservices/CreateMultiple-Operation.html
file:///T:/q4ru/webservices/Delete-Operation.html
file:///T:/q4ru/webservices/Delete_-part--Operation.html
file:///T:/q4ru/webservices/GetRecIdFromKey-operation.html
file:///T:/q4ru/webservices/IsUpdated-Operation.html
file:///T:/q4ru/webservices/Read-Operation.html
file:///T:/q4ru/webservices/ReadByRecId-Operation.html
file:///T:/q4ru/webservices/ReadMultiple-Operation.html
file:///T:/q4ru/webservices/Update-Operation.html
file:///T:/q4ru/webservices/UpdateMultiple-Operation.html
file:///T:/q4ru/webservices/OData-Web-Services.html

 Return or Obtain an AtomPub Document
 Return or Obtain Service Metadata EDMX Document
 Return or Obtain a JSON Document
 Using Filter Expressions in OData URIs
 Using FlowFilters in OData URIs
 Server-Driven Paging
 Containments and Associations
 Using OData on Queries Set with Top Number of Rows
 Using OData to Modify Data
 Walkthrough: Creating and Interacting With an OData V4 Bound Action

 Security
 Security and Protection Overview
 Application
 Online
 On-Premises

 Upgrade
 Upgrading to Business Central
 Online

 Importing Business Data from Other Finance Systems
 The Dynamics GP Data Migration Extension
 The QuickBooks Data Migration Extension

 On-Premises
 Transitioning From Codeunit 1
 Technical Upgrade

 Quick Reference
 Upgrading the Application Code
 Upgrading the Data: Single-Tenant Mode

 Quick Reference
 Upgrading the Data: Multitenant Mode

 Quick Reference
 Before You Upgrade

 Important Information and Considerations for Before Upgrading

file:///T:/q4ru/webservices/Server-Driven-Paging-in-OData-Web-Services.html
file:///T:/q4ru/security/Security-and-Protection.html
https://docs.microsoft.com/dynamics365/business-central/across-import-data-configuration-packages
https://docs.microsoft.com/dynamics365/business-central/ui-extensions-dynamicsgp-data-migration
https://docs.microsoft.com/dynamics365/business-central/ui-extensions-quickbooks-data-migration
file:///T:/q4ru/upgrade/Converting-a-Database.html
file:///T:/q4ru/upgrade/Upgrading-the-Application-Code.html
file:///T:/q4ru/upgrade/Upgrading-the-Data.html
file:///T:/q4ru/upgrade/Upgrading-the-Data-Multitenant.html
file:///T:/q4ru/upgrade/Upgrade-Considerations.html

 Deprecated Fields, and Fields Marked as Obsolete
 Deprecated Features in the Austrian Version
 Deprecated Features in the Belgian Version
 Deprecated Features in the Canadian Version
 Deprecated Features in the Dutch Version
 Deprecated Features in the Finnish Version
 Deprecated Features in the German Version
 Deprecated Features in the Icelandic Version
 Deprecated Features in the Italian Version
 Deprecated Features in the Mexican Version
 Deprecated Features in the Norwegian Version
 Deprecated Features in the Swedish Version
 Deprecated Features in the Swiss Version
 Deprecated Features in the UK Version
 Deprecated Features in the United States Version

 Migrate Legacy Help to the Business Central Format
 Dynamics 365 Business Central API

https://docs.microsoft.com/dynamics-nav/api-reference/v1.0/index

Welcome to the Developer and IT-Pro Help for
Dynamics 365 Business Central
3/31/2019 • 2 minutes to read

TIP

See Also

Dynamics 365 Business Central is a complete enterprise resource planning (ERP) software solution for mid-sized
organizations that is fast to implement, easy to configure, and simple to use. Right from the start, simplicity has
guided — and continues to guide — innovations in product design, development, implementation, and usability. In
this section, you can find information about deployment and administration, and you can find information about
developing for Dynamics 365 Business Central using the AL Language extension and Visual Studio Code.

If you are looking for the C/SIDE documentation, visit our Dynamics NAV library.

Welcome to Dynamics 365 Business Central
Dynamics 365 Business Central blog for partners
Dynamics NAV developer and ITpro content

https://docs.microsoft.com/dynamics-nav/development
https://docs.microsoft.com/dynamics365/business-central/index
https://community.dynamics.com/business/b/businesscentraldevitpro
https://docs.microsoft.com/dynamics-nav/index

Frequently Asked Questions for Dynamics 365
Business Central Developer and ITPro Experiences
4/10/2019 • 2 minutes to read

TIP

Is Business Central available in my country?

How often is Business Central updated?

How often are production databases backed up?

Can I request a copy of the backup of my production database?

Can I get training in Business Central?

How can I troubleshoot my customers' online tenants?

This section contains answers to frequently asked questions about developing for and administering Dynamics 365
Business Central.

If you are looking for frequently asked questions about signing up for and using Business Central, see Frequently Asked
Questions in the business functionality content for Business Central.

Business Central is available in a limited number of markets, but new countries are added through Microsoft-led
localization or through partner-led localization on a quarterly basis. For more information, see Countries and
Translations Supported.

Business Central online is governed by Microsoft's Modern Lifecycle Policy. This means continuous service
updates and a major update every 6 months. Stay tuned for more information.

For information about lifecycle support for Business Central on-premises, see Software Lifecycle Policy and
Dynamics 365 Business Central On-Premises Updates.

Databases are protected by automatic backups. Full database backups are done weekly, differential database
backups are done hourly, and transaction log backups are done every five minutes. Automatic backups are retained
for 14 days.

For more information, see Learn about automatic SQL Database backups.

No, this is not currently supported.

Yes, you can. As a partner you have access to the Dynamics Learning Portal, where you can find eLearning courses
for Business Central. For more information, see the Microsoft Dynamics 365 training page.

You can use the Help and Support page in your customers' tenants to find technical information, and they can use
that page to contact you. For more information, see Configuring Technical Support for Dynamics 365 Business
Central.

https://docs.microsoft.com/dynamics365/business-central/across-faq
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/compliance/apptest-countries-and-translations
https://support.microsoft.com/en-us/help/30881
https://docs.microsoft.com/azure/sql-database/sql-database-automated-backups
https://docs.microsoft.com/dynamics365/get-started/training/index#dynamics-365-partners

See Also
FAQ for Developing in AL
Features not implemented in on-premises deployments of Dynamics 365 Business Central
Software Lifecycle Policy and Dynamics 365 Business Central On-Premises Updates
Welcome to Dynamics 365 Business Central

https://docs.microsoft.com/dynamics365/business-central/index

Features not implemented in on-premises
deployments of Dynamics 365 Business Central
3/31/2019 • 2 minutes to read

Features that require specific circumstances

FEATURE DESCRIPTION

Read/write data with Excel add-in The Excel add-in that enables update of data requires Azure
Active Directory as the authentication mechanism.

Excel financial reports The Excel add-in that is used with the predefined Excel-based
financial reports requires Azure Active Directory as the
authentication mechanism.

Coversheets for contact management The integration with Word to create the coversheets requires
Azure Active Directory as the authentication mechanism.

Built-in Power BI reports and charts The integration with Power BI requires Azure Active Directory
as the authentication mechanism.

Built-in Microsoft Flow Management You can use the built-in workflows in on-premises
deployments of Business Central, provided that you connect
to Microsoft Flow using Azure Active Directory as the
authentication mechanism. This can be done using the Azure
Active Directory Assisted Setup guide in Business Central.
Microsoft Azure and Microsoft Flow require Azure Active
Directory authentication; however, your Business Central on-
premises deployment does not have to use Azure Active
Directory as the general authentication mechanism.

Built-in web services A number pages and queries are exposed as web services.
However, the default endpoint must be manually updated
before the web services can be consumed.

Outlook add-in The Outlook add-in requires Dynamics NAV User/Password or
Azure Active Directory as the authentication mechanism.

This topic lists features that are available in Business Central but not in on-premises deployments. The topic is
divided into two sections:

The first section lists features that are available under very specific circumstances in on-premises deployments.
The second section lists features that are not intended for use with on-premises deployments. There are no
plans to implement these features.

The following features are not available in all on-premises deployments because they require specific
circumstances.

Standard REST API Business Central contains new standard REST APIs. However,
on-premises deployments cannot be reached through
Microsoft Graph or the common endpoint,
https://api.businesscentral.dynamics.com/v1.0/api/beta

. Instead, you must connect directly to the on-premises
deployment, just as when you connect to web services.

Sales and Inventory Forecast This functionality requires an Azure Machine Learning
subscription.

Image Analyzer This functionality requires an Computer Vision service.

Cortana Intelligence in Cash Flow Forecast This functionality requires an Azure Machine Learning
subscription.

FEATURE DESCRIPTION

Features not intended for use in on-premises deployments

FEATURE DESCRIPTION

Inviting the external accountant Integration with Dynamics 365 — Accountant Hub is not
supported in on-premises deployments of Business Central.

Default Power BI reports Automatic deployment and configuration of Power BI reports
is not supported in on-premises deployments of Business
Central.

Bulk Invoicing from Microsoft Bookings Integration with the Bookings app in Office Business Premium
is not supported.

Create workflow from Flow Microsoft Flow does not integrate with on-premises workflow
functionality. You cannot create new workflows based on
existing Microsoft Flow templates in on-premises deployments
of Business Central.

Sandbox environments The sandbox environment that you can use to develop
extensions against for the new developer experience cannot
connect to an on-premises deployment. For more information,
see Get started with the Container Sandbox Development
Environment.

In-product search In online deployments of Business Central, Tell Me, the in-
product search, also searches in content on the
docs.microsoft.com site. For on-premises deployments, this is
not supported.

Late Payment Prediction The Late Payment Prediction functionality is not supported in
on-premises deployments of Business Central.

See Also

The following features are not intended for use in on-premises deployments. There are no plans to implement
these features in on-premises deployments.

System Requirements

https://docs.microsoft.com/azure/machine-learning/
https://docs.microsoft.com/azure/cognitive-services/computer-vision/
https://docs.microsoft.com/azure/machine-learning/
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-get-started-container-sandbox

How to: Create a Sandbox Environment

https://docs.microsoft.com/dynamics365/business-central/across-how-create-sandbox-environment?toc=/dynamics365/business-central/dev-itpro/toc.json

Resources for Help and Support for Dynamics 365
Business Central
6/25/2019 • 3 minutes to read

Product Help

NAME LOCATION DESCRIPTION

Business Central docs https://docs.microsoft.com/dynamics36
5/business-central

Use this library to learn about business
functionality.

Business Central developer and ITpro
docs

https://docs.microsoft.com/en-
us/dynamics365/business-central/dev-
itpro/

Use this content to learn how to
extend, customize, and administrate
Business Central.

Customize and extend the user assistance

Support

Get started with the "Ready to Go" program

Learn about current or upcoming capabilities

NAME LOCATION DESCRIPTION

As a Business Central partner, you have access to resources that can help you support your customers the users of
Business Central, and you have access to resources that can help you be more productive as a partner.

This page outlines the resources available to you.

The functionality in the default version of Business Central is described on the Docs.microsoft.com site as
described in the following table.

When a prospect signs up for a trial of Business Central, they have access to user assistance according to the
Business Central user assistance model. If you customize Business Central, you are expected to also customize the
user assistance so that users will have access to content that can help them get started, get unblocked, and learn
more. For more information, see User Assistance Model and Configure the Help Experience.

As a Business Central reselling partner, you are an administrator of your customers' Business Central tenants, and
you are the first line of support. You can customize the support experience, and you have access to information
that can help you troubleshoot any issues that your customers report.

For more information, see Technical Support.

The “Ready to Go” program is designed to support you in the journey of bringing offerings to market. The
program contains learning, coaching, and tooling. For more information, see The “Ready to Go” Program.

Get an overview of role-specific training material from Microsoft in the The "Ready to Go" learning catalog.

You can learn about current and coming capabilities through a number of different resources as outlined in the
following table.

https://docs.microsoft.com/dynamics365/business-central
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/

Release plans https://docs.microsoft.com/dynamics36
5/release-plans/

Get an overview of upcoming and
recently released capabilities in Business
Central and other Dynamics 365 apps.

Business Central docs https://docs.microsoft.com/dynamics36
5/business-central

Use this content to learn about
business functionality.

Business Central developer and ITpro
docs

https://docs.microsoft.com/en-
us/dynamics365/business-central/dev-
itpro/

Use this content to learn how to
extend, customize, and administrate
Business Central.

The "Ready to Go" learning catalog https://docs.microsoft.com/en-
us/dynamics365/business-central/dev-
itpro/developer/readiness/readiness-
learning-catalog

Get an overview of role-specific training
material from Microsoft.

NAME LOCATION DESCRIPTION

Share an idea about a new feature you'd like to have

Business Central Community

NAME LOCATION DESCRIPTION

Business Central Forum https://community.dynamics.com/busin
ess/f

Use this forum to submit a question
and learn from other Business Central
community members. MVPs, Partners,
and Microsoft employees participate in
the conversations.

Business Central on the Dynamics 365
Blog for users

https://cloudblogs.microsoft.com/dyna
mics365/users/product/business-
central/

Use this to learn more about new
Business Central and app releases, tips
and tricks, as well as updates about new
country releases.

Business Central on the Dynamics 365
Blog for partners

https://cloudblogs.microsoft.com/dyna
mics365/it/product/business-central/

Use this blog to learn about
opportunities, processes, and tools for
the Business Central partner
community.

Summary of where to file bugs and issues

Trials

On the Dynamics 365 Ideas site, you can provide suggestions for new feature and capabilities. Your input goes
directly to Business Central’s engineering backlog for investigation and prioritization.

Make sure to search through the list of submitted suggestions, as chances are that someone already submitted
something similar and might have already received votes. Vote if an idea already has been submitted to get it
prioritized on the team’s backlog.

On the Business Central Community site, you have access to a number of different resources as outlined in the
following table.

For collaboration in preview or beta versions of the AL language in Visual Studio Code, use GitHub
For Microsoft partners, for versions already in general availability and supported, file requests through
Microsoft PartnerSource
For Microsoft partners who have discovered a bug in a in preview or beta version, use MS Collaborate

https://docs.microsoft.com/dynamics365/release-plans/#pivot=dyn365-relplan&panel=dyn365relplan
https://docs.microsoft.com/dynamics365/business-central
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/
https://aka.ms/bcideas
https://community.dynamics.com/business
https://community.dynamics.com/business/f
https://cloudblogs.microsoft.com/dynamics365/users/product/business-central/
https://cloudblogs.microsoft.com/dynamics365/it/product/business-central/
https://github.com/microsoft/al
https://mbs.microsoft.com/partnersource/
https://docs.microsoft.com/en-us/collaborate/

See also

Giving prospects access to a pre-configured trial of Business Central is an elegant way to introduce them to
Business Central. You can use the standard trial provided by Microsoft, or you can prepare your own including
relevant extensions.

For more information, see Take prospects and customers online.

Technical Support
Configuring the Help Experience
Migrate Legacy Help
The “Ready to Go” Program
The Business Central Administration Center
Blog post: Find the right resources and provide feedback

file:///T:/q4ru/deployment/Deployment.html#take-prospects-and-customers-online
https://community.dynamics.com/business/b/financials/archive/2018/12/04/find-the-right-resources-and-provide-feedback

Configuring Technical Support for Dynamics 365
Business Central
5/3/2019 • 4 minutes to read

Configuring the support experience

On-premises deployments

NOTE

Finding technical information

As a Business Central reselling partner, you are an administrator of your customers' Business Central tenants, and
you are the first line of support. This means that you will get requests for support from your customers that you
must triage, investigate, and either resolve or escalate to Microsoft.

In this section, you can learn about the tools that are available to you to help you troubleshoot your customers'
Business Central.

In your customers' Business Central tenants, the Help and Support page gives them access to resources that can
help unblock them. You can customize the page to include the email address that your customers must use to
contact you.

To set up this support email address, run page 9165 in your customer's tenant, and then choose if you want to use
the email that you are logged in with, or if you want to specify a different contact email address. To use the email
account that you are logged in with, choose the Use my authentication email link; otherwise, enter the relevant
email address.

For more information on how to run a page, see Web Client URL.

In on-premises deployments of Business Central, the Help and Support page does not contain the section for
contacting technical support. Instead, you can enter an agreement with your customer's administrator about how
and when to contact you.

There are two other links in the Help and Support page that you can customize:

Blog

Specifies a link to where your customers can access a blog about their solution

Coming soon

Specifies a link to where your customers can access a roadmap for future changes

If you choose to not modify these settings, then the links go to Microsoft's blog and release notes.

For more information, see Configuring Business Central Web Server Instances.

The Help and Support page is available only in the browser.

The Help and Support page is a powerful tool for you to find technical information about your customers'
Business Central, both online and on-premises. It gives easy access to the most recent error message, and it has a
link to inspect pages for further troubleshooting. This is also where you can find information about which version

https://docs.microsoft.com/dynamics365/business-central/product-help-and-support?toc=/dynamics365/business-central/dev-itpro/toc.json

Azure Active Directory tenant

Version

VERSION EXAMPLE DESCRIPTION

Platform <major>.<minor>.<build>.
<revision>

14.0.29537.0 Specifies the full platform version, which
includes client and server components.

Application <build> (<country>
<name> <major>.<minor>)

29537 (US Dynamics NAV 14.0) Specifies the build number for the
application, including the major version
number.

VERSION EXAMPLE DESCRIPTION

Platform 14.0 Specifies the platform version, which
includes client and server components.

Application <major>.<minor>.<build>.
<revision>

14.0.29537.0 Specifies the full version number for the
application.

Last known error

See Also

of Business Central, your online customers are on.

You can use the Business Central Administration center to easily navigate to your customers' tenants, and you can
create sandbox environments that can help troubleshoot any issues reported by your customers. For more
information, see The Business Central Administration Center.

If you have configured the support email address, and your customer uses that to contact you, then the Help and
Support page encourages them to include information about their Azure Active Directory tenant ID in the email.
This information is shown at the bottom of the Help and Support page. You can use that to identify the tenant in
the administration center, and you can use it to log into their tenant.

You can use the information about which version the tenant is on to help you troubleshoot the issue that the
customer has reported, for example. This information is listed in the Troubleshooting section of the Help and
Support page in the following format:

However, if you use the online administration center, the version information is rendered differently:

The numbers are updated based on Microsoft's builds. In the default version of Business Central online, platform
and application have the same major version number but different build numbers. If you perform a technical
upgrade of Business Central on-premises, then platform and application will have different versions. The
October'18 update was major update 13, and the April'19 update is major version 14.

For more information about build versions, see the blog post by our technical evangelist at Business Central Build
Numbers.

The link behind the sentence View the last known error will find and show the most recent error message that was
was generated by the application code. This includes errors from field validation, posting routines, and other code
behind business functionality.

The link cannot open errors that were generated by the platform. So if you suspect that the issue is caused by the
platform, you can try to reproduce the error in a sandbox environment before you contact Microsoft for support.
For more information, see Create a sandbox environment.

Inspecting and Troubleshooting Pages

https://freddysblog.com/2018/12/05/business-central-build-numbers/

The Business Central Administration Center
Deployment
Working with Administration Tools
Blog post: Business Central Build Numbers

file:///T:/q4ru/deployment/Deployment.html
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/Administration
https://freddysblog.com/2018/12/05/business-central-build-numbers/

Dynamics 365 Business Central User Assistance
Model
3/31/2019 • 6 minutes to read

Help users get started

Help users get unblocked

Guidelines for tooltip text

The Business Central user assistance model is based on the following principles:

Get started

Default values and setup wizards makes it easy to start using Business Central with your own data, in-
product videos give new users a quick introduction to how the product works, and Home pages give easy
access to key tasks so each user can easily get started with their work every day.

Get unblocked

Embedded user assistance implemented as tooltips answers most immediate questions about what fields
and actions do.

Learn more

The Help menu and the tooltips provide context-sensitive links to Help articles with more information.

Apps, extensions, and customizations are expected to follow the same model by applying tooltips to controls on
page objects, and by providing links to Help for their functionality. For more information about customizing and
extending the user assistance, see Configure the Help Experience.

In this article, we'll talk about the user assistance model itself and what it does.

The user assistance concept of Get Started is not just about getting started with Business Central on the first day.
It’s also about getting started all the other days, and about getting started with infrequent and unfamiliar tasks.

Assistance in the shape of wizards is very helpful for setting things up, or filling in data for a complicated report,
for example. Designing Home pages that are truly designed for that particular role or job is also very useful in
helping users get started with their work every day – they can easily get to their most important tasks, and that
means that Business Central helps them get their work done more efficiently.

Even the best designed user interface can still be confusing to some. It can be difficult to predict what users will
find confusing, and that is why the base application includes tooltips for all controls and actions. In combination
with descriptive captions and instructional text, the tooltips are our current implementation of embedded user
assistance, which is an important principle in today’s world of software design.

The tooltips help users unblock themselves by providing an answer to the most likely questions the users might
have, such as “What data can I input here?” or “What is the data used for?”. Keep that in mind when you develop
the user interface of your solution.

The Microsoft user assistance model requires a tooltip for all controls of type Action and Field that exist on page
objects. Follow these guidelines:

If the control is a field, begin with the verb Specifies.

CONTROL NAME TOOLTIP

Password field Specifies your company’s password to the service that
converts bank data. The password that you enter in this field
must be the same as on the service provider’s sign-on page.
(175 characters including spaces)

Entries action View the history of transactions that have been posted for
the customer.
(72 characters including spaces)

Account Type field Specifies the purpose of the account. Total: Used to total a
series of balances on accounts from many different account
groupings. To use Total, leave this field blank. Begin-Total: A
marker for the beginning of a series of accounts to be totaled
that ends with an End-Total account. End-Total: A total of a
series of accounts that starts with the preceding Begin-Total
account. The total is defined in the Totaling field.
(522 characters including spaces)

Help users learn more

Feedback and contributions

If the control is an action, begin with a verb in the imperative form , such as Calculate or View.
Include the most valuable information that users need to perform the task(s) that the field or action supports.
Ensure relevance.
For example, for the Post action, do not write Post the document. Write, for example, Update ledgers with the
amounts and quantities on the document or journal lines..
Describe complex options in tooltips for option fields.
Use a colon to call out the option name and its description. See example 3 below.
Try to not exceed 200 characters including spaces.
This makes the tooltip easier to scan so the user can get unblocked quickly. However, the UI will render longer
tooltip text if you want to provide more detailed user assistance.
Do not make line breaks in the tooltip text.
The UI cannot render formatting or line breaks in tooltips.

Examples:

The content that Microsoft publishes under the user assistance concept of Learn more is in part intended to
answer those questions that the user interface (including the tooltips) cannot answer, such as where that page fits
into the bigger workflow, or what comes next, or what would be the alternative, and so on.

The base version of Business Central uses content that is published to an online library
(Docs.microsoft.com/dynamics365/business-central) so that it can also serve as onboarding material and as
feature overviews that you can share with prospects. The content is written in MarkDown, and our source files
are available in a public GitHub repo so that you can extend and customize it for your customers.

There are different repos in GitHub for the source content and each of the languages that Microsoft translates to.
For more information, see Extend, Customize, and Collaborate on the Help.

On docs.microsoft.com, each article has two buttons at the end of the article. The Product feedback button sends
you to the Ideas site, and the Sign in to give documentation feedback button lets you submit feedback about the
content through GitHub. In both cases, you must create an account if you do not already have one. For product
feedback, you must sign in with your work or organizational email account. For access to GitHub, you can use any
email address when you create an account.

https://docs.microsoft.com/dynamics365/business-central/index
https://github.com/MicrosoftDocs/dynamics365smb-docs

IMPORTANT

Working in MarkDown

Translate the Help

See Also

We welcome your contributions, both as pull requests with suggestions or corrections to the content, and as
GitHub Issues with bugs or questions. But please be mindful that feedback and contributions to the
dynamics365smb-docs repo is about the content, not about the product.

Microsoft accepts pull requests to the dynamics365smb-docs repo only, not the language-specific repos. If you have
feedback about translations, you can report a GitHub issue in the relevant repo.

Microsoft also accepts contributions and feedback about the developer and ITpro content through the
dynamics365smb-devitpro-pb. This repo does not have translation repos associated with it, but other than that,
the same rules apply as for the dynamics365smb-docs repo.

For more information, see Extend, Customize, and Collaborate on the Help.

If you fork one of our repos, you will be authoring in something called MarkDown. We recommend that you learn
the basics by referring to the Docs contributor guide. For more information, see How to use Markdown for
writing Docs.

The team that built the Docs.microsoft.com site have also developed an extension for Visual Studio Code that
helps with MarkDown validation, for example. For more information, see Docs Authoring Pack for VS Code.
However, you can also use other text editors.

For other tips and tricks, see Blog post: Collaborate on content for Business Central.

If you want to deliver a localization app, or if you want to deliver your functionality in more than one country, you
will want to translate the Help. To help you do that, we suggest that you take a look at the Microsoft Dynamics
365 Translation Service, which is available as preview in the Microsoft Dynamics Life Cycle Services. For more
information, see Translate documentation files.

The user assistance in the shape of tooltips and other user interface text is translated as part of the application.
For more information, see Working with Translation Files.

Configure the Help Experience
Adding Help Links from Pages, Reports, and XMLports
ToolTip Property
InstructionalText Property
Development of a Localization Solution
Translate documentation files
Resources for Help and Support
Blog post: Extending and customizing the Help
Blog post: Collaborate on content for Business Central
Docs Contributor Guide
Docs Authoring Pack for Visual Studio Code
Style Guide for Microsoft Dynamics NAV (requires login)

https://github.com/MicrosoftDocs/dynamics365smb-devitpro-pb
https://docs.microsoft.com/en-us/contribute/how-to-write-use-markdown
https://docs.microsoft.com/en-us/contribute/how-to-write-docs-auth-pack
https://community.dynamics.com/business/b/businesscentraldevitpro/archive/2018/12/15/collaborate-on-content-for-business-central
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-develop-localization
https://docs.microsoft.com/dynamics365/unified-operations/dev-itpro/lifecycle-services/translation-service-overview
https://docs.microsoft.com/dynamics365/unified-operations/dev-itpro/lifecycle-services/use-translation-service-ua
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-tooltip-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-instructionaltext-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-develop-localization
https://docs.microsoft.com/dynamics365/unified-operations/dev-itpro/lifecycle-services/use-translation-service-ua
https://community.dynamics.com/business/b/businesscentraldevitpro/archive/2018/12/11/extending-and-customizing-help
https://community.dynamics.com/business/b/businesscentraldevitpro/archive/2018/12/15/collaborate-on-content-for-business-central
https://docs.microsoft.com/contribute/
https://docs.microsoft.com/contribute/how-to-write-docs-auth-pack
https://worldready.cloudapp.net/Styleguide/Read?id=2748&topicid=38066

Extend, Customize, and Collaborate on the Help for
Dynamics 365 Business Central
3/31/2019 • 16 minutes to read

GitHub repos

NOTE

TIP

Get started with GitHub

The Help for the base application is available in a public GitHub repo so that you can easily extend and customize
for your customers. In this section, you can learn about working with the GitHub repos and MarkDown files.

There are different repos in GitHub for the source content and each of the languages that Microsoft translates to.
The dynamics365smb-docs repo contains the content in English (US). If you want access to the content in other
languages, navigate to the relevant repo - the names follow this pattern: dynamics365smb-docs-pr.<language>-
<country>, such as dynamics365smb-docs-pr.da-DK for the Danish version.

Microsoft accepts pull requests to the dynamics365smb-docs repo only, not the language-specific repos. If you have
feedback about translations, you can report a GitHub issue in the relevant repo.

When Microsoft publishes an update to the content, the live branch in the corresponding GitHub repo is updated.
The source repo is updated monthly, and the related language-specific repos are updated less frequently as new
translations are made available. You can choose to update your fork with updates from the Microsoft repo on a
monthly or less frequent basis depending on your preferred work processes. The GitHub platform and tooling will
help you manage any potential merge conflicts if you have made changes to the same files as Microsoft has. For
more information, see Fork a repo.

You are not required to make your GitHub repos public. When you fork a public repo, you can specify in the settings for the
new repo if the repo is public, private, or available only to specific GitHub accounts.

For guidance about the Microsoft-provided content for Business Central, see User Assistance Model.

1. Fork the right repo

You cannot work directly in the Business Central repos in the MicrosoftDocs GitHub org, such as the
dynamics365smb-docs repo, so the first thing you need to do is create a fork of the repo under your
GitHub account. A fork basically is copy of this repo that lets you work freely on the content without
affecting the MicrosoftDocs/dynamics365smb-docs repo. For more information, see Fork a Repo.

2. Install GitHub Desktop (optional) and clone your forked repo.

GitHub Desktop makes is easy to work and collaborate with repos locally from your own desktop. For more
information, see GitHub Desktop.

3. Get hold of your favorite MarkDown editor, and start making changes.

The help content is stored in the business-central folder of the repo. Articles use a syntax for formatting text
called GitHub Flavored Markdown, which is widely popular in the MarkDown community. To learn more

https://github.com/MicrosoftDocs/dynamics365smb-docs
https://github.com/MicrosoftDocs/dynamics365smb-docs-pr.da-DK
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/fork-a-repo/
https://desktop.github.com/

Get updates from Microsoft

$languages = $("da-dk","de-ch","de-de")
$git = "C:\Program Files\Git\cmd\git.exe"
$docfx = "C:\GitHub\DocFx\docfx.exe"
$365docs = "C:\GitHub\MSFT\dynamics365smb-docs"
$langDir = "c:\GitHub\MSFT\dynamics365smb-docs-pr."

Start-Process -FilePath $git -ArgumentList "clone --single-branch --branch live
https://github.com/MicrosoftDocs/dynamics365smb-docs.git" -WorkingDirectory "C:\working\Help" -Wait
foreach ($language in $languages)
{
 $arguments = $("clone --single-branch --branch live https://github.com/MicrosoftDocs/dynamics365smb-docs-
pr." + $language + ".git")
 Start-Process -FilePath $git -ArgumentList $arguments -WorkingDirectory "C:\working\Help" -Wait
 Copy-Item $($365docs + "\business-central\NAVdocfx.json") $($langDir + $language + "\business-central")
 Copy-Item $($365docs + "\business-central\media") $($langDir + $language + "\business-central") -Recurse -
Force
 Copy-Item $($365docs + "\business-central\LocalFunctionality") $($langDir + $language + "\business-
central") -Recurse -Force
 Copy-Item $($365docs + "\Templates") $($langDir + $language) -Recurse -Force
 Set-Content -Path $($langDir + $language + "\business-central\NAVdocfx.json") -Value (get-content -Path
$($365docs + "\business-central\NAVdocfx.json") | Select-String -Pattern 'dest": "c:\working\output",' -
NotMatch)
 Start-Process -FilePath $docfx -ArgumentList $("C:\working\help\dynamics365smb-docs-pr." + $language +
"\business-central\NAVdocfx.json" + " --output c:\working\output\" + $language)

Contributing

about working with markdown, see Getting started with writing and formatting on GitHub.

If you want to work locally, you can edit using any text editor. Just save the file as a .md type. Here are a
couple good tools that provide you with some nice features, such as Preview:

Visual Studio Code with the Docs Authoring Pack for Visual Studio Code
Atom (this has spell check and is good for managing many files)

You can also find guidance for how to get started with MarkDown in the Docs Contributor Guide, which is
published by the team that built the Docs.microsoft.com site where the Business Central team publishes their docs.

Microsoft makes frequent changes to the Business Central content, and those changes show up in the public
GitHub repos. The base repo, MicrosoftDocs/dynamics365smb-docs, is updated weekly, and the translations are
updated monthly. But you can choose to get updates monthly, twice a year, or once a year, for example. That is
entirely up to you.

When you decide it is time to get the latest version of the content from Microsoft, you can do that using GitBash
or GitHub Desktop. In the Help for GitHub, you can see an example of how this works in GitBash, but in GitHub
Desktop, you simply use the Merge into current branch menu item to pull changes from the origin into your fork.

However, if your solution is available in more than one country, then you are likely to want to make content
available in multiple languages. Microsoft has a GitHub repo for each supported language, but the configuration
files are only available in the English (US) source repo, MicrosoftDocs/dynamics365smb-docs. To help you get the
content that you need, you might want to run a PowerShell script that picks up content from the various GitHub
repos.

The following example is based on a script that a Danish partner developed in order to get the Microsoft source
for a number of languages, and then build HTML files for the legacy Dynamics NAV Help Server. The script is
provided in agreement with the partner without further support.

Because the Microsoft repos are public, you do not need a valid GitHub account in order to get the content.
However, we recommend that your organization has a system account with access to GitHub at a minimum.

https://help.github.com/articles/getting-started-with-writing-and-formatting-on-github/
https://code.visualstudio.com/
https://docs.microsoft.com/contribute/how-to-write-docs-auth-pack
https://atom.io/
https://docs.microsoft.com/en-us/contribute/
https://help.github.com/en/articles/merging-an-upstream-repository-into-your-fork

Building HTML files

A benefit of GitHub is the ability for you to contribute to the core content that the Microsoft team provides in the
dynamics365smb-docs repo. For example, you might have a new article that you think would be beneficial or you
might have a correction to an existing article. If you would like to contribute to the
MicrosoftDocs/dynamics365smb-docs repo, you create what is called a pull request from your repo to the
MicrosoftDocs/dynamics365smb-docs repo. The Microsoft team will then review the request and include the
changes as appropriate.

For example, to create a pull request to the MicrosoftDocs/dynamics365smb-docs repo by using GitHub Desktop,
do the following:

git add -u
git commit -m "update doc"
git push

1. Commit the changes to your repo that you want to include in the pull request. Here is the command for Git
Shell:

2. Choose Sync to push the changes up to your repo on GitHub.

3. When the sync is completed, choose Pull Request, make sure that the pull request points at the live
branch, and then choose send Pull Request.

For publishing to your own website, you can use tools such as DocFx. For example, if you want to preview your
content locally, or if you want to publish to the legacy Microsoft Dynamics NAV Help Server. DocFX is an open
source tool for converting markdown files. This section provides some guidance on how you can use DocFX to
publish HTML files for the Dynamics NAV Hep Server.

docfx "c:\GitHub\MSFT\dynamics365smb-docs\business-central\NAVdocfx.json"

1. Install DocFX on your computer.

For more information, see DocFx.

2. Specify the output folder in which to store the generated HTML files.

By default the files will be saved in the folder c:/output. The output folder is set in the NAVdocfx.json file. If
you want to change this folder, do the following:

a. In the folder where your local clone is, such as C:\GitHub\MSFT\dynamics365smb-docs\business-central,
open the NAVdocfx.json file in your preferred editor.
b. Set the "dest:" parameter to your output folder, and save the changes.

3. Go to your desktop and open a command prompt.

4. Go to the docfx installation folder.

5. Run the following command:

The files are generated as .html files and stored in the specified output.

https://dotnet.github.io/docfx/
https://dotnet.github.io/docfx/

NOTE

Authoring in Markdown

Headings

Heading 1

Heading 2

Heading 3

Bulleted lists

- first option
- second option
- third option

Ordered lists

1. Choose the ![Lightbulb that opens the Tell Me feature](media/ui-search/search_small.png "Tell me what you
want to do") icon, enter **Payment Journal**, and then choose the related link.
2. In the **Payment Journal** window, on the first journal line, enter the relevant information about the
payment entry.
3. To apply a single vendor ledger entry:
4. In the **Applies-to Doc. No.** field, choose the field to open the **Apply Vendor Entries** window.

Bold and italics syntax

Tables

The root of the MicrosoftDocs repos contain files that are related to internal Microsoft processes, such as
.openpublishing.build.ps1. These scripts are used to validate and preview content, but they rely on internal Microsoft
resources that are not publicly available.

The content is styled using a Markdown syntax as described below.

Use # for headings.

Examples: # Heading 1, looks like:

Heading 2, looks like:

Heading 3, looks like:

Use - to create bullets, for example:

The following options are available:

Use numbers for ordered lists. No space between the lines, we'll let the template take care of that.

Use **bold** and *italics*

For tables in the body, use the markdown syntax.

To	See
<text>	<link>

Comment syntax

<!-- Comments -->

<!-- [Managing Payables](payables-manage-payables.md)-->
<!-- This is a paragraph that spans more lines and I can just put the comment tag
at the beginning and end of it -->

Links

Link to a topic in a subfolder of the source topic

Link to a topic in a different folder than source topic

For nested tables in ordered and unordered lists use HTML-syntax. Markdown does not support tables very well.
If you use the markdown syntax the list will be broken, the table will align left and list will be renumbered.

Useful for sections that are not ready and will not pass the build check.

Examples

Ordinary link to a different topic in the same folder

These links have the format [link text](filename.md) .

Example: [Managing Payables](payables-manage-payables.md)

These links have the format [link text](subfolder/filename.md) .

For example, you want to link to payables-manage-payables.md from ui-work-general-journals.md, where the
folder structure is as follows:

articles

ManagePayables
ui-work-general-journals.md

payables-manage-payables.md

Here is the link: [Manage Payables](ManagePayables/payables-manage-payables.md)

These links have the format [link text](../folder/filename.md) .

For example, you want to link to payables-manage-payables.md from receivables-manage-receivables.md, where
the folder structure is as follows:

articles
ManageReceivables

receivables-manage-receivables.md
ui-work-general-journals.md
ManagePayables

payables-manage-payables.md

Here is the link: [Manage Payables](../ManagePayables/payables-manage-payables.md)

Link to a place in the same article

Link to a place in a different article

Line breaks (soft return)

Continue steps after a non-step para

TOC

#[Overview](overview.md)
 ##[Topic 1](topic-1.md)
 ##[Topic 2](topic-2.md)
 ##[Topic 3](topic-3.md)
 ##[Topic 4](topic-4.md)

Standard Phrases

Topic Titles

File Naming
Rules

From within an article, you can create a link to a specific heading in the same article. You can create the link like
other links except with the following format:

[link text](#target-heading)

target-heading is the text of the heading that you want to link to, except it is all lowercase and spaces between
words are replaced with hyphens. For example, here is the link: [How Autoscaling Works](#how-autoscaling-works)

To the heading: ## How Autoscaling Works

From an article, you can create a link to a specific heading in another article. You can create the link like other links
except with the following format:

[link text](targetarticlename#target-heading)

targetarticlename is the file name of the article, including the .md file type. target-heading is the text of the
heading that you want to link to, except it is all lowercase and spaces between words are replaced with hyphens.

For example, to link to the heading "How Autoscaling Works" in the article Autoscaling.md", add the following
code: [link text](Autoscaling.md#how-autoscaling-works)

In the editor, add two blank spaces at the end of the sentence and hit return. This is used in the See Also list. (See
Also must be heading 2.)

Enter four spaces in front of the non-step para. Otherwise, the non-step para will restart the step sequence.

The TOC structure of the TOC file is as follows:

All fields in Business Central have tooltips. Therefore, do not document fields in Help. To refer readers to the
tooltips, use this standard phrase where relevant:
"Choose a field to read a short description of the field or link to more information." For more information, see
Dynamics 365 Business Central User Assistance Model.

Use imperative verb form for step-based topics ("Pay vendors").
Use gerund verb form for conceptual, non-step topics. ("Paying Vendors")
Use nouns for highest-level topics. ("Sales")

No spaces or punctuation characters. Use hyphens to separate the words in the file name.
Use all lowercase letters
No more than 80 characters - this is a publishing system limit

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/user-assistance

Examples

TOPIC TITLE NAMING

Select a Company ui-how-select-company.md

Enter Criteria in Filters ui-enter-criteria-filters.md

Troubleshooting: Record Locked by Another User ui-troubleshoot-record-locked-another-user.md

Changing Basic Settings ui-change-basic-settings.md

Sales sales-manage-sales.md

Set Up Currencies finance-setup-currencies.md

Set Up Purchasers purchases-how-setup-purchasers.md

Understanding Session Timeouts admin-understand-session-timeouts.md

Manage Data Encryption admin-manage-data-encryption.md

Country-specific content

See also

Use action verbs that are specific such as develop, buy, build, troubleshoot. No -ing words.
No small words - don't include a, and, the, in, or, etc.
All files must be in markdown and use the .md file extension.

To simplify content localization and translation, country-specific articles live in country-specific folders. The TOC
entries live under the "Local Functionality" parent node.

Business Central User Assistance Model
Configuring the Help Experience
Docs Contributor Guide
Docs Authoring Pack for Visual Studio Code
Getting started with writing and formatting on GitHub
Visual Studio Code
Atom
DocFx

https://docs.microsoft.com/contribute/
https://docs.microsoft.com/contribute/how-to-write-docs-auth-pack
https://help.github.com/articles/getting-started-with-writing-and-formatting-on-github/
https://code.visualstudio.com/
https://atom.io/
https://dotnet.github.io/docfx/

Configure Context-Sensitive Help
3/31/2019 • 4 minutes to read

App-level configuration

 "contextSensitiveHelpUrl": "https://mysite.com/documentation",

 "contextSensitiveHelpUrl": "https://mysite.com/{0}/documentation",
 "supportedLocales": [
 "en-GB", "en-IE
],

Localization apps

 "helpBaseUrl": "https://mysite.com/{0}/documentation",
 "supportedLocales": [
 "ca-es"
],

Page-level configuration

A key pillar of helping users help themselves is to give them access to Help for the particular corner of Business
Central that they are working in.

At an app level, you can specify where the Help for your functionality is published in the app.json file. For
example, if you publish your content to https://mysite.com/en-us/mysolution , then you would specify that in the
contextSensitiveHelpUrl property as shown in the following example:

In this example, the contextSensitiveHelpUrl property specifies that the links to the Help must go to the
mysite.com site when the user is using your app's functionality across all locales. When the user is using
functionality from the base application, then the Help calls will go to the default location on the
docs.microsoft.com site.

If your app only supports a limited number of locales, you can specify that as well as shown in the following
example:

Specifically for localization apps that bring Business Central to new markets, the properties in the app.json file
can be set to take over the links to Help for specific languages as shown in the following example:

In this example, the helpBaseUrl and supportedLocales properties specify that the links to the Help must go to the
mysite.com site when the user is using the product in either English (Ireland) or English (United Kingdom). If the
user switches the application language to English (US), then the Help calls will go to the default location on the
docs.microsoft.com site.

Your target website is expected to have a default page that will display if nothing else is specified. But for each
page or page extension, and for each field or field group on those pages, you can then specify the exact Help page
that describes this page or field. You can do that using the ContextSensitiveHelpPage property as shown in the
following example:

page 50101 "Reward Card"
{
 PageType = Card;
 SourceTable = Reward;
 ContextSensitiveHelpPage = 'sales-rewards';

}

How it works for the base application

See also

In this example, the app contains a page object that is mapped to the sales-rewards Help file on the website that
the app.json specifies. As a result, the Learn more link in the tooltips for this page will go to the equivalent of
https://mysite.com/documentation/sales-rewards.

You can use the ContextSensitiveHelpPage property to direct all Help calls to the same article, or to group the
Help calls based on individual features or workflows. For example, Microsoft has chosen to group the context-
sensitive links depending on the granularity of the Help for specific area in the base application. If the Help for a
specific area is made more granular, then the context-sensitive Help mapping is updated accordingly.

You can set the ContextSensitiveHelpPage property on all pages, or only on those that you don't want to get the
default Help page for your website. For page extensions, the value of the ContextSensitiveHelpPage property will
apply only to the controls that the page extension adds to the extended page objects. For example, if your page
extension adds two new controls to the base application's Customer Card page, then the Learn more links in the
tooltips for those two controls will go to the Help page that you have specified, and the Learn more links in the
rest of the controls will go to the default Help that is specified in the base application. This way, multiple apps can
extend the same page object and each apply their own content-sensitive Help link without overwriting the
context-sensitive links for other apps.

In contrast, the app.json file also contains a help property, but this specifies the link that describes the app or
solution itself and is used by AppSource.

In the current version of Business Central, the context-sensitive links to Help for the base application works in a
different way that is based on a UI-to-Help mapping that is stored in table 2000000198 Page Documentation.
In this table, all page objects in the default version of Business Central are listed, and have a target Help article
associated with each of them. This means that multiple page objects can be associated with the same Help article,
such as when a specific workflow involves multiple pages.

The table associates page IDs with target articles, but the URL to where to find the target article is specified at the
application level that defaults to the https://docs.microsoft.com/dynamics365/business-central/ site. In an
extension, you can overrule this URL so that all calls for Help go to your site instead, for example. This is
especially important for localization apps where all context-sensitive Help calls for that app's language must go to
that app provider's website.

User Assistance Model
Resources for Help and Support for Dynamics 365 Business Central
Adding Help Links from Pages, Reports, and XMLports
Migrate Legacy Help to the Business Central Format
Development of a Localization Solution
Blog post: Extending and customizing the Help
Blog post: Collaborate on content for Business Central
Docs Contributor Guide
Docs Authoring Pack for Visual Studio Code

https://mysite.com/documentation/sales-rewards
https://docs.microsoft.com/en-us/dynamics365/business-central/
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-develop-localization
https://community.dynamics.com/business/b/businesscentraldevitpro/archive/2018/12/11/extending-and-customizing-help
https://community.dynamics.com/business/b/businesscentraldevitpro/archive/2018/12/15/collaborate-on-content-for-business-central
https://docs.microsoft.com/contribute/
https://docs.microsoft.com/contribute/how-to-write-docs-auth-pack

Deployment of Dynamics 365 Business Central
3/31/2019 • 2 minutes to read

Take prospects and customers online

When to choose on-premises deployment

Key Features of Setup for On-Premises Deployments

Installation Notes

Configuring the Help Experience

The topics in the Deployment section are intended to help an administrator configure a Business Central solution
online or on-premises.

You can give prospects a quick introduction to Business Central by asking them to get a free trial, and by showing
them the apps in AppSource, for example. With Business Central online, data is stored in the Microsoft cloud,
removing the need to install SQL Server locally, for example.

You must enroll in the Cloud Solution Provider program in order to service Business Central online. For more
information, see Cloud Solution Provider program - selling in-demand cloud solutions. In the Microsoft Partner
Center documentation, you can also learn how to add a customer, assign licenses to users, and create new
subscriptions. Business Central is one of the subscriptions that you can create, and there are Business Central-
specific license types that you can assign to users.

For more information about reseller readiness for Business Central, see Build Your Business on Dynamics 365
Business Central.

There can be many reasons to prefer to deploy Business Central on-premises rather than using the cloud solution.

With Business Central Setup, you can:

Install different components on different computers.

Choose from a selection of predefined installation options, or create your own custom list of components
and options to install.

Preconfigure components before installation.

Create, save, or load Setup configuration files that capture your selection of components and configuration
information.

You use Setup to install software and to create custom deployments that you can distribute to different users across
a company.

Before installing Business Central components on a computer, you must remove (uninstall) any previous
versions.

All components must be from the same version and build of Business Central for the software to run
correctly.

If you have either SQL Server 2000 or Microsoft SQL Server Desktop Engine (MSDE) installed on a
computer where you want to install Business Central, then you must remove it before you begin installing.
The presence of either of these database products causes a Setup error.

https://go.microsoft.com/fwlink/?linkid=847861
https://appsource.microsoft.com/en-us/marketplace/apps?page=1&product=dynamics-365%3Bdynamics-365-business-central
https://docs.microsoft.com/partner-center/csp-overview
https://docs.microsoft.com/partner-center/add-a-new-customer
https://docs.microsoft.com/partner-center/assign-licenses-to-users
https://docs.microsoft.com/partner-center/create-a-new-subscription
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-welcome

See Also

Part of your configuration is to specify where to look up the Help for the solution. For on-premises deployments,
you can choose to install the legacy Help Server, for example. For more information, see Configuring the Help
Experience.

Upgrading to Business Central

System Requirements

Configuring the Help Experience for Dynamics 365
Business Central
4/29/2019 • 4 minutes to read

Apps for online tenants

On-premises deployments

IMPORTANT

Online library

 "//BaseHelpUrl": "The location of Help for this application.",
 "BaseHelpUrl": "https://mysite.com/{0}/documentation/",
 "//BaseHelpSearchUrl": "The URL to use if Help is included in the Search functionality in Business
Central.",
 "BaseHelpSearchUrl": "https://docs.microsoft.com/{0}/search/index?search={1}&scope=BusinessCentral",
 "//DefaultRelativeHelpPath": "The Help article to look up if no other article can be found.",
 "DefaultRelativeHelpPath": "index",

The default version of Business Central comes with conceptual overviews and other articles that publish to the
https://docs.microsoft.com/dynamics365/business-central/ site. This location is then accessible from the Help
menu and through the Learn More links in all tooltips. Each extension that you add will include its own tooltips
and links to Help. But what if you want to deploy Business Central locally? Or if you have a vertical solution so
that you want to refer your customers to your own website for Help? Or if you have a legacy Help collection
based on the Dynamics NAV Help Server?

These and other scenarios are also supported in Business Central. But the options and possibilities are different,
depending on your deployment scenario.

When you build an app for inBusiness Central using the AL developer experience, you are expected to comply
with the Business Central user assistance model. This includes tooltips and context-sensitive links to Help.

For more information, see User Assistance Model and Configure Context-Sensitive Help.

For deploying Business Central on-premises, you must choose between using the legacy Dynamics NAV Help
Server or an online website. Help Server is a simple website that requires your Help to be in a specific format
(HTML files), and the online website can host any content that you want to make available. Your choice depends
on the concrete needs of your solution and your users.

You can configure each client to use either an online library or Help Server. If you add configuration for an online library,
you must remove the settings for Help Server.

If you want to use a website that is not based on Help Server, then you must specify the URL in the settings for
the Web client and the Windows client, if your company uses this legacy client. The website does not have to be
publicly accessible, but it must be accessible to all users of the solution that it support.

For the Web client, which is accessed by users from a browser or from the mobile apps, the navsettings.json file
must contain the following settings:

For users who use the legacy Windows client connected to Business Central, the ClientUserSettings.config file

https://docs.microsoft.com/en-us/dynamics365/business-central/

 <add key="BaseHelpUrl" value="https://mysite.com/{0}/documentation/" />
 <add key="DefaultRelativeHelpPath" value="index" />

NOTE

Help Server

 "//HelpServer": [
 "Name of the Dynamics NAV Help Server to connect to."
],
 "HelpServer": "https://myserver.com",
 "//HelpServerPort": "The listening TCP port for the Dynamics NAV Help Server. Valid range: 1-65535",
 "HelpServerPort": "49000",

 <add key="HelpServer" value="https://myserver.com" />
 <add key="HelpServerPort" value="49000" />

IMPORTANT

Fork the Microsoft repos

must contain the following settings:

Replace the value of the BaseHelpUrl key with the URL for your own website, such as
https://mysite.com/{0}/documentation/ . The parameter, {0}, represents the locale of the browser that the user is

using, such as en-us or da-dk, and is set automatically at runtime.

If you want to use Help Server, then you must specify the server and port in the installation options. The Help
Server website can also serve as a starting point for adding a library to your existing website, for example.

For the Web client, which is accessed by users from a browser or from the mobile apps, the navsettings.json file
must contain the following settings:

For users who use the legacy Windows client connected to Business Central, the ClientUserSettings.config file
must contain the following settings:

In both examples, https://myserver.com represents the URL to the Help Server instance. For more information,
see Configuring Microsoft Dynamics NAV Help Server in the developer and ITpro content for Dynamics NAV.

If you use Help Server, the UI-to-Help mapping functionality that is described in Configure Context-Sensitive Help does
not work. Instead, you must rely on the legacy Help lookup mechanism that hinges on .HTM files with filenames that
reflect the object IDs, such as N_123.htm for the page object with the ID 123. For more information, see Working with
Dynamics NAV Help Server.

For guidance about how to generate HTML files, see the Readme.md in the public source repo for the business
functionality content. Optionally, you can choose to reuse the HTML and .HTM files that you used for Dynamics
NAV in your online library or Help Server deployment.

If you want to customize or extend the Microsoft Help, you can fork our public repo for either the source repo in
English (US) at https://github.com/MicrosoftDocs/dynamics365smb-docs, or one of the related repos with
translations into the supported languages. For more information, see Extend, Customize, and Collaborate on the
Help.

https://myserver.com
https://docs.microsoft.com/dynamics-nav/configuring-microsoft-dynamics-nav-help-server
https://docs.microsoft.com/dynamics-nav/microsoft-dynamics-nav-help-server?target=_blank
https://github.com/MicrosoftDocs/dynamics365smb-docs?target=_blank#building-html-files
https://github.com/MicrosoftDocs/dynamics365smb-docs

See Also
User Assistance Model
Adding Help Links from Pages, Reports, and XMLports
Working with Dynamics NAV Help Server
Configuring Microsoft Dynamics NAV Help Server
Migrate Legacy Help to the Business Central Format
Development of a Localization Solution
System Requirements
Resources for Help and Support
Blog post: Extending and customizing the Help
Blog post: Collaborate on content for Business Central
Docs Contributor Guide
Docs Authoring Pack for Visual Studio Code

https://docs.microsoft.com/dynamics-nav/microsoft-dynamics-nav-help-server
https://docs.microsoft.com/dynamics-nav/configuring-microsoft-dynamics-nav-help-server
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-develop-localization
https://community.dynamics.com/business/b/businesscentraldevitpro/archive/2018/12/11/extending-and-customizing-help
https://community.dynamics.com/business/b/businesscentraldevitpro/archive/2018/12/15/collaborate-on-content-for-business-central
https://docs.microsoft.com/contribute/
https://docs.microsoft.com/contribute/how-to-write-docs-auth-pack

Choosing Your Dynamics 365 Business Central
Development Sandbox Environment
3/31/2019 • 2 minutes to read

NOTE

Sandbox Overview

CAPABILITY ONLINE SANDBOX CONTAINER SANDBOX

Deployment Dynamics 365 Cloud Service managed
by Microsoft

Azure VM or on-premises managed by
ISV/VAR

Production data Manually uploaded using Rapid Start
packages. Or, available through the
Business Central Admin Center.

Manually uploaded using Rapid Start
packages

Production services Manually configured Not available

Cost Part of the Business Central subscription Locally hosted - free, Azure-hosted -
cost incurred

Development Full capabilities of the development
environment.
Designer functionality, such as:
Add/Remove components,
Move components,
Set/clear Freeze pane,
Edit captions

Full capabilities of the development
environment.
Designer functionality, such as:
Add/Remove components,
Move components,
Set/clear Freeze pane,
Edit captions

Tools Visual Studio Code, Designer Visual Studio Code, Designer, on-
premise tools such as SQL Server
Management Studio, and C/SIDE.

To get started developing for Dynamics 365 Business Central it is important to understand the different options
you have at hand. You can either choose to run a sandbox environment deployed as a Dynamics 365 Business
Central service, or you can run a container-based image either hosted as an Azure VM or locally. Both options
provide the AL development tools; the container-based sandbox additionally provides access to the C/SIDE
development tools. You can also choose to run a sandbox environment with production data using the Business
Central Admin Center. For more information, see Business Central Admin Center.

When you publish an app to the online sandbox for testing, it is published within the scope of the service node that is hosting
the sandbox. Upgrading the sandbox to a new version means that the sandbox is moved to another node that is running the
new version. All apps are removed before the sandbox is moved because they will not be available on the new node. However,
the data of the app is not removed, so you only have to re-publish and install the app to make it available. Apps that are
published to the production environment are published within a global scope and downloaded to the service node and
installed during the upgrade, which means that they will not disappear.

The following topic outlines the most important capabilities on the offered development sandbox environments for
Dynamics 365 Business Central.

Debugging Enabled Enabled

Database access No Yes

Extensions Must be manually installed. Must be manually installed.

From AppSource Available. Not available.

From File Not available. Available.

From Visual Studio Code Available. Available.

CAPABILITY ONLINE SANDBOX CONTAINER SANDBOX

Getting Started

See Also

Based on the overview above and the requirements for your development environment, you can get started with a
sandbox by following the links below:

Online Sandbox with Demo Data
Online Sandbox with Production Data
Container Sandbox

Getting Started with AL
Keyboard Shortcuts
AL Development Environment

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-get-started-container-sandbox

3/31/2019 • 2 minutes to read

What is an Embed App?

See Also

Embed App is in limited preview, and is still under development. We are currently not onboarding additional
partners. This content is provided for informational purposes so you can learn more about Embed App
offering. Stay tuned for upcoming announcements in early 2019.

Embed App is a term that defines an end-to-end solution meeting the specific needs of a vertical or micro-vertical
industry.

Dynamics 365 Business Central plays a vital role in the Embed App, as Business Central is embedded as an
integral part of the overall solution.

Some examples of an Embed App include:

A Dentist solution
A Real Estate Agent solution
A Food Processing solution

An Embed App refers to what is being provided to a given customer segment, unrelated to how the solution is
being implemented or architected. An Embed App can be built using AL, in other words extension, code-
customization (C/AL), and a combination of extensions and code-customization.

Microsoft Responsibilities
Qualification and Onboarding
Qualification and Onboarding
Managing in Microsoft Lifecycle Services
Business Central Component
Business Central Platform
Business Central Licensing
Customer Signup
Appsource

Sandbox
Ecosystem Features

3/31/2019 • 2 minutes to read

Microsoft Responsibilities when Running an Embed App

AREA RESPONSIBILITIES

Infrastructure

Application Platform

Lifecyle Services portal

See Also

Embed App is in limited preview, and is still under development. We are currently not onboarding additional
partners. This content is provided for informational purposes so you can learn more about Embed App
offering. Stay tuned for upcoming announcements in early 2019.

Dynamics 365 Business Central is a cloud service for small to medium-sized businesses that is built on and for
Microsoft Azure. It provides organizations with a business management solution that helps companies connect
their financials, sales, service, and operations to streamline business processes, improve customer interactions
and make better decisions.

The Dynamics 365 Business Central service brings together the business management solution, business
intelligence, infrastructure, computing, and database services in a single offering that enables organizations to run
industry-specific Embed Apps from Independent Software Vendors (ISVs), without the hassle of managing
infrastructure.

The Dynamics 365 Business Central service model distinguishes specific roles and responsibilities for ISVs,
Implementation Partners (VARs), and Microsoft throughout the life cycle of the service. Microsoft maintains the
Dynamics 365 Business Central service by deploying, actively monitoring, and servicing the Embed App and
customers’ production tenants that are running on the service. This includes allocating the required system
infrastructure to run the service and proactively communicating to customers about the service’s health (which is
done through the Service Health dashboard in the Office 365 Admin Portal).

Microsoft responsibilities in the Dynamics 365 Business Central service include:

Storage and database capacity management
High availability and disaster recovery
Platform security and compliance
Infrastructure capacity, scaling in response to demand
Infrastructure management and deployment
Data center networking, power, and cooling

Availability and security
Diagnostics, patches, updates, hotfixes, and updates
Monitoring and first line support for ISVs

Development, deployment, and support of the portal
functionality
High availability and disaster recovery
Monitoring, updating and patching
First line support for ISVs

Embed App Overview
Qualification and Onboarding
Qualification and Onboarding
Managing in Microsoft Lifecycle Services
Business Central Component
Business Central Platform
Business Central Licensing
Customer Signup
Appsource
Sandbox
Ecosystem Features

3/31/2019 • 2 minutes to read

Qualification and Onboarding of ISV Partners to Embed
App

See Also

Embed App is in limited preview, and is still under development. We are currently not onboarding additional
partners. This content is provided for informational purposes so you can learn more about Embed App
offering. Stay tuned for upcoming announcements in early 2019.

Embed App is in limited preview, and is still under development. We are currently not onboarding additional
partners. This content is provided for informational purposes so you can learn more about Embed App
offering. Stay tuned for upcoming announcements in early 2019.

Embed App Qualification requirements are being finalized by the owners. The main criteria for Embed App
Onboarding at this point are:

Partner must provide all day, every day support. Their customers do not get to call Microsoft support. They
always call the partner.
Partner must live up to the standards for documentation that Microsoft outlined in the CFMD program.
Good documentation is part of Embed App success and uptake, and it also lowers the work load on their
support center.
Partner is committed to stay on the supported platform.
Partner provides an SLA for requests from Microsoft towards the partner (TBD)
Partners must have support agreement with Microsoft

For Embed Apps coming with a (code-customized) Base App included will have additional volume (number of
users) requirements associated with it. When an Embed App is qualified for onboarding into Dynamics 365
Business Central service, the ISV will need to provide the following information about the Embed App to the
Microsoft’s onboarding team:

The name of the application to be used for the client and web service URL, for example, an ISV for the
fabrikamapples app would provide the following information:

Entitlements for their ISV objects, per license type. See the Licensing section for more detail.
The rest of the information will be included with the Embed App package that the partner deploys through
LCS.

Client: https://fabrikamapples.bc.dynamics.com
Web Services: https://fabrikamapples.api.bc.dynamics.com

What is an Embed App
Microsoft Responsibilities

https://fabrikamapples.bc.dynamics.com
https://fabrikamapples.api.bc.dynamics.com

3/31/2019 • 2 minutes to read

Managing an Embed App in Microsoft Lifecycle Services

Embed App is in limited preview, and is still under development. We are currently not onboarding additional
partners. This content is provided for informational purposes so you can learn more about Embed App
offering. Stay tuned for upcoming announcements in early 2019.

Microsoft is going to provide essential functionality and relevant services within Microsoft Lifecycle Services
collaboration portal (LCS) to support qualified ISVs and their VARs in managing the Embed App in Dynamics
365 Business Central service.

In LCS, an ISV partner can create a project for each Embed App they would like to deploy to Dynamics 365
Business Central service. When creating a project, the partner will also select the country where the Embed App
is expected to be available. The partner needs to create separate projects for each country, even if the Embed App
is the same. Keeping different countries in different projects can help partner control access for other personas
(CSS, VAR and other stakeholders) on the country level.

Inside of the LCS project, the partner then proceeds to upload the Embed App package into the Asset library and
deploy the environment in Dynamics 365 Business Central service, based on the uploaded package. After the
Environment is successfully provisioned, it is ready to accept customer signups, which can come from either CSP
or from self-service (IW) signups.

Each business entity (tenant) that signed up for the Embed App is automatically added and displayed on the
Tenant list page. On this page, the partner can find more details about the tenant, including the name and the
URL to login into each one.

To upgrade the environment to a new version of the Embed App, the partner must first upload the updated
Embed App package to the Asset library and then deploy it to the environment that is already running. During
upgrade, the partner will be able to see the progress on the Tenant list page (version change) and more detailed
logs, including detected errors, in the Environment monitoring section. VARs and customers will get notified
about the scheduled upgrades and will be able to re-schedule those for more convenient time.

The ISV can define the date and time for the upgrade to start. The upgrade orchestration and execution is then
performed by the Dynamics 365 Business Central service.

Before deploying the new version of the application into their Production environment, the partner will be able to
deploy it into a Staging environment, where tenants (customers, VARs) that opted in can test the new version
safely and provide feedback to the ISV before the ISV deploys the new version into Production environment.

The partner gets access to comprehensive logs for the activities that they perform in the portal:

Deployment
Tenant provisioning
Tenant upgrade
Runtime (platform)
Runtime (application)

They can also observe service health metrics, the load on the service (user activity, telemetry), and get insights
into the performance of their application and tenants.
In the upcoming updates, we will keep introducing more features and services for the partner to manage their

https://lcs.dynamics.com/v2

See Also

environment efficiently, as well as functionality for VARs who help ISVs manage their tenants.

Embed App Overview
Microsoft Responsibilities
Qualification and Onboarding
Qualification and Onboarding
Managing in Microsoft Lifecycle Services
Business Central Component
Business Central Platform
Business Central Licensing
Customer Signup
Appsource
Sandbox
Ecosystem Features

3/31/2019 • 5 minutes to read

Embed App Components and Capabilities

Components

Capabilities

Partner Branding

Embed App is in limited preview, and is still under development. We are currently not onboarding additional
partners. This content is provided for informational purposes so you can learn more about Embed App
offering. Stay tuned for upcoming announcements in early 2019.

Because an Embed App should provide end-to-end experience for the customers, the partner designing this
experience, must be able to affect and control more parts of the Dynamics 365 Business Central service
experience.

On a high level, an Embed App is a package that consists of the following parts:

Library extensions

This is the functionality of the Embed App that is implemented by the ISV partner in a form of extensions.

Third party extensions

These are add-on extensions coming from other ISVs that contribute to and enhance the Embed App. The
extensions are validated to be compatible by the Embed App owner.

Extended metadata

This includes additional Embed App properties that are specific to this type of app and not otherwise
available for other types of apps (see the list below).

Base application and tenant template (optional)

The following capabilities are only available for the Embed App and not for other types of Dynamics 365
Business Central apps (Connect and Add-on).

The Embed App will promote the ISV brand in several places:

Web Client and Web Service URLs

Name, image, and icon on the “provisioning” page of the Fixed Client Endpoint
Splash screen of the Web Client
Title bar of the Web Client (for example, “Fabrikam Apples”)
Dynamics Shell (https://home.dynamics.com) - a dedicated product tile, icon, and short marketing description
In-product messages (such as pop-up errors, warnings, notifications)

Client https://[application name].bc.dynamics.com
Web Services https://[application name].api.bc.dynamics.com

https://home.dynamics.com

Exclusivity

Additional settings (metadata):

The partner can control which third party apps can be installed for their Embed App.

Whitelisting of the 3rd party apps - no other apps will be possible to install, except the ones explicitly
approved by the ISV
App install/uninstall controlled by the ISV
The partner can choose to allow a customer to install other extensions from the AppSource, but this will be an
explicit partner decision, not the default behavior

An Embed App is the property of the ISV partner, so the customers of the Embed App must be able to find
the partner’s own legal, privacy, contact, community and feedback links (not Microsoft links) when they
work with the app:

Whitelisted domains for embedding Embed App pages into other web sites, including SharePoint (“frame
ancestors”)

Target version of Dynamics 365 Business Central platform

Target version of Dynamics 365 Business Central base application (if not included with the Embed App)

Azure KeyVault account for storing ISV application secrets (for example, accounts for connecting to 1-3rd
party services)

Base application + tenant template. This is an optional component of an Embed App. The partner can
choose to include it or simply specify which version of the Dynamics 365 Business Central base application

Base Application

See Also

the Embed App should use as a base application.

At this stage, within the extensions and base application, the ISV partner can work in their own Object ID range.

The base application is the Dynamics 365 Business Central application which the partner obtained from
Microsoft, customized and extended to fit the needs of the industry the Embed App supposed to cover.
Major releases and cumulative updates (CUs) of the base application are publicly available on Microsoft
Download and as images on Docker. Microsoft Download: https://support.microsoft.com/en-us/help/4072483
Docker Hub: https://hub.docker.com/r/microsoft/dynamics-nav/
Pre-released versions of the base application are available for participants of the “Ready and Go” program via
Microsoft Collaborate. Although we recommend always using the latest version of the base application, the ISV
partner can choose any version they need. The only requirement is that the ISV partner makes sure that the base
application version they include with the Embed App can run on a supported Dynamics 365 Business Central
platform version.
The base application is an optional part of an Embed App package. If the partner has implemented all required
functionality in their library extensions, they don’t need to include the base application itself with the Embed App.
Instead they should specify, in the metadata of the Embed App, which version of the Dynamics 365 Business
Central base application they are targeting.
ISVs can choose to bring their own code-customized base application for several reasons:

Shortening time-to-market (“lift and shift” approach).

The ISV's current solution is a significantly customized version of the Microsoft Dynamics NAV application
and it will require substantial time and effort to migrate it into extensions. An ISV can lift their solution as-
is (upgraded to a supported platform) to Dynamics 365 Business Central service and start offering it to
their new and prospective customers. Then, they can gradually start moving their functionality into
extensions to achieve the benefits that come with the extension model.

Overcoming the limitations of the current extensions framework.

Extensions today can support many scenarios and the Microsoft team is working on extending these
capabilities even more. However, some customization needs of the partners are not yet possible using the
current version of the extensions framework, so partners can choose to do these changes directly in the
base application using C/SIDE Development Environment.

Availability of 3rd party add-ins as extensions.

Some of the add-ins required by the Embed App might not yet be available as extensions, for the reasons
mentioned above. The partner can choose to import these add-ins as FOB files into the base application
that they submit with the Embed App.

Usage of .NET interoperability and custom assemblies.

ISV partners use .NET interoperability in their current application to address multiple business scenarios.
Although extensions today allow a number of these scenarios to be implemented in AL, they don’t and
cannot cover for all possible scenarios of .NET usage. Therefore, the partner can choose to import the
required .NET add-ins into the Add-ins table of the base application, and these add-ins will automatically
be deployed into the environment where they will be running.

Microsoft recommends all ISV’s to move towards a model where the code-customization of the base application
is not used. In that future state, ISV’s will be able to fully rely on AL and Extensions version 2.0 or later.

Embed App Overview Microsoft Responsibilities

https://support.microsoft.com/en-us/help/4072483
https://hub.docker.com/r/microsoft/dynamics-nav/

Qualification and Onboarding
Managing in Microsoft Lifecycle Services Business Central Platform
Business Central Licensing
Customer Signup
Appsource
Sandbox
Ecosystem Features

3/31/2019 • 2 minutes to read

Dynamics 365 Business Central Platform

Minor updates

Major updates

Version availibility

Deploying versions

See Also

Embed App is in limited preview, and is still under development. We are currently not onboarding additional
partners. This content is provided for informational purposes so you can learn more about Embed App
offering. Stay tuned for upcoming announcements in early 2019.

When deploying an Embed App to the Business Central service, the partner must ensure that it is compatible
with a supported version of Business Central platform.

Microsoft will ship minor platform updates monthly and major platform updates every six months. Minor
updates can include bug fixes and improvements which should not affect the compatibility of the platform with
the previous version of the application. In rare situations, partners may be asked to recompile their solution to
work with a minor update of a Business Central platform.

Major updates will include changes that can require partners to perform a technical upgrade to make their
application work with the new version of the platform.

Microsoft is going to make new versions of the Business Central platform available to ISVs through the LCS
portal. The partner will then have to pick the platform they want to use for deployment of their solution.

When deploying a solution via the LCS portal, it will possible to pick from the last 3 available versions of the
platform (minor and major). Every newly released minor or major platform update will be added to the list and
simultaneously one older version will be removed form that list.
The existing deployments, running on the platform versions, which are older than 3 updates will enter a grace
period of 30 days and after that, if not upgraded, will be moved out of the standard SLA.

Embed App Overview
Microsoft Responsibilities
Qualification and Onboarding
Qualification and Onboarding
Managing in Microsoft Lifecycle Services
Business Central Component
Business Central Platform
Business Central Licensing
Customer Signup
Appsource

Sandbox
Ecosystem Features

3/31/2019 • 2 minutes to read

Embed App Licensing

See Also

Embed App is in limited preview, and is still under development. We are currently not onboarding additional
partners. This content is provided for informational purposes so you can learn more about Embed App
offering. Stay tuned for upcoming announcements in early 2019.

Embed Apps licenses can only be purchased through CSP.Microsoft offers several types of paid licenses (users):

Essential
Premium
Team Member
External Accountant

Customers can also subscribe for an evaluation version of an Embed App by using self-service signup (also
known as IW or viral signup). This subscription comes with 10000 licenses and allows customers to evaluate the
functionality of the Embed App using non-production companies.

In the Business Central service, the license files (*.flf) are not used, and a completely new way of defining the
licensing permissions is implemented.

We define license permissions (per object) in the Entitlements table of the application database, Entitlements are
grouped in the Entitlement Set table, then each Entitlement Set is linked to one of the Azure Active Directory
(Azure AD) Service Plans that we offer:

Team Member
Essential
Premium
External Accountant

Therefore, when a user purchases, for example, an Essential license and tries to sign in to Business Central, we
retrieve the user’s Service Plan (in this case Essential) from Azure AD and then load its associated Entitlements
as license permissions.

Embed App Overview
Microsoft Responsibilities
Qualification and Onboarding
Qualification and Onboarding
Managing in Microsoft Lifecycle Services
Business Central Component
Business Central Platform
Business Central Licensing
Customer Signup
Appsource
Sandbox
Ecosystem Features

3/31/2019 • 2 minutes to read

Embed AppCustomer Signup

Self Service (IW) signup - evaluation

https://signup.microsoft.com/signup?sku=6a4a1628-9b9a-424d-bed5-4118f0ede3fd&ru=https%3A%2F%2F[application
name].bc.dynamics-TIE.com%2F%3FredirectedFromSignup%3D1

Partner initiated (CSP) signup – paid

Embed App is in limited preview, and is still under development. We are currently not onboarding additional
partners. This content is provided for informational purposes so you can learn more about Embed App
offering. Stay tuned for upcoming announcements in early 2019.

A customer can sign up for any number of Embed Apps and for Business Central application using the same Org
ID. These apps will run side-by-side with each other, will use different URLs and will be displayed as separate
tiles on the home.dynamics.com portal. There are two ways for a customer (tenant, organization) to subscribe to
an Embed App:

Using the self-service IW signup – for acquiring a free evaluation version of the app.
Through the Microsoft Partner Center Cloud Solution Provider (CSP) program by contacting the partner - for
acquiring a paid production version of the Embed App.

Tenant provisioning is happening automatically (just-in-time) on the first attempt to login into the solution.

Navigating to https://businesscentral.dynamics.com will trigger provisioning of the Business Central tenant,
while navigating to https://[application name].bc.dynamics.com will trigger provisioning of the tenant running on
the “[application name]” application.

The partner can allow customers to use the self-service signup (also known as IW signup and viral signup) for
their Embed App. To give customers self-service signup capability, the partner should prepare a signup URL that
will redirect the Office signup flow to their application URL. The signup URL should have the following format:

The partner can then pass the URL to their customers, either from the partner’s own marketing page or in a
welcome e-mail.

To work with an Embed App, the customers would use a URL that looks something like this:

Client: https://[application name].bc.dynamics.com

Web Services: https://[application name].api.bc.dynamics.com

To work with Business Central, they would use these URLs:

Client: https://businesscentral.dynamics.com

Web Services: https://api.businesscentral.dynamics.com

In CSP, it is the Partner who defines the Partner-to-Customer price. Partners can use several options to charge
their customers.

https://businesscentral.dynamics.com

Option 1: Embed App price is added on top of Microsoft-to-Partner price:

PARTNER-TO-CUSTOMER PRICE PRICE

CSP Essential 25+50=75 USD

Option 2: Embed App price is added as a 3rd party CSP offering (This functionality is still in development by
the CSP team; tentative GA of this feature is December 2018):

PARTNER-TO-CUSTOMER PRICE PRICE

CSP Essential 25

CSP Fabrikam Apples (Essential) 50

Option 3: Business Central license + Embed App self-monetization

PARTNER-TO-CUSTOMER PRICE PRICE

CSP Essential 25

External (e.g. www.stripe.com) Fabrikam Apples (Essential) 50

See Also

Example (not actual prices):

Example (not actual prices):

Example (not actual prices):

In all three options, the ISV partner will be selling Business Central licenses in CSP.

Embed App Overview
Microsoft Responsibilities
Qualification and Onboarding
Qualification and Onboarding
Managing in Microsoft Lifecycle Services
Business Central Component
Business Central Platform
Business Central Licensing
Appsource
Sandbox
Ecosystem Features

http://www.stripe.com

3/31/2019 • 2 minutes to read

AppSource for Embed App

See Also

Embed App is in limited preview, and is still under development. We are currently not onboarding additional
partners. This content is provided for informational purposes so you can learn more about Embed App
offering. Stay tuned for upcoming announcements in early 2019.

AppSource is a Market place where Embed App partners can provide marketing details (descriptions,
whitepapers and videos) about their app.

Embed App partners can choose to promote themselves and their Embed App on the AppSource.

The Embed App itself (package) should not be uploaded into the AppSource, it is uploaded, deployed and tested
via LCS. AppSource in this case is used for the marketing purposes, not as a repository of Apps.

Partner can submit the reference to their project in LCS in the AppSource, to make sure the Microsoft team,
assessing the apps can access their environment (being invited via LCS) and verify that the necessary technical
acceptance criteria are met.

Embed App Overview
Microsoft Responsibilities
Qualification and Onboarding
Qualification and Onboarding
Managing in Microsoft Lifecycle Services
Business Central Component
Business Central Platform
Business Central Licensing
Customer Signup
Sandbox
Ecosystem Features

3/31/2019 • 2 minutes to read

Embed App Sandbox

See Also

Embed App is in limited preview, and is still under development. We are currently not onboarding additional
partners. This content is provided for informational purposes so you can learn more about Embed App
offering. Stay tuned for upcoming announcements in early 2019.

Embed App customers, just like Business Central customers, can choose to create a Sandbox environment in
addition to their production environment and use it for developing and testing customizations, demos, trainings
and similar non-production activities.

The sandbox feature is currently in preview in the Business Central service, so additional license fees can apply
when it is made available officially.

For customizing their tenants, the partners and customers can use VS Code and 50000-50149 object ID range.
Learn more about customizing the application at http://aka.ms/BusinessCentralApps

Embed App Overview Microsoft Responsibilities
Qualification and Onboarding
Qualification and Onboarding
Managing in Microsoft Lifecycle Services
Business Central Component
Business Central Platform
Business Central Licensing
Customer Signup
Appsource
Ecosystem Features

http://aka.ms/BusinessCentralApps

3/31/2019 • 2 minutes to read

Embed App Ecosystem Features

See Also

Embed App is in limited preview, and is still under development. We are currently not onboarding additional
partners. This content is provided for informational purposes so you can learn more about Embed App
offering. Stay tuned for upcoming announcements in early 2019.

Business Central application is running in a rich ecosystem of other Microsoft and 3rd party services, which
Embed App can decide to take advantage of.

The following integration capabilities of the Business Central should be considered:

Microsoft Graph – [evaluating]
Dynamics 365 API endpoint (aka native API) – available if the base application objects are unchanged
Microsoft Office Outlook Add-in - available
Microsoft Power BI – available (using customer own Power BI license)
Microsoft Flow – available (using customer own Flow license)
Microsoft PowerApps – available
WalkMe (UI walkthroughs) – not available
Microsoft Apps included with Business Central (Yodlee, Quick Books, OCR, AMC...) - available, but the
partner needs to setup his own agreement with these service providers (if needed)
Azure ML – available via partner's own Azure ML subscription
CDS/CRM integration (with Dynamics 365 for Sales) – pending CDS/CRM decision (Microsoft)
Accountant Hub - available (if shipped by Microsoft)

Embed App Overview
Microsoft Responsibilities
Qualification and Onboarding
Qualification and Onboarding
Managing in Microsoft Lifecycle Services
Business Central Component
Business Central Platform
Business Central Licensing
Customer Signup
Appsource
Sandbox

System Requirements for Dynamics 365 Business
Central On-premises
4/10/2019 • 12 minutes to read

NOTE

Client Components
Web Client Requirements

Supported browsers

Cookies and JavaScript must be enabled in the browser.

Business inbox in Outlook

Sending data to Excel

Editing in Excel using the Excel Add-in

SharePoint Online links

Printing reports to Excel or Word

The following sections list the minimum hardware and software requirements to install and run Business Central
on-premises. Minimum means that later versions (such as SP1, SP2, or R2 versions) of a required software
product are also supported.

Business Central Setup installs some software if it is not already present in the target computer. For more information, see
the "Additional Information" section for each component.

The following table shows the minimum system requirements for the Business Central Web client on-premises.

Microsoft Edge.
Internet Explorer 11.
Google Chrome 72.0 for Windows.
Mozilla Firefox 65.0 for Windows.
Safari 10.0 for macOS.

Microsoft Office 365, Microsoft Office 2019, or
Microsoft Office 2016.

Microsoft Office 365, Microsoft Office 2019, or
Microsoft Office 2016.

Excel 2019, Excel 2016, or Excel Online.

For more information, see Exporting Your Business
Data to Excel.

Microsoft Office 2019, Microsoft Office 2016, or
Microsoft Office 365.

Microsoft Office 2019, Microsoft Office 2016, or
Microsoft Office 365.

https://docs.microsoft.com/dynamics365/business-central/about-export-data

Additional information If you experience problems using the Business Central Web
client, you can try to turn off browser tools, such as
translator tools that may run in the background.

Business Central Tablet Client and Phone Client (in a Browser) Requirements

Server component Identical to the Business CentralWeb client.

Supported browsers The following desktop browsers are supported:

Cookies and JavaScript must be enabled in the browser.

Business Central Universal App Requirements

Supported operating systems

Additional hardware

Additional software

Additional information

The following table shows the minimum system requirements for the Business Central Tablet client and Business
Central Phone client running in a browser when used for development and testing purposes.

Microsoft Edge
Internet Explorer 11 (build 11.0.9600.17239) for
Windows 10.
Google Chrome 72.0 for Windows.
Mozilla Firefox 65.0 for Windows.
Safari 10.0 for macOS.

The following table shows the minimum system requirements for the Business Central Universal App.

For the latest information, see the app in the Windows Store, App Store, or Google Play.

Windows 10 S, Home, Pro, Enterprise, or Education
(32-bit and 64-bit editions).
Android 6.0 or higher (tablet and phone).
iOS 10.0 or higher (iPad and iPhone).

1 GB RAM for Android and Windows.

A third-party telephony or VoIP app such as Skype is
required for placing calls from Business Central.
A third-party email program such as Outlook is
required for sending emails from Business Central.
Microsoft Office 2019, Office 2016, or Office 365 is
required for sending data to Microsoft Excel or to
Microsoft Word.

Device diagonal screen size 7” for tablets.
Screen resolution 960 × 510 for tablets.
Device diagonal screen size 4” for phones.
Screen resolution 854 x 480 for phones.

http://go.microsoft.com/fwlink/?LinkId=734848
http://go.microsoft.com/fwlink/?LinkId=734847
http://go.microsoft.com/fwlink/?LinkId=734849

Dynamics NAV Client connected to Business Central Requirements

Supported operating systems

Hardware resources

Reports

Outlook client integration and mail merge

Import and export with Microsoft Excel and Office XML, and
SharePoint links

Editing in Excel using the Excel Add-in

OneNote integration

Email logging

Additional software

The following table shows the minimum system requirements for using the Dynamics NAV Client connected to
Business Central.

Windows 10 Pro, Enterprise, or Education (32-bit and
64-bit editions).
Important: Windows 10 S is not supported.
Windows Server 2019 Standard, Essentials, or
Datacenter.
Windows Server 2016 Standard, Essentials, or
Datacenter.
Windows Server 2012 R2 Standard or Essentials (64-
bit edition).

Hard disk space: 200 MB.
Memory: 1 GB.

For editing RDLC report layouts:

For editing Word layouts:

Report Builder for SQL Server 2016 or Visual
Studio 2017 with Microsoft Rdlc Report
Designer for Visual Studio installed.

Microsoft Word 2016 or later

Microsoft Office 365, Microsoft Office 2019, or
Microsoft Office 2016.

Microsoft Office 365, Microsoft Office 2019, or
Microsoft Office 2016.

Excel 2019 or Excel 2016.
For more information, see Exporting Your Business
Data to Excel. For Business Central on-premises, see
Setting up the Excel Add-In for Editing Data since the
same steps apply to Business Central on-premises.

Microsoft Office 365, Microsoft Office 2019, or
Microsoft Office 2016.

Active Directory and Microsoft Exchange Server 2019
or Exchange Server 2016.
Microsoft Exchange Online, or Exchange Online as
part of an Office 365 subscription.

Microsoft .NET Framework 4.7.2.

https://go.microsoft.com/fwlink/?linkid=857038
https://docs.microsoft.com/dynamics365/business-central/about-export-data
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/configuring-excel-addin

Additional information

Dynamics NAV Development Environment Requirements

Supported operating systems

Hardware resources

Reports

Business Central Setup installs the following software
if it is not already present in the target computer:

The Dynamics NAV Client is available in a 32-bit
version and 64-bit version. On a 32-bit Windows
operating system, the 32-bit version is run. On a 64-
bit Windows operating system, the 64-bit version is
run by default; however, you can also run the 32-bit
version if it is required.
Business Central Setup can only install the Excel Add-
in if Excel is present on the target computer.
Outlook synchronization is not supported on 64-bit
versions of Office.

Microsoft .NET Framework 4.7.2.

The following table shows the minimum system requirements for the Dynamics NAV Development
Environment.

Windows 10 Pro, Enterprise, or Education (32-bit and
64-bit editions).
Windows Server 2019 Standard, Essentials, or
Datacenter.
Windows Server 2016 Standard, Essentials, or
Datacenter.
Windows Server 2012 R2 Standard or Essentials (64-
bit edition).

Hard disk space: 200 MB.
Memory: 1 GB.

For creating and editing RDLC report layouts:
Report Builder for SQL Server 2016, or
One of the following versions of Visual Studio:

Visual Studio 2017 with Microsoft Rdlc
Report Designer for Visual Studio
installed.
Visual Studio 2015 Professional or
Enterprise edition with SQL Server Data
Tools installed.
Important: Before you install Visual
Studio 2015, install Microsoft .NET
Framework 4.7.2; otherwise, an error
will occur when you compile or run
RDLC reports. For more information,
see Report error "Visual Basic
Command Line Compiler has stopped
working".

For upgrading reports:

For creating Word report layouts:
Report Builder for SQL Server 2016

Word 2016 or later

https://go.microsoft.com/fwlink/?linkid=857038
http://go.microsoft.com/fwlink/?LinkID=722862

Additional software

Additional information

Server Components
Business Central Server Requirements

Supported operating systems

.

Hardware resources

Dynamics 365 for Sales integration

Additional software

Additional information

Business Central Web Server Components Requirements

Microsoft .NET Framework 4.7.2.

Business Central Setup installs the following software
if it is not already present in the target computer:

If the development environment and Business Central
Server are on the same computer, then only a 64-bit
operating system is supported.

Microsoft .NET Framework 4.7.2.
SQL Server Native Client 11.0.
Report Builder for SQL Server 2016. This is not
installed if a version of SQL Server Report
Builder or Microsoft Visual Studio is already
present on the target computer

The following table shows the minimum system requirements for Business Central Server.

Windows 10 Pro, Enterprise, or Education (64-bit
edition).
Windows Server 2019 Standard, Essentials, or
Datacenter.
Windows Server 2016 Standard, Essentials, or
Datacenter.
Windows Server 2012 R2 Standard or Essentials (64-
bit edition).

Hard disk space: 500 MB.
Memory: 2 GB.

Windows Identity Framework.
For a list of supported Dynamics 365 for Sales
versions, see Microsoft Dynamics 365 for Sales
Integration Requirements.

Microsoft .NET Framework 4.7.2.
Windows PowerShell 4.0.

Business Central Setup installs the following software
if it is not already present on the target computer:

Microsoft .NET Framework 4.7.2.
Windows Identity Framework.

Supported operating systems

.

Web server

Additional software

Additional information

Business Central Database Components for SQL Server Requirements

Supported operating systems

Hardware resources For more information, see Hardware and Software
Requirements for Installing SQL Server. From this page, you
can also access requirements for other versions of SQL
Server.

Windows 10 Pro, Enterprise, or Education (64-bit
edition).
Windows Server 2019 Standard, Essentials, or
Datacenter.
Windows Server 2016 Standard, Essentials, or
Datacenter.
Windows Server 2012 R2 Standard or Essentials (64-
bit edition).

Internet Information Server 10, Internet Information
Server 8.5, or Internet Information Server 8.0.

Microsoft .NET Framework 4.7.2.
Windows PowerShell 4.0.

Business Central Setup installs the following software
if it is not already present on the target computer.

For more information about configuring IIS, see
Configuring IIS

Microsoft .NET Core 1.0 Windows Server
Hosting. This is installed by Business Central
Setup if not already present.
Microsoft .NET Framework 4.7.2.
Internet Information Server 10, Internet
Information Server 8.5, or Internet Information
Server 8.0, depending in the operating system,
with the required features enabled.

The following table shows the minimum system requirements for Business Central database components for
SQL Server.

Windows 10 Pro, Enterprise, or Education (64-bit
edition).
Windows Server 2019 Standard, Essentials, or
Datacenter.
Windows Server 2016 Standard, Essentials, or
Datacenter.
Windows Server 2012 R2 Standard or Essentials (64-
bit edition).

http://go.microsoft.com/fwlink/?LinkId=622999

SQL Server

Service Packs and Cumulative Updates Unless explicitly stated, all released Service Packs and
Cumulative Updates of the above Microsoft SQL Server
versions are supported. It is recommended to always be on
the latest released Service Pack and Cumulative Update.

Additional information Business Central Setup installs the following software if it is
not already present on the target computer:

Business Central Help Server Requirements

Supported operating systems

Hardware resource

Web server

Additional software

Microsoft SQL Server 2017 Express, Standard or
Enterprise.
Microsoft SQL Server 2016 Express, Standard or
Enterprise.
Microsoft SQL Server 2014 Express, Standard or
Enterprise.
Azure SQL Database Managed Instance, Elastic Pool,
or Single Database.

SQL Server 2016 Express (64-bit edition).
If the operating system on the target computer does
not support SQL Server 2016 Express, Setup displays
a pre-requisite warning. In this case you should exit
Setup and then update the operating system on the
computer to one that does support SQL Server 2016
Express. Then run Setup again.

The following table shows the minimum system requirements for the Business Central Help Server.

Windows 10 Pro, Enterprise, or Education (64-bit
editions).
Windows Server 2019 Standard, Essentials, or
Datacenter.
Windows Server 2016 Standard, Essentials, or
Datacenter.
Windows Server 2012 R2 Standard or Essentials (64-
bit edition).

Hard disk space: 500 MB.
Memory: 2 GB.

Internet Information Server 10, Internet Information
Server 8.5, or Internet Information Server 8.0.

Microsoft .NET Framework 4.7.2.

Additional information

Additional Components and Features
Automated Data Capture System Requirements

Additional software

Additional information

Business Inbox in Microsoft Outlook Requirements

Supported Outlook Applications

Supported Exchange Servers

Business Central Setup installs the following software
if it is not already present on the target computer.

Windows Search must be enabled on the computer
that you install the Business Central Help Server on. If
you install on Windows Server 2012 R2, and Windows
Search is not enabled as a file service, Business
Central Setup adds the service. However, the changes
do not take effect until the computer has restarted.

Microsoft .NET Framework 4.7.2.
Internet Information Server 10, Internet
Information Server 8.5, or Internet Information
Server 8.0. depending on the operating
system, with the required features enabled.

The following table shows the minimum system requirements for Automated Data Capture System (ADCS) for
Business Central.

MSXML version 6.0.
Telnet or Microsoft Windows HyperTerminal.
VT100 Plug-in for each computer on which you install
ADCS.
Microsoft Loopback Adapter.

HyperTerminal is no longer included with Windows.
For more information, see What happened to
HyperTerminal? in the Windows Help.
VT100 Plug-in acts as a virtual Telnet server.

The following table shows the minimum system requirements for using Business Central as your business inbox
in Outlook.

Outlook 2016 or later
Outlook Web App
OWA for iPad
OWA for iPhone
OWA for Android.

Exchange Online
Exchange Server 2019
Exchange Server 2016
In deployments that use Exchange Server, the
Exchange PowerShell endpoint must be accessible by
Business Central Server.

http://go.microsoft.com/fwlink/?LinkId=222571

Supported Authentication

Supported Browsers

Supported Operating Systems

Microsoft Outlook Add-In Requirements

Supported Outlook Applications

Supported Exchange Servers

Microsoft Dynamics 365 for Sales Integration Requirements

Sales/Dynamics
NAV/Business Central

2015/Update
1/online

2016/Update
1/online

Sales Enterprise (v8.x) Sales Enterprise and
Sales Professional
(v9.x)

Dynamics NAV 2016 Supported *** Supported *** Supported *** Supported ***

Dynamics NAV 2017 Supported ** Supported * Supported * Supported *

Dynamics NAV 2018 Supported ** Supported * Supported * Supported *

Business Central
(online)

Not supported ** Not supported ** Supported * Supported *

Business Central (on-
premises)

Supported ** Supported * Supported * Supported *

The Business Central Server must be configured to
run with NavUserPassword, ACS, or AAD Credentials
Type.
Also, the Business Central Web client must be
configured for Secure Sockets Layer (SSL).

When using the Outlook Web App (OWA), your
computer must be running a supported browser
listed in the Business Central Web client
Requirements.

When using OWA for iPad, OWA for iPad, or OWA for
Android, your mobile device must use a supported
Operating System listed in Business Central Universal
App Requirements.

The following table shows the minimum system requirements for the Business Central Add-In for Outlook for
synchronization with Outlook.

Outlook 2019
Outlook 2016

Exchange Server 2019
Exchange Server 2016
Exchange Online.

The following table shows the product version requirements for integrating Business Central with Dynamics 365
for Sales, and the versions in which users can view the availability of items in Business Central from Dynamics
365 for Sales.

NOTE

Business Central as an App for SharePoint Requirements

Supported operating systems

Additional software

See Also

Legend:

"*" item availability capability is supported.
"**" integration solution can be installed from the Dynamics NAV 2016 DVD, but viewing item availability is
not supported.
"***" viewing item availability is not supported

AD, IFD and Claims authentication types are supported for the 2015 and 2016 on-premises versions of Dynamics 365 for
Sales. OAuth and Office 365 authentication are supported for the 2015, 2015 Update 1, and 2016 Update 1 online
versions of Dynamics 365 for Sales. For more details on authentication types, see Connection strings in XRM tooling to
connect to Dynamics 365.

The following table shows the minimum system requirements for Business Central as an App for SharePoint.

Windows Server 2019 Standard, Essentials, or
Datacenter.
Windows Server 2016 Standard, Essentials, or
Datacenter.
Windows Server 2012 R2 Standard or Datacenter (64-
bit edition).

SharePoint 2013 Service Pack 1.
SharePoint Online.

Welcome to the Developer and IT-Pro Help for Business Central
Product and Architecture Overview
Deployment

https://msdn.microsoft.com/en-us/library/mt608573.aspx
file:///T:/q4ru/deployment/Deployment.html

Software Lifecycle Policy and Dynamics 365 Business
Central On-Premises Updates
4/10/2019 • 2 minutes to read

Fixed Lifecycle Policy

On-premises software update policies

RELEASE VERSION BUILD NUMBER AVAILABILITY
MAINSTREAM
SUPPORT ENDS

Dynamics 365
Business Central (on-
premises)

October'18 Update 24630 November 1, 2018 **

Dynamics 365
Business Central (on-
premises)

April '19 Update 29537 April 1, 2019 October 10, 2023

Dynamics 365
Business Central (on-
premises)

October'19 Update *

See Also

This topic outlines the lifecycle and support policies for Dynamics 365 Business Central on-premises updates.

Dynamics 365 Business Central (on-premises) software is covered by the Fixed Lifecycle Policy.

Licensed customers must stay current with updates to the Dynamics 365 Business Central on-premises software
in accordance with the following servicing and system requirements. This policy requires that the customer
maintain Software Assurance (SA) or the Enhancement Plan, and that it deploy updates as noted later in this topic.

The customer is in full control of its on-premises deployments and must follow this policy. The customer is in
control of installing updates in its on-premises environments. Microsoft will support the Dynamics 365 Business
Central (on-premises) software as indicated on the Microsoft Lifecycle Policy for Business Central on-premises
page, but only if the customer keeps the deployed software current according to this policy.

Critical fixes and non-critical updates are handled in the following way:

Critical fixes – Critical fixes include security fixes and any fixes that are required to support reliability and
availability. Critical fixes will be made available in the latest platform update version.

Non-critical updates – Customers must update to the most current Dynamics 365 Business Central to
deploy non-critical updates.

* Indicates that the expiration date will be added on this page when the next version is released.
** Indicates that the version is considered a service pack with a support end date of April 14, 2020.

The build number for the versions that are not yet available will be updated when the version is released.

Microsoft Lifecycle Policy for Business Central on-premises

https://support.microsoft.com/en-us/lifecycle/search?alpha=business central on
https://support.microsoft.com/en-us/lifecycle/search?alpha=business central on

Configuring Technical Support
Welcome to the Developer and IT-Pro Help for Dynamics 365 Business Central
Upgrading to Dynamics 365 Business Central
Deployment of Dynamics 365 Business Central

file:///T:/q4ru/deployment/Deployment.html

Running a Container-Based Development
Environment
5/21/2019 • 3 minutes to read

TIP

Install and configure Docker

Run the container-based image

NOTE

Dynamics 365 Business Central is available as a container-based image, ready for running on a Windows system
with Docker installed. The container-based approach is used when you need access to both the AL development
environment and the C/SIDE development environment.

For more information on where to find Docker images, see What Docker Image is Right for You?.

Install Docker and configure it for Windows Containers.

1. Please choose the version of Docker that is appropriate for the host operating system.

Use Docker Community Edition if the host operating system is Windows 10.
For more information, see Install instructions.
Use Docker Enterprise Edition if the host operating system is Windows Server.
For more information, see Install instructions.

2. Switch Docker to use Windows containers. By default Docker uses Linux containers.

To switch to Windows containers, in the Taskbar, right-click the Docker icon , and then select Switch to
Windows Containers. For more information, see Switch between Windows and Linux containers.

Run the following command in a Command Prompt as Administrator to run a Docker image of Dynamics 365
Business Central:

docker run -e accept_eula=Y -m 4G microsoft/bcsandbox

When you run the Docker run command, it will start downloading the image if it does not already exist. A container consists
of multiple layers, only the needed layers are downloaded.

After starting the docker run command above, you will see log entries similar to the following:

https://freddysblog.com/2018/04/16/which-docker-image-is-the-right-for-you/
https://hub.docker.com/editions/community/docker-ce-desktop-windows
https://docs.microsoft.com/en-us/virtualization/windowscontainers/quick-start/quick-start-windows-10
https://www.docker.com/enterprise-edition
https://docs.microsoft.com/en-us/virtualization/windowscontainers/quick-start/quick-start-windows-server
https://docs.docker.com/docker-for-windows/#switch-between-windows-and-linux-containers

Initializing...
Starting Container
Hostname is cdc633cdb0a2
...
Container IP Address: 172.20.203.209
Container Hostname : cdc633cdb0a2
Container Dns Name : cdc633cdb0a2
Web Client : https://cdc633cdb0a2/NAV/
NAV Admin Username : admin
NAV Admin Password : Biba4071
 Files:
http://cdc633cdb0a2:8080/certificate.cer
 Initialization took 83 seconds
Ready for connections!

NOTE

The NavContainerHelper module

See Also

At this point, you can open your internet browser and type in the Web client URL from the log. You will be
prompted with a login dialog, where you can login with the NAV Admin Username/Password displayed.

The container image uses a so called self-signed certificate for https communication. Because of that, your browser might
warn you that the page you are requesting is unsafe. In those specific circumstances and only for test and development
environments, it is safe to ignore this warning. If you want to solve this warning, you can install the certificate on your PC
(see the link under "Files" in the log entries).

To support the use of containers, optional PowerShell scripts are available, which support setup of development
environments. Use the NavContainerHelper to work with containers. On a Windows 10 or Windows Server 2016
machine, start Powershell as an Administrator and type:

install-module navcontainerhelper -force

To see which functions are available in the NavContainerHelper module use the following command:

Write-NavContainerHelperWelcomeText

To get quickly get started, run the following command from the NavContainerHelper module:

new-navcontainer -accept_eula -containerName test -imageName microsoft/bcsandbox:<country> -usebestcontaineros

The NavContainerHelper will create a folder on the C:\ drive called DEMO and will place all files underneath that
folder. The DEMO folder will be shared to the container for transfer of files etc. If you do not specify a username
and a password, it will ask for your password and use the current Windows username. If you specify your windows
password, the container setup will use Windows Authentication integrated with the host. The NavContainerHelper

will also create shortcuts on the desktop for the Dynamics 365 Business Central Web client, a container prompt,
and a container PowerShell prompt.

The navcontainerhelper module also allows you to add the -includeCSide switch in order to add the Dynamics
365 Business Central Windows client and C/SIDE to the desktop and export all objects to a folder underneath
C:\DEMO\Extensions for the object handling functions from the module to work.

Getting Started with AL
Get started with the Container Sandbox Development Environment
Keyboard Shortcuts

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-get-started-container-sandbox

AL Development Environment
FAQ for Developing in AL

Business Central Component and System Topology
3/31/2019 • 3 minutes to read

Multi-Tier System Topology

Components
Main components

COMPONENT DESCRIPTION MORE INFORMATION

SQL Database An SQL Server or Azure SQL Database
database that contains application
object definitions and business data. In
a multitenant deployment, the
application and business data can be
separated into different databases: the
application database and the tenant,
which is the a database that contains
the business data. In this case, there
can be one or more tenant for a single
application database.

Creating Databases

Deploy a Business Central Database to
Azure SQL Database

The Business Central deployment comprises three core components for serving the application to users, plus
various tools and components for managing, developing, extending, and testing the application.

To understand the components is useful to first look at the base topology of a Business Central deployment, as
illustrated in the following diagram:

Every deployment must include the core components: Web server, Server, and SQL Database.

Server Business Central Server is a .NET-based
Windows Service application that uses
Windows Communication Framework
to handle communication between
clients and databases. It controls
authentication, event logging,
scheduled tasks, reporting and more.

Configuring Business Central Server

Web Server An Internet Information Server (IIS) web
site, provisioned with the Business
Central Web Server components, that
enables access from the Business
Central Web client and mobile apps.

Business Central Web Server

Business Central App A desktop, phone, and tablet app for
Business Central.

Windows Store

App Store

Google Play

Web services SOAP and OData Web Services for
exposing application functionality to
external systems and users. Developers
can create and publish functionality as
web services, where they expose pages,
codeunits, or queries, and even
enhance a page web service by using
an extension codeunit.

Web Services

COMPONENT DESCRIPTION MORE INFORMATION

Development and administration components

COMPONENT DESCRIPTION MORE INFORMATION

AL development environment An AL language extension for Visual
Studio Code for developing applications
and extensions.

Getting Started with C/SIDE and AL for
On-Premises.

Business Central Server Administration
tool

A Microsoft Management Console
(MMC) for creating and configuring
Business Central Server instances.

Business Central Server Administration
Tool

Business Central Administration Shell Windows PowerShell modules for
managing the deployment, including
tasks such adding and configuring
Business Central Server and Web server
instances, databases, and users, and
administering extension packages.

Windows PowerShell Cmdlets for
Business Central

Additional components

COMPONENT DESCRIPTION MORE INFORMATION

Demo Database A database that contains application
objects and sample business data for
demonstration purposes.

http://go.microsoft.com/fwlink/?LinkId=734848
http://go.microsoft.com/fwlink/?LinkId=734847
http://go.microsoft.com/fwlink/?LinkId=734849
https://docs.microsoft.com/en-us/powershell/business-central/overview

Dynamics NAV Development
Environment

The C/SIDE client that was available in
Dynamics NAV for developing
applications using C/AL. In Business
Central, this is only required for
performing upgrades but you can still
use it to develop applications.

Development in C/AL in the Dynamics
NAV Developer and IT Pro Help.

Dynamics NAV Development Shell Windows Powershell modules for
merging and modifying application
object files and creating extension
packages. Installed with the Dynamics
NAV Development Environment.

Windows PowerShell Cmdlets for
Business Central

Dynamics NAV Client connected to
Business Central

Windows Desktop application for
accessing Business Central.

Microsoft Outlook Integration A Business Central Server component
for integrating with Microsoft Outlook.

Microsoft Outlook Add-in A component to synchronize data, such
as to-dos, contacts, and tasks, between
Business Central and Outlook. The
Outlook Add-In uses Business Central
web services.

Setting Up the Office Add-Ins for
Outlook Integration

Microsoft Excel Add-in A component that enables users to
export data from Business Central to
Excel.

Setting up the Excel Add-In

Page Testability A Business Central Server component
for testing pages.

Automated Data Capture System A system that tracks the movement of
items in a warehouse.

ClickOnce Installer Tools Tools for implementing ClickOnce
installation for the Dynamics NAV
Client connected to Business Central.

Deploying Microsoft Dynamics NAV
Windows client Using ClickOnce in the
Dynamics NAV Developer and IT Pro
Help.

NAS Service A server component that executes
business logic without a user interface
or user interaction. NAS services in
Business Central Server support
applications such as Microsoft Office
Outlook Integration and the NAV Job
Queue.

Instead of using NAS services, we
recommend that you use the Task
Scheduler (see Task Scheduler. If you
decide to use NAS, and want to read
more about its configuration, see
Configuring NAS Services in the Dev
and IT Pro Help for Microsoft Dynamics
NAV 2018.

COMPONENT DESCRIPTION MORE INFORMATION

See Also
Deployment
Installing Business Central Using Setup
Multitenant Deployment Architecture

https://docs.microsoft.com/dynamics-nav/development
https://docs.microsoft.com/en-us/powershell/business-central/overview
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/Setting-up-Office-Add-Ins-Outlook-Inbox
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/configuring-excel-addin
https://docs.microsoft.com/dynamics-nav/deploying-microsoft-dynamics-nav-using-clickonce
https://docs.microsoft.com/dynamics-nav/configuring-nas-services
file:///T:/q4ru/deployment/Deployment.html
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/deployment/Multitenant-Deployment-Architecture

Planning Your Dynamics 365 Business Central
Deployment
3/31/2019 • 2 minutes to read

Network Topology

Single-tenancy and Multitenancy

User Authentication

Business Central Server Service Account

Enhancing Connection Security

This article outlines some of the things you should consider and decide on before you install Business Central.

Most of the topics discussed in this article can be changed at any time after the initial installation.

A Business Central deployment consists of various components that support the production, development, and
testing. These components can be installed on various computers. The deployment process varies depending on
the topology that you implement.

For more information, see Deployment Topologies.

By default, Business Central is installed as a single-tenant deployment. This means that the application and the
business data is stored in the same database. You can also set up a multitenant deployment, where the application
and business data reside in separate databases.

In a multitenant deployment, information about the Business Central application is stored in a separate application
database. Your customers’ data is stored in separate business databases, each of which is a tenant in your
deployment. By separating application from data, you can deploy the same solution to many customers with
centralized maintenance of the application and isolation of each tenant, which in turn, makes upgrading easier
compared with a single-tenant deployment.

For more information, see Multitenant Deployment Architecture.

Business Central supports several credential mechanisms for authorizing users trying to access data. By default,
Windows authentication is used.

For more information, see Authentication and Credential Types.

The central component of a Business Central deployment is the Business Central Server, which handles all
communication between the client and the databases. The Business Central Server requires a log on account,
referred to as the service account. By default, the Network Service Account is used, which is acceptable in a test
enviroment, but we recommend that you use a domain account your production environment.

For more information, see Provisioning the Business Central Server Service Account.

Business Central offers features that help secure connections over a wide area network (WAN), such as
connections from the Business Central Web Server, Dynamics NAV Client connected to Business Central, and web
services to the Business Central Server. The implementation of these security features require that you obtain a

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/deployment/Multitenant-Deployment-Architecture

See Also

certificate from a certification authority or trusted provider.

For more information, see:

Using Security Certificates with Business Central On-Premises

Configuring SSL to Secure the Business Central Web Client Connection

Upgrading to Business Central Business Central Components
System Requirements

Deployment Topologies
3/31/2019 • 2 minutes to read

Deployment Scenarios
TOPOLOGY DESCRIPTION MORE INFORMATION

Demonstration Installs an end-to-end environment,
complete with the base application and
demonstration data for a single
company, on a single computer. The
installation enables access to Business
Central from the Web client and App,
and development.

The deployment requires minimal
hardware resources, preparation, and
configuration.

Deploying a Demonstration
Environment

Single-computer Installs the Business Central Web Server
components, Business Central Server,
and the SQL Server database
components on the same computer.

Deploying in a Single Computer
Environment

A Business Central deployment consists of various components that support the production, development, and
testing. These components can be installed on various computers. The deployment process varies depending on
the topology that you implement. This article provides an overview of the supported topologies.

Two-computer Installs the Business Central Web Server
components on one computer and the
Business Central Server and the SQL
Server database components on
another computer.

Deploying in a Two Computer
Environment

Three-computer Installs the Business Central Web Server
components, Business Central Server,
and the SQL Server database
components on separate computers.

Deploying in a Three Computer
Environment

TOPOLOGY DESCRIPTION MORE INFORMATION

See Also
Install Business Central Using Setup
Business Central Web Server Overview

Deploying the Business Central Demonstration
Environment
3/31/2019 • 2 minutes to read

Installed Components and Configuration
Components

Configuration

This deployment scenario installs the major Business Central components on a single computer, complete with a
base application and database with demonstration data. After the installation, you will have an end-to-end
environment, where you can access Business Central data from the Web client. The installation requires minimal
hardware resources, preparation, and configuration.

This scenario installs the following components:

Business Central Web Server components

Internet Information Services

If IIS is already installed, then the setup will enable any required features that are not currently enabled.

Business Central Server

SQL Server Database Components, including CRONUS International Ltd. demonstration database and
demo license.

For information about what you can do with this license, see Properties of the Demo License.

Business Central Server Administration tool

Al Development Environment

This scenario uses the default setting of Business Central Setup, which includes the following:

Business Central Web Server components

Port: 8080 (inbound rule automatically added to Windows Firewall)
Protocol: HTTP

Windows authentication for authenticating users.

Business Central Server configuration:

Service instance: BC140

Client service port: 7046

SOAP web services port: 7047

OData web services port: 7048

Business Central database components configuration:

Service instance: NAVDEMO

Database: Demo Database NAV (13-0)

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/deployment/demo-license

Prepare for the Business Central Web client installation

Run Business Central Setup

Open the Business Central Web client

NOTE

See Also

NETWORK SERVICE account is used as the service account for Business Central Server and database.

1. Get access to the Business Central installation media. For example, this could be a DVD or network drive
that contains the Business Central installation files.

2. Make sure that the computer meets the hardware and software requirements.

For more information, see System Requirements.

1. From the Business Central installation media, run the setup.exe file to start the Business Central Setup.

2. Follow the setup until you get to the Dynamics 365 Business Central page, then choose Advanced
installation option > Install Demo.

The installation starts. This can take several minutes.

http://ComputerName:8080/[!INCLUDE[serverinstance](../developer/includes/serverinstance.md)]

http://localhost:8080/BC130

To open the Business Central Web client from the computer where you installed Business Central, on the
Start menu, choose All Programs, and then choose Business Central Web Client.

To open the Business Central Web client from other devices on the network, open an Internet browser, and
type the following URL in the address box:

Substitute ComputerName with the name of the computer where you installed Business Central. If you
are working on the computer where you installed Business Central, then you can use localhost.

For example:

If you get an error and the Business Central Web client does not open, then see Troubleshooting Web Server and Web Client
Installation in the Dev and IT Pro help for Dynamics NAV to try to resolve the problem.

Business Central Web Server Overview

https://docs.microsoft.com/en-us/dynamics-nav/troubleshooting-the-microsoft-dynamics-nav-web-client-installation

Deploying Business Central in a Single-Computer
Topology
3/31/2019 • 4 minutes to read

Pre-Installation Tasks

TASK DESCRIPTION FOR MORE INFORMATION, SEE

Make sure that system requirements
are met.

Verify that the computer has the
required hardware and software
installed.

System Requirements

Install Internet Information Services. When you install the Business Central
Web Server components, Business
Central Setup creates a website for the
Business Central Web client on IIS. If IIS
is already installed, then make sure that
the required features are enabled.

Note: This step is optional because
instead of installing and configuring IIS
manually, you can use Business Central
Setup to install IIS and enable the
required features by setting the Install
IIS Prerequisites option to Yes.

Configure Internet Information Services

In this scenario, you install the Business Central Web Server components, Business Central Server, and the SQL
Server database components on the same computer.

The following table includes tasks to perform before you install.

Determine the TCP ports for the
Business Central Web client, client
services, and SOAP/OData web services
(optional) and allow communication on
the port through Windows Firewall.

Business Central Setup creates a
website on IIS. During Setup, you will
have to choose the port to use for the
site. The default port is port 8080.

The default client services port is 7046.

If you will enable SOAP and OData web
services, you will also need to specify a
port for each. The default ports are
7047 and 7048.

If you choose to do so, Business Central
Setup will automatically create an
inbound rule in Windows Firewall that
allows communication on the ports.
Otherwise, you will have to do this
manually.

Create an Inbound Port Rule in the
Windows documentation.

Set up the service account for Business
Central Server and the SQL Server
database.

Optional. When you install Business
Central Server, you can specify a user
account that will be used to log on to
the Business Central Server instance
and Business Central database. The
default service account is Network
Service. If you want to use Network
Service, then no action is required for
this task.

Provisioning a Service Account

Obtain and install an SSL certificate. Optional. If you want to configure SSL
on the connection to Business Central
Web client, then complete the following
procedures:

- Obtain an SSL certificate.
- Import the certificate into the local
computer store of the computer on
which you will install the Business
Central Web Server components.
- Obtain the certificate's thumbprint.

Note: You can also configure SSL after
you have installed the Business Central
Web client. For more information, see
Post-installation Tasks.

Configure SSL to Secure the Web Client
Connection

TASK DESCRIPTION FOR MORE INFORMATION, SEE

Installation Tasks

TASK DESCRIPTION FOR MORE INFORMATION, SEE

The following table includes tasks for installing the Business Central components.

https://docs.microsoft.com/en-us/windows/security/identity-protection/windows-firewall/create-an-inbound-port-rule

Install Business Central Web Server
components, Business Central Server,
and SQL Server database components.

Run the Business Central Setup
setup.exe file, choose the Advanced
installation options > Choose an
installation option > Custom, and
then choose the Server, SQL Server
Database Components, Server, and
Web Server Components options.

Install Business Central Using Setup

TASK DESCRIPTION FOR MORE INFORMATION, SEE

Post-installation Tasks

TASK DESCRIPTION FOR MORE INFORMATION, SEE

Change the user authentication
method.

The Business Central supports the
following authentication methods:
Windows, UserName,
NavUserPassword, and
AccessControlService. By default,
Windows authentication is used.

Authentication and User Credential
Type

Secure the connection to the Business
Central Web client with SSL.

You can help secure Business Central
data that is transmitted over the
Internet by enabling Secure Sockets
Layer (SSL) on the connection to the
Business Central Web client.

Configure SSL to Secure the Web Client
Connection

Change the configuration of the
Business Central Web Server.

There are several parameters in the
navsettings.json configuration file for
the Business Central Web Server that
you can modify to change the behavior
of the Business Central Web client.
Some of the more common parameters
include the Business Central Server
instance, company, language, time zone,
regional settings, session time out, and
online Help URL.

Configuring Business Central Web
Server

Set up multiple Business Central Web
client applications.

You can set up multiple web server
instances for the Business Central Web
client on the existing website. The web
server instances will use the same
address (URL) except with an alias that
specifies the specific application.

Creating and Managing Business
Central Web Server Instances Using
PowerShell

Configure web browsers on devices. The Business Central Web client
supports several different web
browsers. To access the Business
Central Web client, the web browser
must be enabled on a device with
cookies and JavaScript.

Web Client Requirements

See Also

The following table includes tasks that configure the Business Central Web Server components after installation.
These tasks are optional depending on your organizational and network requirements.

Business Central Web Server Overview

Installing Business Central in a Two Computer Environment
Installing Business Central in a Three Computer Environment

Deploying Business Central in a Two-Computer
Topology
3/31/2019 • 4 minutes to read

Pre-Installation Tasks

TASK DESCRIPTION FOR MORE INFORMATION, SEE

Make sure that system requirements
are met.

Verify that the computer has the
required hardware and software
installed.

System Requirements

Install Internet Information Services. When you install the Business Central
Web Server components, Business
Central Setup creates a website for the
Business Central Web client on IIS. If IIS
is already installed, then make sure that
the required features are enabled.

Note: This step is optional because
instead of installing and configuring IIS
manually, you can use Business Central
Setup to install IIS and enable the
required features by setting the Install
IIS Prerequisites option to Yes.

Configure Internet Information Services

In this scenario, you install the Business Central Web Server components on a computer separate than Business
Central Server and the SQL Server database components.

The following table includes tasks to perform before you install the Business Central Web Server components.

Determine the TCP ports for the
Business Central Web client, client
services, and SOAP/OData web services
(optional) and allow communication on
the port through Windows Firewall.

Business Central Setup creates a
website on IIS. During Setup, you will
have to choose the port to use for the
site. The default port is port 8080.

The default client services port is 7046.

If you will enable SOAP and OData web
services, you will also need to specify a
port for each. The default ports are
7047 and 7048.

If you choose to do so, Business Central
Setup will automatically create an
inbound rule in Windows Firewall that
allows communication on the ports.
Otherwise, you will have to do this
manually.

Create an Inbound Port Rule in the
Windows documentation.

Set up the service account for Business
Central Server and the SQL Server
database.

Optional. When you install Business
Central Server, you can specify a user
account that will be used to log on to
the Business Central Server instance
and Business Central database. The
default service account is Network
Service. If you want to use Network
Service, then no action is required for
this task.

Provisioning a Service Account

Obtain and install an SSL certificate. Optional. If you want to configure SSL
on the connection to Business Central
Web client, then complete the following
procedures:

- Obtain an SSL certificate.
- Import the certificate into the local
computer store of the computer on
which you will install the Business
Central Web Server components.
- Obtain the certificate's thumbprint.

Note: You can also configure SSL after
you have installed the Business Central
Web client. For more information, see
Post-installation Tasks.

Configure SSL to Secure the Web Client
Connection

TASK DESCRIPTION FOR MORE INFORMATION, SEE

Installation Tasks

TASK DESCRIPTION FOR MORE INFORMATION, SEE

The following table includes tasks for installing the Business Central Web Server components.

https://docs.microsoft.com/en-us/windows/security/identity-protection/windows-firewall/create-an-inbound-port-rule

On one computer, install Business
Central Server and SQL Server
Database Components on one
computer

Run the Business Central Setup
setup.exe file, choose Advanced
installation options > Choose an
installation option > Custom, and
then choose the Server and SQL
Server Database Components
options.

Install Business Central Using Setup

On the other computer, install the
Business Central Web Server
components.

Run Business Central Setup, choose
Advanced installation options >
Choose an installation option >
Custom, and then the Web Server
Components option.

Install Business Central Using Setup

Business Central Web Server Overview

Configure delegation from the web
server to Business Central Server.

Because Business Central Server is
running on a different computer than
the Business Central Web Server
components, you must configure the
computer that is running Business
Central Web Server components to
delegate its access to Business Central
Server on behalf of the device trying to
access from the Business Central Web
client.

Configure Delegation for Business
Central Web Server

TASK DESCRIPTION FOR MORE INFORMATION, SEE

Post-installation Tasks

TASK DESCRIPTION FOR MORE INFORMATION, SEE

Change the user authentication
method.

The Business Central supports the
following authentication methods:
Windows, UserName,
NavUserPassword, and
AccessControlService. By default,
Windows authentication is used.

Authentication and User Credential
Type

Secure the connection to the Business
Central Web client with SSL.

You can help secure Business Central
data that is transmitted over the
Internet by enabling Secure Sockets
Layer (SSL) on the connection to the
Business Central Web client.

Configure SSL to Secure the Web Client
Connection

Change the configuration of the
Business Central Web Server.

There are several parameters in the
navsettings.json configuration file for
the Business Central Web Server that
you can modify to change the behavior
of the Business Central Web client.
Some of the more common parameters
include the Business Central Server
instance, company, language, time
zone, regional settings, session time
out, and online Help URL.

Configuring Business Central Web
Server

The following table includes tasks to configure the Business Central Web Server components after installation.
These tasks are optional depending on your organizational and network requirements.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/deployment/configure-delegation-web-server

Set up multiple Business Central Web
client applications on a website.

You can set up multiple web server
instances for the Business Central Web
client on the existing website. The web
server instances will use the same
address (URL) except with an alias that
specifies the specific application.

Creating and Managing Business
Central Web Server Instances Using
PowerShell

Configure web browsers on devices. The Business Central Web client
supports several different web
browsers. To access the Business
Central Web client, the web browser
must be enabled on a device with
cookies and JavaScript.

Web Client Requirements

TASK DESCRIPTION FOR MORE INFORMATION, SEE

See Also
Business Central Web Server Overview
Installing Business Central in a Single Computer Environment
Installing Business Central in a Three Computer Environment

Deploying Business Central in a Three-Computer
Topology
3/31/2019 • 5 minutes to read

Pre-Installation Tasks

TASK DESCRIPTION FOR MORE INFORMATION, SEE

Make sure that system requirements
are met.

Verify that the computer has the
required hardware and software
installed.

System Requirements

In this scenario, you install the Business Central Web Server components, Business Central Server, and the SQL
Server database components on separate computers.

This article also applies to deploying the Business Central Phone client and Business Central Tablet client.

The following table includes tasks to perform before you install the Business Central Web Server components.

Install Internet Information Services. When you install the Business Central
Web Server components, Business
Central Setup creates a website for the
Business Central Web client on IIS. If IIS
is already installed, then make sure that
the required features are enabled.

Note: This step is optional because
instead of installing and configuring IIS
manually, you can use Business Central
Setup to install IIS and enable the
required features by setting the Install
IIS Prerequisites option to Yes.

Configure Internet Information Services

Determine the TCP ports for the
Business Central Web client, client
services, and SOAP/OData web services
(optional) and allow communication on
the port through Windows Firewall.

Business Central Setup creates a
website on IIS. During Setup, you will
have to choose the port to use for the
site. The default port is port 8080.

The default client services port is 7046.

If you will enable SOAP and OData web
services, you will also need to specify a
port for each. The default ports are
7047 and 7048.

If you choose to do so, Business Central
Setup will automatically create an
inbound rule in Windows Firewall that
allows communication on the ports.
Otherwise, you will have to do this
manually.

Create an Inbound Port Rule in the
Windows documentation.

Set up the service account for Business
Central Server and the SQL Server
database.

Optional. When you install Business
Central Server, you can specify a user
account that will be used to log on to
the Business Central Server instance
and Business Central database. The
default service account is Network
Service. If you want to use Network
Service, then no action is required for
this task.

Provisioning a Service Account

Obtain and install an SSL certificate. Optional. If you want to configure SSL
on the connection to Business Central
Web client, then complete the following
procedures:

- Obtain an SSL certificate.
- Import the certificate into the local
computer store of the computer on
which you will install the Business
Central Web Server components.
- Obtain the certificate's thumbprint.

Note: You can also configure SSL after
you have installed the Business Central
Web client. For more information, see
Post-installation Tasks.

Configure SSL to Secure the Web Client
Connection

TASK DESCRIPTION FOR MORE INFORMATION, SEE

https://docs.microsoft.com/en-us/windows/security/identity-protection/windows-firewall/create-an-inbound-port-rule

Installation Tasks

TASK DESCRIPTION FOR MORE INFORMATION, SEE

On the first computer, install the
Business Central database components.

Run the Business Central Setup
setup.exe file, choose Advanced
installation options > Choose an
installation option > Custom, and
then choose the SQL Server Database
Components option.

Install Business Central Using Setup

Start the SQL Server Browser Service on
the SQL Server computer.

This task is only required if you are
using a named database instance for
Business Central. By default, Business
Central uses the database instance
named NAVDEMO. The SQL Server
Browser Service is required so that the
database instance can be discovered by
the Business Central Server instance,
which in this scenario, is another
computer. To start the SQL Server, use
SQL Server Configuration Manager.

Start, Stop, Pause, Resume, Restart SQL
Server Services

On second computer, install Business
Central Server.

Run the Business Central Setup
setup.exe file, choose Advanced
installation options > Choose an
installation option > Custom, and
then choose the Server option.

Install Business Central Using Setup

On the third computer, install the
Business Central Web Server
components.

Run the Business Central Setup
setup.exe file, choose Advanced
installation options > Choose an
installation option > Custom, and
then choose Web Server
Components option.

Install Business Central Using Setup

Configure delegation from the web
server to Business Central Server.

Because Business Central Server is
running on a different computer than
the Business Central Web Server
components, you must configure
computer running Business Central
Web Server components to delegate its
access to Business Central Server on
behalf of the device trying to access
from the Business Central Web client.

Configure Delegation for Business
Central Web Server

Post-installation Tasks

TASK DESCRIPTION FOR MORE INFORMATION, SEE

The following table includes tasks for installing the Business Central Web client.

The following table includes tasks that configure the Business Central Web Server components after installation.
These tasks are optional depending on your organizational and network requirements.

https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/start-stop-pause-resume-restart-sql-server-services
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/deployment/configure-delegation-web-server

Change the user authentication
method.

The Business Central supports the
following authentication methods:
Windows, UserName,
NavUserPassword, and
AccessControlService. By default,
Windows authentication is used.

Authentication and User Credential
Type

Secure the connection to the Business
Central Web client with SSL.

You can help secure Business Central
data that is transmitted over the
Internet by enabling Secure Sockets
Layer (SSL) on the connection to the
Business Central Web client.

Configure SSL to Secure the Web Client
Connection

Change the configuration of the
Business Central Web Server.

There are several parameters in the
navsettings.json configuration file for
the Business Central Web Server that
you can modify to change the behavior
of the Business Central Web client.
Some of the more common parameters
include the Business Central Server
instance, company, language, time
zone, regional settings, session time
out, and online Help URL.

Configuring Business Central Web
Server

Set up multiple Business Central Web
client applications on a website.

You can set up multiple web server
instances for the Business Central Web
client on the existing website. The web
server instances will use the same
address (URL) except with an alias that
specifies the specific application.

Creating and Managing Business
Central Web Server Instances Using
PowerShell

Configure web browsers on devices. The Business Central Web client
supports several different web
browsers. To access the Business
Central Web client, the web browser
must be enabled on a device with
cookies and JavaScript.

Web Client Requirements

TASK DESCRIPTION FOR MORE INFORMATION, SEE

See Also
Business Central Web Server Overview
Installing Business Central in a Single Computer Environment
Installing Business Central in a Two Computer Environment

Installing Business Central Using Setup
3/31/2019 • 5 minutes to read

About Setup

Configuration settings

Prerequisite Installations by Setup

Before you run Setup

Run Setup

You use Business Central Setup to install the different components that comprise a Business Central
production, demonstration, or development environment. For a list of components, see Components and
Topology.

Setup is available on the installation media (DVD) in the setup.exe file. When run, Setup leads you through
installation process, where you can install individual components or select predefined options that install a
logical collection of components.

Throughout Setup, you are presented with various configuration settings. Some settings require that you set
them, and other settings have a default value. In many cases, the default value is sufficient for the initial
installation. After you run Setup, you can change the configuration settings by using other tools such as the
Business Central Server Administration tool and Business Central Administration Shell.

There are some components that require other software in order run, for example the database requires SQL
Server and the Web client requires IIS. Setup will install several of these prerequisites, like installing SQL
Server Express and enabling IIS. You can see which prerequisites Setup installs in the System Requirements.

1. Plan you deployment and identify the components that you want to install.
2. Verify that the target computer where you will install components meets the hardware and software

requirements for the components that you want to install. For more information, see System Requirements.
3. Make sure that you are an administrator on the computer where you run Setup.

1. In the installation media (DVD) folder, double-click the setup.exe.

2. Follow Setup until you get to the Dynamics 365 Business Central page.

Cancel Setup

Run Setup from a command prompt

C:\Program Files (x86)\Common Files\Microsoft Dynamics 365 Business Central\<Version number>\Setup

Choose Get a free online trial to sign-up if you interested in hearing about and trying the cloud
experience.
Choose Get the Business Central app from the Microsoft Store to download a companion app
that mimics that Web client but has the same look-and-feel as the mobile apps.
Choose Advance installation options to install a demonstration environment or one more
components. Then, follow the on-screen instructions to complete the installation.

Setup does not provide a Cancel button on all pages, but you can cancel an installation from any page by
choosing the Close button in the upper-right corner. All Business Central components are removed from the
computer. The only software that Setup cannot remove are:

Database files, such as the Demo database.

Prerequisites for Business Central components that Setup can install, such as the .NET Framework.

You can run Business Central Setup from a command prompt, either by pointing to its location on the
installation media, or after the initial installation, from the location where the Setup.exe is automatically stored
on your computer. The default location is:

You can use the following options with Setup.exe.

SETUP OPTION DESCRIPTION

/config <Setup config file> Specifies path and file name information for a Setup
configuration file to load.

This is the only required option.

/help Displays Help about Setup.exe options.

/log <log path> Specifies path and file name information for a Setup log file
to be created by Setup. The file must not exist before you
run Setup.

/quiet Specifies that Setup does not display anything on the screen.
All configuration information is taken from the specified
configuration file.

/repair Repairs the current installation of Business Central.

/uninstall Removes the current installation Business Central.

Save, Edit, and Load a Setup Configuration File

Save to a Setup configuration file

Edit a Setup configuration file

SETTING TYPE PURPOSE

Component For each component, there are three separate values, all
displayed on a single line:

- ShowOptionNode
Specifies whether the component should be displayed in
Setup. For silent installs, this parameter is not relevant.
- State
There are two possible values: Local, indicates that the
component is included in the install, and Absent indicates
that the component is not included.
- Id
Identifies the component

You can change value for State or ShowOptionNode, but
not for Id. Also, you cannot add or remove a component.

During Setup, you can save the configuration settings to a file before you finish and exit Setup. Then later, you
can load use Setup to load the configuration file to make it faster to replicate the same configuration for
another deployment.

1. Choose Save on the Specify parameters page in Setup. This page is available when you run Setup
unless you select Install Demo, which skips all other Setup pages.

2. Type a file name for the configuration file. An .xml extension is added automatically.

3. Choose Save.

You now return to the Specify parameters page, where you can continue with installing software. You
can also close Setup if you only have to create a Setup configuration file.

You edit the file using an XML editor or text editor. Setup configuration files contain two types of settings.

Parameter These settings contain configuration information for
components. As with Components, you can modify a
parameter’s Value, but not its Id.

SETTING TYPE PURPOSE

Load a Setup configuration file

IMPORTANT

See Also

The option to load a Setup configuration file is on the Choose an installation option page in Setup.

A Setup configuration file contains information about which components to install and which settings to apply to each
component. Therefore, you should not customize the list of components or configure components in Setup before you
load a Setup configuration file because loading the configuration overwrites all prior customization and configuration.

1. On the Choose an installation option page, choose Load Configuration.

This option is located under Custom Components.

2. In the Open dialog box, select or browse to the Setup configuration file that you want to open, and then
double-click the file.

Setup now shows the Customize the installation page that has been modified according to the
component selection in the loaded Setup configuration file.

3. Modify the list of components to install or choose Next to proceed to the Specify parameters page,
where settings from the Setup configuration file are shown.

4. Configure these settings or choose Apply to accept these values and continue.

Components
Deployment

file:///T:/q4ru/deployment/Deployment.html

Provisioning the Business Central Server Service
Account
3/31/2019 • 9 minutes to read

NOTE

Prerequisite

Provisioning a Domain User Account

Enabling the account to log in as a service

The Business Central Server account is used by Business Central clients to log on to the Business Central Server
instance. The Business Central Server then uses the service account to log on to the Business Central database.
When you install Business Central Server, you identify an Active Directory account to provide credentials for the
server. By default, Setup runs Business Central Server under the Network Service account, a predefined local
account used by the service control manager. This account has minimum privileges on the local computer and
acts as the computer on the network.

We recommend that you create a domain user account for running Business Central Server. The Network Service
account is considered less secure because it is a shared account that can be used by other unrelated network
services. Any users who have rights to this account have rights to all services that are running on this account. If
you create a domain user account to run Business Central Server, you can use the same account to run SQL
Server, whether or not SQL Server is on the same computer.

Because Business Central Setup and the New-NavDatabase cmdlet configure the required permissions for the Business
Central Server account, you will typically use the procedures in this topic when you change the Business Central Server
account for an existing installation.

Delete the Dynamics 365 Business Central folder in the ProgramData folder of your system drive, for
example, C:\ProgramData\Microsoft\Microsoft Dynamics NAV\ or
C:\ProgramData\Microsoft\Microsoft Dynamics 365 Business Central .

The ProgramData is folder is typically hidden, so you might have to change the folder options for your system
drive to show hidden files, folders, and drives.

If you are running the Business Central Server under a domain user account, you must:

Enable the account to log in as a service

Enable the account to register an SPN on itself

Add the account to the SMSvcHost.exe.config file

Give the account necessary database privileges in SQL Server

Depending on various factors, the account may already have this ability to log in as a service. For example, if you
have already installed SQL Server and configured it to run under the same account, SQL Server will have
modified the account to log in as a service.

When this permission is lacking, Business Central Server instances may not be able to start.

Enabling the account to register an SPN on itself

Add the account to the SMSvcHost.exe.config file

Giving the account necessary database privileges in SQL Server

For instructions for enabling an account to log in as a service, see Manage User Accounts in Windows Server.

To enable secure mutual authentication between clients and Business Central Server, you must configure the
Business Central Server account to self-register Service Principal Names (SPNs). Mutual authentication is
recommended in a production environment but may not be necessary in a testing or staging environment. This is
done by modifying the account in Active Directory.

For more information, see Service Principal Names in the Active Directory documentation.

Business Central uses Net.TCP Port Sharing Service, which is managed by SMSvcHost.exe. The
SMSvcHost.exe.config contains information about the identities (or accounts) that can use the service. These
accounts are specified as security identifiers (S IDs) in the section of the SMSvcHost.exe.config file. By default,
permission is implicitly granted to system accounts, such as NetworkService. For other accounts, you must
explicitly add the SID for the account to the SMSvcHost.exe.config file as follows:

<system.serviceModel.activation>
 <net.tcp listenBacklog="10" maxPendingConnections="100" maxPendingAccepts="2"
receiveTimeout="00:00:10" teredoEnabled="false">
 <allowAccounts>
 <!-- Your NAV Server account -->
 <add securityIdentifier="N-N-N-N"/>
 </allowAccounts>
 </net.tcp>

1. Get the SID of the user account.

The SID is an alphanumeric character string, such as S-1-5-20 or S-1-5-32-544. There are different ways
to get the SID, such using Windows Management Instrumentation Control Command-line (WMIC) or the
computer's registry.

 wmic useraccount get name,sid

To use WMIC, open a command prompt, and run the following command:

This will display a list of user accounts and their S IDs.

To use the registry, run regedit, and then go to the
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProfileList folder.
This folder list the SIDs for each user account. To find the SID that corresponds to the user account
that you want, look at the ProfileImagePath key data.

2. Using a text editor, open the SMSvcHost.exe.config file.

You will find the SMSvcHost.exe.config file in the installation folder for the latest :NET Framework version
on the Business Central Server computer; for example, C:\Windows\Microsoft.NET\Framework64\v4.0.30319 .

3. Add the SID to the element as follows, and then save the file:

For more information about SMSvcHost.exe and the SMSvcHost.exe.config file, see Configuring the Net.TCP Port
Sharing Service.

The Business Central Server account needs two privileges on SQL Server instance used for Business Central:

1. To create databases on the instance, it must have the dbcreator server-level role. This privilege is only

https://docs.microsoft.com/en-us/windows-server-essentials/manage/manage-user-accounts-in-windows-server-essentials
https://docs.microsoft.com/en-us/windows/desktop/ad/service-principal-names
https://msdn.microsoft.com/en-us/library/aa702669%28v=vs.110%29.aspx

Assign necessary SQL Server privileges for the Business Central Server account

needed during database creation.

2. To serve client requests and read/write to the Business Central database, it must be member of the
db_owner database role on the Business Central database.

When you install the Business Central database by using Business Central Setup or the New-NAVDatabase
cmdlet, you can specify the Business Central Server account. In these cases, the server account that you specify
should already have the necessary privileges in SQL Server. If you change the Business Central Server account
for an existing installation, then you should verify the account has the required privileges in SQL Server.

To verify server-level and database-level privileges on SQL Server after you create your Business Central
database, use SQL Server Management Studio and, if necessary, modify privileges. If you have installed SQL
Server with the guidelines in Installation Considerations for Microsoft SQL Server, then SQL Server
Management Studio is already installed on your computer. Otherwise, update your SQL Server installation to
include the Management Tools - Complete option for SQL Server (for SQL Server 2012/2014.) For SQL
Server 2016, SQL Server Management Studio can be downloaded and installed as a standalone application.

1. Start SQL Server Management Studio and connect to the instance where the Business Central database is
installed.

2. Create a login for the Business Central Server account.

a. Navigate the tree view: Security, Logins.

b. Right-click Logins and choose New Login.

c. Choose Search, and use the Select User or Group dialog box to identify the Business Central
Server account.

d. Choose OK to exit the New Login dialog box.

3. (optional) Grant the login Alter any event session and View server state permissions.

This step is only required if you want to log SQL Server deadlocks in the Windows Event log for the
Business Central Server instance. For more information, see Monitoring SQL Database Deadlocks.

a. Navigate the tree view: Security, Logins.
b. Right-click the login that you created, and then choose Properties.
c. Under Select a page, choose Securables.
d. On the Explicit tab, select the Alter any event session and View server state check boxes in the

Grant column.
e. Choose OK.

4. Grant the login the server-level role dbcreator

a. Navigate the tree view: Security, Logins.
b. Right-click the Business Central Server account, and then choose Properties.
c. Click on Server Roles.
d. Check the dbcreator box.
e. Choose OK.

5. Add the login as a user on the master database.

a. Navigate the tree view: Databases, System Databases, master, Security, Users.

b. Right-click Users and choose New User.

c. Choose the ellipse button at the far right of the second line in the Database User – New dialog
box.

https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.management/new-navdatabase
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/monitor-database-deadlocks

d. In the Select Login dialog box, enter or browse for the login you created for the Business Central
Server account.

e. Enter a name in the User name field (the first line in the Database User - New dialog box).

f. Choose OK to exit the Database User - New dialog box.

6. Grant the Business Central Server login permissions on the master database. In the tree view, right-click
master and choose Properties. Then do the following in the Database Properties – master dialog box.

a. Under Select a Page, choose Permissions.

b. Under Name, choose the login you created for the Business Central Server account name.

c. Under Permissions for <username>, on the Explicit tab, scroll down to down to the Select line,
and select the check box in the Grant column.

d. Choose OK to exit the Database Properties – master dialog box.

e. Navigate the tree view: Databases, System Databases, master, Tables, System Tables.

f. Right-click the dbo.ndosrvproperty table and choose Properties.

g. Under Select a Page, choose Permissions.

h. Choose Search, and use the Select User or Group dialog box to identify the login for the Business
Central Server account.

i. Under Permissions for <username>, on the Explicit tab, scroll down to down to the Select line,
and select the check box in the Grant column.

j. Choose OK to exit the Table Properties – dbo.ndosrvproperty dialog box.

7. Grant the login the necessary database roles on the Business Central database.

a. Navigate the tree view: Databases, <your Microsoft Dynamics NAV database>, Security,
Users.

b. Right-click Users and choose New User.

c. In the Database User – New dialog box, choose the ellipse button at the far right of the second
line.

d. Select the login you created for the Business Central Server account name and choose OK.

e. Under Database role membership, select the db_owner check box.

f. Choose OK to exit the Database User – New dialog box.

g. Right-click your Business Central database and choose Properties.

h. Under Select a Page, choose Permissions.

i. Choose Search, and use the Select User or Group dialog box to identify login you created for the
Business Central Server account.

j. Under Permissions for <username>, on the Explicit tab, scroll down to down to the View
database state line, and select the check box in the Grant column.

k. Choose OK to exit the Database Properties dialog box for your Business Central database.

Alternatively, you can script these steps in SQL Server Management Studio, as shown in the following example:

USE [master]
GO
CREATE LOGIN [domain\accountname] FROM WINDOWS
CREATE USER [domain\accountname] FOR LOGIN [domain\accountname]
GRANT SELECT ON [master].[dbo].[ndosrvproperty] TO [domain\accountname]
ALTER SERVER ROLE [dbcreator] ADD MEMBER [domain\accountname]
GRANT VIEW SERVER STATE TO [domain\accountname]
GRANT ALTER ANY EVENT SESSION TO [domain\accountname]

GO
USE [Microsoft Dynamics NAV Database]
GO
CREATE USER [domain\accountname] FOR LOGIN [domain\accountname]
ALTER ROLE [db_owner] ADD MEMBER [domain\accountname]
GRANT VIEW DATABASE STATE TO [domain\accountname]

Provisioning the Network Service Account
The only circumstance where it is necessary to take any action regarding the Network Service account is when
change the Business Central Server account on an existing installation from a domain account to the Network
Service. In this situation you must verify that the account has the necessary database privileges in SQL Server, as
per Giving the account necessary database privileges in SQL Server , above.

Using Security Certificates with Business Central On-
Premises
3/31/2019 • 8 minutes to read

About Security Certificates

NOTE

Certificates for Production

Obtaining Certificates

You use certificates to help secure connections over a wide area network (WAN), such as connections from the
Business Central Web Server, Dynamics NAV Client connected to Business Central, and web services to the
Business Central Server. Implementing security certificates on your deployment environment requires
modifications to various components, like the Business Central Server, Business Central Web Server, and clients.

A certificate is a file that Business Central Server uses to prove its identity and establish a trusted connection with
the client that is trying to connect. Business Central can support the following configurations:

Chain trust, which specifies that each certificate must belong to a hierarchy of certificates that ends in a root
authority at the top of the chain.

Peer trust, which specifies that both self-issued certificates and certificates in a trusted chain are accepted.

The implementation in this section describes the chain trust configuration, which is the more secure option.

An instance of Business Central Server that has been configured for secure WAN communication always prompts users for
authentication when they start the client, even when the client computer is in the same domain as Business Central Server.

In a production environment, you should obtain a certificate from a certification authority or trusted provider. Some
large organizations may have their own certification authorities, and other organizations can request a certificate
from a third-party organization.

You implement chain trust by obtaining X.509 service certificates from a trusted provider. These certificates and
their root certification authority (CA) certificates must be installed in the certificates store on the computer that is
running Dynamics NAV Server. The CA certificate must also be installed in the certificate store on computers that
are running the Business Central Web Server and Dynamics NAV Client connected to Business Central so that
clients can validate the server.

Most enterprises and hosting providers have their own infrastructure for issuing and managing certificates. You can
also use these certificate infrastructures. The only requirement is that the service certificates must be set up for key
exchange and therefore must contain both private and public keys. Additionally, the service certificates that are
installed on Business Central Server instances must have the Service Authentication and Client Authentication
certificate purposes enabled.

IMPORTANT

Run the Certificates Snap-in for Microsoft Management Console

Install and Configure the Certificates

Install Certificates on components

Grant access to the Business Central Server service account

Microsoft recommends against using wildcard SSL certificates in Business Central installations. Wildcard certificates pose
security risks because if one server or sub-domain is compromised, all sub-domains may be compromised. Wildcard
certificates also introduce a new style of impersonation attack. In this attack, the victim is lured to a fraudulent resource in the
certified domain through phishing. Conventional certificates detect this attack, because the user’s browser checks that the
private key is hosted on a server whose name matches the one displayed in the browser’s address window.

Some of the following procedures use the Certificates snap-in for Microsoft Management Console (MMC). If you
do not already have this snap-in installed, you can add it to the MMC. For information see Add the Certificates
Snap-in to an MMC.

You install the security certificates on the computers running Business Central Server, Business Central Web
Server, and Dynamics NAV Client connected to Business Central. The root CA certificate and the service certificate
are used in the configuration, but client certificates are not.

1. Follow the installation instructions that are available from your certificate provider to install the root CA and
service certificates on the following computers:

Install the root CA on the computer that is running Business Central Server and all computers that
are running Business Central Web Server instances and Dynamics NAV Client connected to Business
Central.

Install the service certificate on the computer that is running Business Central Server only.

2. Make sure that the Server Authentication and Client Authentication certificate purposes are enabled
for the service certificate.

A certificate can be enabled for several different purposes. The Server Authentication and Client
Authentication purposes must be enabled. You can enable or disable other purposes to suit your
requirements.

You enable certificate purposes by using the Certificates Snap-in for MMC. For more information, see
Modify the Properties of a Certificate.

After you have installed the root CA and the service certificate on the computer running Business Central Server,
you must grant access to the service account that is associated with the server so that the service account can
access the service certificate’s private key.

1. In the left pane of MMC, expand the Certificates (Local Computer) node, expand the Personal node, and
then select the Certificates subfolder.

2. In the right pane, right-click the certificate, select All Tasks, and then choose Manage Private Keys.

3. In the Permissions dialog box for the certificate, choose Add.

4. In the Select Users, Computers, Service Accounts, or Groups dialog box, enter the name of the
dedicated domain user account that is associated with Business Central Server, and then choose the OK
button.

5. In the Full Control field, select Allow, and then choose the OK button.

http://go.microsoft.com/fwlink/?LinkID=699497
http://go.microsoft.com/fwlink/?LinkID=699496

Configure the Business Central Server instance

Configure the Business Central Web Server and Dynamics NAV Client
connected to Business Central

TIP

6. In the right pane, select the certificate.

7. In the Certificate dialog box, choose the Details tab, and then select the Thumbprint field.

8. Copy the value of Thumbprint field.

For example, copy the hexadecimal characters to text editor, such as Notepad. Delete all spaces from the
thumbprint string. If the thumbprint is c0 d0 f2 70 95 b0 3d 43 17 e2 19 84 10 24 32 8c ef 24 87 79 , then
change it to c0d0f27095b03d4317e219841024328cef248779 .

It is important that the thumbprint does not contain any invisible extra characters; otherwise you will experience
problems when using it later. To avoid this, see Certificate thumbprint displayed in MMC certificate snap-in has extra
invisible unicode character.

The Business Central Server instance configuration includes several settings for certificates and enabling remote
logins. You can modify a server instance by using Business Central Server Administration tool or Business Central
Administration Shell. For details about how to modify a server instance, see Configuring Business Central Server.

SETTING NEW VALUE DESCRIPTION

Credential Type NavUserPassword , Username , or
AccessControlService

The default value is Windows . When
you change it to NavUserPassword ,
Username , or
AccessControlService , client users

who connect to the server are
prompted for user name and
password credentials.

Certificate Thumbprint Value of the Thumbprint field in the
previous procedure.

Remove any leading or trailing spaces
in the thumbprint.

1. Run the Business Central Server Administration tool.

2. Under General, change the following settings for the Business Central Server instance.

3. If you want to use secure web services, then under SOAP Services and OData Services, select the Enable
SSL check box.

4. Save and the new values for the server instance.

5. Restart the Business Central Server instance.

If there is a problem, see Windows Event Viewer.

The chain trust configuration allows client users to log on to one or more instances of Business Central Server as
long as their login credentials have been associated with user accounts in Business Central. The client validates that
the server certificate is signed with the root CA.

After you have installed the root CA on the computer running the Business Central Web Server or Dynamics NAV
Client connected to Business Central, you must modify the client configuration file.

https://support.microsoft.com/en-au/help/2023835/certificate-thumbprint-displayed-in-mmc-certificate-snap-in-has-extra

Modify the Business Central Web client configuration file

Modify the Dynamics NAV Client connected to Business Central configuration file

KEY NEW VALUE DESCRIPTION

ClientServicesCredentialType NavUserPassword , Username , or
AccessControlService

The default value is Windows . When
you change it to NavUserPassword ,
Username , or
AccessControlService , client users

who connect to the server are
prompted for user name and
password credentials.

DnsIdentity The subject name of the service
certificate

The default value is <identity>.
Replace this with the subject name or
common name (CN) of the certificate
that is used on the computer that is
running Business Central Server.

1. On the computer that is installed the Business Central Web Server, open the navsetting.json configuration
file in a text editor, such as Notepad.

2. Change the following settings:

3. Save the navsettings.json configuration file.

NOTE

KEY NEW VALUE DESCRIPTION

ClientServicesCredentialType NavUserPassword , Username , or
AccessControlService

The default value is Windows . When
you change it to NavUserPassword ,
Username , or
AccessControlService , client users

are prompted for user name and
password credentials.

DnsIdentity The subject name of the service
certificate.

The default value is <identity>.
Replace this with the subject name or
common name (CN) of the certificate
that is used on the computer that is
running Business Central Server.

1. Open the ClientUserSettings.config configuration file.

The location of this file is Users\<username>\AppData\RoamingLocal\Microsoft\Dynamics 365 Business
Central\.

By default, this file is hidden. Therefore, you may have to change your folder options in Windows Explorer to
view hidden files.

If you want to change default Dynamics NAV Client connected to Business Central settings for all future users, edit
the default ClientUserSettings.config file — that is, the one in C:\Program Files (x86)\Microsoft Dynamics 365 Business
Central\140. Be sure that you run your text editor with Administrator privileges when you do so.

2. Modify the following settings.

3. Save and close the ClientUserSettings.config file.

See Also

When starting the Dynamics NAV Client connected to Business Central, users are prompted for a valid user name
and password.

Authentication and User Credential Types

Business Central Web Server Overview
3/31/2019 • 4 minutes to read

ASP .NET Core on IIS

Network Topology

Giving users access to data from the Business Central Web client, companion app, and Outlook add-in requires a
Internet Information Services (IIS) website as part of your deployment. The website, which we refer to as
Business Central Web Server instance, hosts the files that provide content and services to client users over the
Internet. This article highlights several factors to consider to help you set up Business Central Web Server
instances that suit your deployment requirements.

If you just want to get started installing the Business Central Web Server components, see Install Business
Central Using Setup.

Business Central Web Server instances run on ASP.NET Core on IIS, which in part dictates the directory
structure of the instances. For more information about ASP .NET Core, see Introduction to ASP.NET Core.

The following illustration shows the component infrastructure that supports Business Central Web Server
instances on your network.

Each Business Central Web Server instance must connect to a Business Central Server, which in turn connects to
the database that contains the application and business data. Multiple Business Central Web Server instances
can connect to the same Business Central Server. You can deploy these components on one computer or on
separate computers. For example, you can install the Business Central Web Server instance on one computer
and the Business Central Server and SQL Server database on another computer. The topology that you choose
depends on the network resources and the infrastructure of the Business Central components. The installation
and configuration process is different for each scenario.

For information about the common deployment scenarios, see Deployment Topologies.

https://docs.microsoft.com/en-us/aspnet/core/

Creating a Business Central Web Server instance

Using Business Central Setup Setup

Using Business Central Web Server PowerShell cmdlets

IMPORTANT

Deployment Phases

Security

There are two ways to create a Business Central Web Server instance. You can use the Business Central Setup
Setup or the Business Central Web Server PowerShell cmdlets.

Setup is the quickest way to get a web server instance up and running, and is typically how you install the first
Business Central Web Server instance in your deployment.

Setup installs the Business Central Web Server components, which does the following:

Installs and configure IIS with the required prerequisites, including Microsoft .NET Core - Windows
Server Hosting
Installs a web server instance on IIS.
Installs components and files in a WebPublish folder that enables you to add additional web server
instances without having to use the Business Central installation media (DVD).

You can only use Setup to install a single Business Central Web Server instance.

Setup does not let you choose the site deployment type for the web server instance. By default, it creates
a SubSite instance. For more information, see Site Deployment Types.
For information about how to install the Business Central Web Server components, see Install Business
Central Using Setup.

There are several PowerShell cmdlets that enable you to create, configure, and remove Business Central Web
Server instances from a command line interface. To create a web server instance, you use the New-
NAVWebServerInstance cmdlet, which has the following advantages over Setup:

You can create multiple web server instances.

You have more flexibility regarding the site deployment type of the Business Central Web Server
instances on IIS. For example, you can create a root-level website instance or a subsite application
instance under a container website.

Using New-NAVWebServerInstance cmdlet requires that Microsoft .NET Core Windows Server Hosting is installed and IIS
is installed and configured with the prerequisites. So unless you have previously installed the Business Central Web Server
components by using Setup, you will have to install and configure the prerequisites manually. For more information about
the prerequisites, see Configure Internet Information Services.

For information about how to create a Business Central Web Server instance by using the New-
NAVWebServerInstance cmdlet, see Creating and Managing Business Central Web Server Instances Using
PowerShell.

Typically, you will deploy the Business Central Web client in phases, which can influence the network topology
and security settings that you deploy. For example, in the development phase, you develop, test, and fine-tune
the application. In this phase, you might consider deploying the Business Central Web client in a single-
computer scenario. When you move to the production phase, you deploy the Business Central Web client in the
full network infrastructure.

https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.management/new-navwebserverinstance

User Authentication

Service Account for Business Central Server and Business Central Database Access

TIP

Securing the Connection to Microsoft Dynamics NAV Web Client With SSL

See Also

Business Central supports four methods for authenticating users who try to access the Business Central Web
client: Windows, UserName, NavUserPassword, and AccessControlService. Windows authentication is
configured by default. For more information, see Users and Credential Types and Authentication and User
Credential Type.

When you install Business Central Server and Business Central database components, you must identify an
Active Directory account to provide credentials for the servers. By default, Setup runs Business Central Server
and the Business Central database under the Network Service account, a predefined local account that is used by
the service control manager.

We recommend that you create and use a domain user account for running Business Central Server and accessing the
Business Central database. The Network Service account is considered less secure because it is a shared account that can
be used by other unrelated network services.

For more information, see Provisioning a Service Account.

You can help secure Business Central data that is transmitted over the Internet by enabling Secure Sockets Layer
(SSL) on the connection to the Business Central Web client. You can configure SSL when you install the
Business Central Web Server components or after the installation.

For more information, see Configure SSL to Secure the Web Client Connection.

Configure Internet Information Services
Configuring-the Business Central Web Server

Configuring Business Central Web Server Instances
6/17/2019 • 11 minutes to read

About the configuration file

Where to find the navsettings.json file

Modify the navsettings.json file directly

Accessing Business Central from the Business Central Web client or App requires a Business Central Web Server
instance on IIS. You create a Business Central Web Server instance for the Business Central Web Server by using
the Business Central Setup to install the Business Central Web Server or by running the New-
NAVWebServerInstance cmdlet. When you set up a web server instance, you are configuring the connection from
the Business Central Web Server to the Business Central Server instance. The connection settings, along with
several other configuration settings, are saved in a configuration file for the web server instance.

The configuration file for the web server instances is a .json file type called navsettings.json. The navsettings.json
file is a Java Script Object Notification file type that is similar to files that use the XML file format.

After installation, you can change the configuration by modifying the navsettings.json. There are two ways to
modify this file: directly or using PowerShell.

The navsettings.json file is stored in the physical path of the web server instance, which is by default is
%systemroot%\inetpub\wwwroot\[WebServerInstanceName].

[WebServerInstanceName] corresponds to the name (alias) of the web server instance in IIS, for example,
c:\inetpub\wwwroot\BC140.

"ClientServicesCredentialType": "Windows",

1. Open the navsettings.json in any text or code editor, such as Notepad or Visual Studio Code.

Each setting is defined by a key-value pair.

"keyname": "keyvalue",

In the navsettings.json file, a setting has the format:

The keyname is the name of the configuration setting and the keyvalue is the value.

For example, the configuration setting that specifies the Windows credential type for authenticating users is:

Include values in double quotes.

2. Find the configuration settings that you want to change, and then change the values.

See the Settings section for a description of each setting.

3. When you are done making changes, save the file.

4. Restart the Business Central Web Server instance for the changes to take effect.

For example, in IIS Manager, in the Connections pane, select website node for Business Central Web

https://docs.microsoft.com/en-us/powershell/module/Microsoft.Dynamics.Nav.Management/new-navwebserverinstance

Modify the navsettings.json file by using the Set-
NAVWebServerInstanceConfiguration cmdlet

Settings in the navsettings.json

{
 "NAVWebSettings": {
 "//ServerInstance": "Name of the Business Central Server instance to connect to (for client) or listen on
(for server).",
 "ServerInstance": "BC140",
 [...more keys]
 },
 "ApplicationIdSettings": {
 "BlogLink": "https://myBCBlog.com",
 [...more keys]
 }
}

IMPORTANT

NAVWebSettings element settings

Server, and then in the Actions pane, choose Restart. Or, from your desktop, run iisreset .

The PowerShell script module NAVWebClientManagement.psm1 includes the Set-
NAVWebServerInstanceConfiguration cmdlet that enables you to configure a web server instance.

Set-NAVWebServerInstanceConfiguration -Server [MyComputer] -ServerInstance [ServerInstanceName] -
WebServerInstance [MyBCWebServerInstance] -KeyName [Setting] -KeyValue [Value]

1. Depending on your installation, run the Dynamics NAV Development Shell or Windows PowerShell as an
administrator.

For more information, see Get started with the Business Central Web Server cmdlets.

2. For each setting that you want to change, at the command prompt, run the following command:

Replace:

[MyComputer] with the name of the computer that is running the Business Central Server
[ServerInstanceName] with the name of the server instance, such as BC140.
[MyBCWebServerInstance] with the name of the web server instance for the Business Central Web Server.
[KeyName] with the name of the setting. Refer to the next section in this article.
[KeyValue] with the new value of the setting.

The navsettings.json has the following structure, where settings are included under one of two root elements:
NAVWebSettings and ApplicationIdSettings :

// indicates a comment that provides help for the setting, and has no affect on the Web Server instance.

The following table describes the settings that are available in the navsettings.json for each root element. If you do
not see a setting in the file, this is because some settings are not automatically included as a key in the file. For
these settings, you can add the key manually. If you do not add the key, the default value of the setting is used.

If modifying the file directly, place values in double quotes "" .

https://docs.microsoft.com/en-us/powershell/module/Microsoft.Dynamics.Nav.Management/Set-NAVWebServerInstanceConfiguration

SETTING/KEYNAME DESCRIPTION

AllowedFrameAncestors Specifies the host name of any web sites in which the Business
Central Web client or parts of are embedded. By default, the
Business Central Web Server will not allow a website to display
it inside an iframe unless the website is hosted on the same
web server. This value of this setting is a comma-separated list
of host names (URIs). Wildcard names are accepted. For
example:
https:mysite.sharepoint.com, https:*.myportal.com

GlobalEndPoints Specifies the comma-separated list of global endpoints that
are allowed to call this website. The values must include http
scheme and fully qualified domain name (FDQN), such as
https://financials.microsoft.com .

Default value: none

LoadScriptsFromCdn Specifies whether to load scripts from Content Distribution
Networks (CDNs). This only applies to scripts that are available
from a CDN, like jQuery.

If set to false , scripts will be loaded from the Web server,
which is useful in, for example, an intranet scenario where
there is no internet access.
Default value: true

AllowNtlm Specifies whether NT LAN Manager (NTLM) fallback is
permitted for authentication.

To require Kerberos authentication, set this value to false .

Values: true , false

Default value: true

ClientServicesChunkSize Sets the maximum size, in kilobytes, of a data chunk that is
transmitted between Business Central Web Server and
Business Central Server. Data that is transmitted between
Business Central Web Server and Business Central Server is
broken down into smaller units called chunks, and then
reassembled when it reaches its destination.

Values: From 4 to 80.

Default value: 28

ClientServicesCompressionThreshold Sets the threshold in memory consumption at which Business
Central Web Server starts compressing data sets. This limits
amount of consumed memory. The value is in kilobytes.

Default value: 64

ClientServicesProtectionLevel Specifies the security services used to protect the data stream
between the Business Central Web Server and Business
Central Server. This value must match the value that is
specified in the Business Central Server configuration file. For
more information, see Configuring Business Central Server.

Values: EncryptAndSign, Sign, None

Default value: EncryptAndSign

Server Specifies the name of the computer that is running the
Business Central Server.

Default value: localhost

ServerInstance Specifies the name of the Business Central Server instance that
the Business Central Web Server connects to.

Default value: BC140

ClientServicesCredentialType Specifies the authorization mechanism that is used to
authenticate users who try to connect to the Business Central
Web Server. For more information, see Authentication and
User Credential Type.

The credential type must match the credential type configured
for the Business Central Server instance that the Business
Central Web Server connects to. For information about how to
set up the credential type on Business Central Server, see
Configuring Business Central Server.

Values: Windows, UserName, NavUserPassword,
AccessControlService

Default value: Windows

ClientServicesPort Specifies the TCP port for the Business Central Server. This is
part of the Business Central Server’s URL.

Values: 1-65535

Default value: 7046

ManagementServicesPort The listening TCP port for the Business Central management
endpoint.

Valid range: 1-65535
Default value: 7045

SETTING/KEYNAME DESCRIPTION

ServicePrincipalNameRequired If this parameter is set to true , then the Business Central
Web Server can only connect to a Business Central Server
instance that has been associated with a service principal
name (SPN).

If this parameter is set to false , then the Business Central
Web Server attempts to connect to the configured Business
Central Server service, regardless of whether that service is
associated with an SPN.

For more information about SPNs, see Configure Delegation.

Default: false

SessionTimeout Specifies the maximum time that a connection between the
Business Central Web Server and the Business Central Server
can remain idle before the session is stopped.

In the Business Central Web Server, this setting determines
how long an open Business Central page or report can remain
inactive before it closes. For example, when the
SessionTimeout is set to 20 minutes, if a user does not take
any action on a page within 20 minutes, then the page closes
and it is replaced with the following message: The page has
expired and the content cannot be displayed.

The time span has the format [dd.]hh:mm:ss[.ff]:

- dd is the number of days
- hh is the number of hours
- mm is the number of minutes
- ss is the number of seconds
- ff is fractions of a second

Default value: 00:20:00

RequireSsl Specifies whether SSL (https) is required. If the value is set to
true all cookies will be marked with a \u0027secure\u0027

attribute. If SSl is enable on the Web server, you should set
this to true .

Values: true , false

Default value: false

ShowPageSearch Specifies whether to show the Tell me what you want to
do icon in the Business Central header. This feature lets users
find Business Central objects, such as pages, reports, and
actions.

If you do not want to show the Tell me what you want to do
icon, then set the parameter to false .

Default value: true

SETTING/KEYNAME DESCRIPTION

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/deployment/configure-delegation-web-server

UnknownSpnHint Specifies whether to use a server principal name when
establishing the connection between the Business Central Web
Server server and Business Central Server. This setting is used
to authenticate the Business Central Server, and it prevents
the Business Central Web Server server from restarting when
it connects to Business Central Server for the first time. You set
values that are based on the value of the
ServicePrincipalNameRequired key.

Value: The value has the following format.

(net.tcp://BCServer:Port/ServerInstance/Service)=NoSpn|SPN

- BCServer is the name of the computer that is running the
Business Central Server.
- Port is the port number on which the Business Central
Server is running.
- ServerInstance is the name of the Business Central Server
instance.
- NoSpn|SPN specifies whether to use an SPN. If the
ServicePrincipalNameRequired key is set to false , then set
this value to NoSpn. If the ServicePrincipalNameRequired key is
set to true , then set this value to Spn.

Default value: (net.tcp://localhost:7046/BC140/Service)=NoSpn

If you set this key to the incorrect value, then during startup,
the Business Central Web Server will automatically determine a
correct value. This will cause the Business Central Web Server
to restart. Note: For most installations, you do not have to
change this value. Unlike the Dynamics NAV Client connected
to Business Central, this setting is not updated automatically. If
you want to change the default value, then you must change
it manually.

DnsIdentity Specifies the subject name or common name of the service
certificate for Business Central Server.

This parameter is only relevant when the
ClientServicesCredentialType is set to UserName,
NavUserPassword, or AccessControlService, which requires
that security certificates are used on the Business Central Web
Server and Business Central Server to protect communication.
Note: You can find the subject name by opening the
certificate in the Certificates snap-in for Microsoft
Management Console (MMC) on the computer that is running
Business Central Web Server or Business Central Server.

For more information, see Authentication and User Credential
Type.

Value: The subject name of the certificate.

Default value: none

SETTING/KEYNAME DESCRIPTION

AuthenticateServer Specifies whether to authenticate the server by enabling
service identity checks on protocol between the Web server
and the Business Central Server instance.

Values: true , false

Default value: true

HelpServer Specifies the name of the Business Central Help Server if the
deployment uses Help Server. If the deployment uses an
online library, remove this setting.

Default value: none

HelpServerPort Specifies the TCP port on the specified Business Central Help
Server if the deployment uses Help Server. If the deployment
uses an online library, remove this setting.

Default value: none

OfficeSuiteShellServiceClientTimeout Defines the time Business Central will wait for the Office Suite
Shell Service to respond.

Important: This setting has been deprecated in Business
Central, and it has no effect on the Web Server instance.

Default value: 10

UseAdditionalSearchTerms Specifies whether Tell me uses the additional search terms
that are defined on pages and reports.

The additional search terms are specified by the
AdditionalSearchTerms and AdditionalSearchTermsML
properties.

If you set this to false the additional search terms are
ignored.

Default value: true

DefaultRelativeHelpPath Specifies the default Help article to open if no other context-
sensitive link is specified.

Default value: none

PersonalizationEnabled Specifies whether personalization is enabled in the Business
Central Web client. Set to true to enable personalization.

For more information, see Managing Personalization.

SETTING/KEYNAME DESCRIPTION

ApplicationIdSettings element settings

SETTING/KEYNAME DESCRIPTION

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-additionalsearchterms-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-additionalsearchtermsml-property
https://docs.microsoft.com/en-us/dynamics365/business-central/ui-personalization-manage

BaseHelpUrl Specifies the link to the online Help library that the
deployment uses, such as https://mysite.com/{0}/mylibrary/.

Default value: none

For more information, see Configuring the Help Experience.

BlogLink Specifies the target of the blog link on the Help & Support
page. Use this link to give users access to your end-user blog.

Value: a valid URL
Default value: https://go.microsoft.com/fwlink/?
linkid=2076643|

ComingSoonLink Specifies the target of coming soon link on the Help &
Support page. Use this link to give users access to
information about your roadmap or any upcoming features
and fixes.

Value: A valid URL.
Default value: https://go.microsoft.com/fwlink/?
linkid=2047422

CommunityLink Specifies the URL to a community or resource for sharing
information.

Value: a valid URL
Default value: http://go.microsoft.com/fwlink/?LinkId=287089|

ContactSalesLink Specifies the target of the contact sales link on the Help &
Support page. Use this link to give users access to your sales-
focused web page where users can engage with your sales
process. Note This setting and link are not used for Business
Central on-premises.

SigninHelpLink Specifies the URL to open if the user selects help on the sign in
page box.

Value: a valid URL
Default value: none

SETTING/KEYNAME DESCRIPTION

See Also
Setting up Multiple Business Central Web Server Instances
Install Business Central Components
Business Central Web Server Overview
Configuring Business Central Server
Configuring the Help Experience

https://mysite.com/%7B0%7D/mylibrary/
https://go.microsoft.com/fwlink/?linkid=2076643%7C
https://go.microsoft.com/fwlink/?linkid=2047422
http://go.microsoft.com/fwlink/?LinkId=287089%7C

Configuring Internet Information Services for
Business Central
3/31/2019 • 2 minutes to read

Required IIS Features

Configure Headers in Application Request Routing (ARR) Rules

NAME VALUE REPLACE

HTTP_X_FORWARED_PROTO http ot https true

See Also

This topic describes the configuration of Internet Information Service (IIS) that is required for running Business
Central. When you install the Business Central Web Server components, you can use the Business Central Setup
to install and configure the IIS features, so you do not have to do this manually.

IIS must have the following features enabled:

HTTP Activation

NET Extensibility 4.5, .NET Extensibility 4.6, or .NET Extensibility 4.6 (depending on Windows version)

ASP.NET 4.5, ASP.NET 4.6, or ASP.NET 4.7 (depending on Windows version)

ISAPI Extensions

ISAPI Filters

Request Filtering

Windows Authentication

Default Document

Directory Browsing

HTTP Errors

Static Content

If you are hosting the Business Central Web Server components on an IIS server farm that is using Application
Request Routing (ARR), you must configure headers. Business Central Web Server runs on ASP .NET Core,
which requires both an X-Forwarded-For header and X-Forwarded-Proto header in ARR routing rules. However,
by default, ARR only adds the X-Forwarded-For header ; not the X-Forwarded-Proto header. So will have to
configure the X-Forwarded-Proto header manually.

On the server farm in IIS, add or edit a routing rule to include a server variable for X-Forwarded-Proto . For
example, using IIS Manager, select Routing Rules > URL Rewrite > Edit > Server Variables, and then add a
server variable that has the following settings:

Business Central Web Server Overview

Configuring SSL to Secure the Business Central Web
Client Connection
3/31/2019 • 3 minutes to read

NOTE

Obtaining and Installing an SSL Certificate

Adding an HTTPS Binding That Uses the Certificate on the Dynamics
365 Business Central Website

Add an https binding with the certificate to the website

We recommend that you secure Business Central data that is transmitted over the Internet by enabling Secure
Sockets Layer (SSL) on the connection to Business Central Web client.

SSL is a web protocol that encrypts data that is transmitted over a network to make the data and the network
more secure and reliable. A website that is enabled with SSL uses Hypertext Transfer Protocol Secure (HTTPS)
instead of Hypertext Transfer Protocol (HTTP) as a communication protocol. Enabling SSL on a website requires
that an SSL certificate is installed on the web server. An SSL certificate is a small file that the web server uses to
prove its identity and establish a trusted connection with the browser that is trying to access Business Central
Web client. When a browser connects to the Business Central Web client, the web server replies by sending its
certificate to the browser. This certificate contains the web server's public encryption key and the name of the
authority that granted the certificate. The browser verifies the certificate using the authority's public key.

To configure SSL, you must follow the steps in this article.

You can configure SSL when you install the Business Central Web Server components using Business Central Setup .

In a production environment, you should obtain an SSL certificate from a certification authority. Some large
organizations may have their own certification authorities, and other organizations can request a certificate from
a third-party organization. In a test environment or development environment, you can create your own self-
signed certificate.

After you get the certificate, you add a binding to the https protocol on the website. When you add the binding,
you associate it with the certificate.

1. Open Internet Information Services (IIS) Manager.

2. In the Connections pane, expand the Sites node, and then choose the Business Central Web client site to
which you want to add the binding.

By default, the site has the name Dynamics 365 Business Central Web Client.

3. In the Actions pane, choose Bindings.

4. In the Site Bindings dialog box, choose Add.

5. In the Add Site Binding dialog box, set the Type field to https.

You can use the default port 443 or change it to another port. If you change it to another port, you will
have to provide the port number in the URL when you try to open the client.

Redirecting HTTP to HTTPS (Optional)

Redirect HTTP to HTTPS

See Also

6. Set the SSL certificate field to the certificate that you obtained or created for the site.

7. Choose the OK button, and then choose the Close button.

To ensure that users always access the site that is secured with SSL, you can automatically redirect HTTP
requests to HTTPS. This means that users do not have to explicitly include https in the URL in the browser. For
example, the nonsecure URL of the Business Central Web client could be http://MyWebclient:8080/BC130 and the
secure URL could be https://MyWebclient:443/BC130 . If a user types http://MyWebclient:8080/BC130 , the browser
automatically redirects to https://MyWebclient:443/BC130 .

There are different ways to redirect HTTP requests to HTTPS. The following procedure describes how to redirect
HTTP requests to HTTPS by installing the Microsoft Application Request Routing for IIS 8 and modifying the
configuration file for the Business Central Web Server instance.

<rewrite>
 <rules>
 <rule name="Redirect to HTTPS">
 <match url="(.*)" />
 <conditions>
 <add input="{HTTPS}" pattern="off" ignoreCase="true" />
 </conditions>
 <action type="Redirect" url="https://{SERVER_NAME}/{R:1}" redirectType="SeeOther" />
 </rule>
 </rules>
</rewrite>

1. Download and install Microsoft Application Request Routing for IIS. For example, you can download from
Microsoft Application Request Routing.

2. On the computer that is running Business Central Web Server components, open the web.config file for
the Business Central Web Server instance. Use a text editor, such as Notepad.

The web.config file is located in the physical path of the web application on IIS. By default, the path is
%systemroot%\inetpub\wwwroot\[VirtualDirectoryName]. For example, the folder for the default
application is %systemroot%\inetpub\wwwroot\BC140.

3. In the <system.webServer> element, add the following elements.

4. Save the navsettings.json file.

Business Central Web Server Overview

https://www.microsoft.com/en-us/download/details.aspx?id=47333

Setting Up Multiple Business Central Web Server
Instances Using PowerShell
3/31/2019 • 5 minutes to read

CMDLET DESCRIPTION

New-NAVWebServerInstance Creates a new Business Central Web Server instance and binds
this instance to a Business Central Server instance.

Set-NAVWebServerInstanceConfiguration Specifies configuration values for a named Business Central
Web Server instance.

Get-NAVWebServerInstance Gets the information about the Business Central Web Server
instances that are registered on a computer.

Remove-NAVWebServerInstance Removes an existing Business Central Web Server instance.

Get started with the Business Central Web Server cmdlets

Although you can use the Business Central Setup to install the Business Central Web Server components and
create a single web server instance in IIS for client connection, there may be scenarios when you want to set up
multiple instances. For example, you could set up a separate Business Central Web Server instance for the different
companies of a business. For this scenario, you can use the Business Central Web Server PowerShell cmdlets,
which are outlined in the following table.

The Business Central Web Server cmdlets are contained in the PowerShell script module
NAVWebClientManagement.psm1, which is available on the Business Central installation media (DVD).

The module is installed with the Business Central Server or the Business Central Web Server components.

There are different ways to launch this module and start using the cmdlets:

Import-Module -Name [filepath]

Import-Module -Name "C:\Program Files\Microsoft Dynamics 365 Business
Central\130\Service\NAVWebClientManagement.psm1"

If you are working on the computer where the Business Central Server was installed, run the Business
Central Administration Shell as an administrator.

For more information, see Business Central PowerShell Cmdlets.

If you installed the Business Central Web Server components, just start Windows PowerShell as an
administrator.

Otherwise, start Windows PowerShell as an administrator, and use the Import-Module cmdlet to import the
NAVWebClientManagement.psm1 file:

For example:

https://docs.microsoft.com/en-us/powershell/module/navwebclientmanagement/New-NAVWebServerInstance
https://docs.microsoft.com/en-us/powershell/module/navwebclientmanagement/Set-NAVWebServerInstanceConfiguration
https://docs.microsoft.com/en-us/powershell/module/navwebclientmanagement/Get-NAVWebServerInstance
https://docs.microsoft.com/en-us/powershell/module/navwebclientmanagement/Remove-NAVWebServerInstance
https://docs.microsoft.com/en-us/powershell/business-central/overview
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/import-module

Creating Business Central Web Server instances
Get Access to the WebPublish folder

Decide on the site deployment type for the instance

- Sites
 - BusunessCentralWebSite (web site)
 + nn-NN (language versions)
 + www (content)
 navsettings.json
 ...

For more information about starting Windows PowerShell, see Starting Windows PowerShell.

To create a new web server instance, you need access to the WebPublish folder that contains the content files for
the Business Central Web Server components.

This folder is available on the Business Central installation media (DVD) and has the path
"DVD\WebClient\Microsoft Dynamics NAV\13x\Web Client\WebPublish".

If you installed the Business Central Web Server components, this folder has the path "C:\Program
Files\Microsoft Dynamics 365 Business Central\140\Web Client\WebPublish".

You can use either of these locations or you can copy the folder to more convenient location on your computer or
network.

When you create a new Business Central Web Server instance, you can choose to create either a RootSite or
SubSite type. Each instance type has a different hierarchical structure in IIS, which influences its configuration and
the URLs for the accessing from the Business Central Web client.

RootSite

A RootSite instance is a root-level web site that is complete with content files for serving the Business Central Web
client. It is configured with its own set of bindings for accessing the site, such as protocol (http or https) and
communication port. The structure in IIS looks like this:

The Business Central Web client URL for the RootSite instance has the format:

http://[WebserverComputerName]:[port]

For example: http://localhost:8080 .

SubSite

A SubSite instance is a web application that is under a container web site. The container web site is configured with
a set of bindings, but the site itself has no content files. The content files are contained in the application (SubSite).
The SubSite inherits the bindings from the container web site. This is the deployment type that is created when you
install Business Central Web Server components in the Setup wizard. Using the New-NAVWebServerInstance
cmdlet, you can add multiple SubSite instances in the container web site. The structure in IIS for two instances
looks like this in IIS:

https://docs.microsoft.com/en-us/powershell/scripting/setup/starting-windows-powershell

- Sites
 - BusunessCentralWebSite (web site)
 - BusinessCentralWebInstance1 (application)
 + nn-NN (language versions)
 + www
 navsettings.json
 ...
 - BusinessCentralWebInstance2 (application)
 + nn-NN (language versions)
 + www
 navsettings.json
 ...

Run the New-NAVWebServerInstance cmdlet

```  
New-NAVWebServerInstance -WebServerInstance MyBCWebsite -Server MyBCServer -ServerInstance MyBCServerInstance -
SiteDeploymentType RootSite -WebSitePort 8081 -PublishFolder "C:\Web Client\WebPublish"
```  

```  
New-NAVWebServerInstance -WebServerInstance MyWebApp -Server MyBCServer -ServerInstance MyBCServerInstance -
SiteDeploymentType Subsite -ContainerSiteName MySiteContainer -WebSitePort 8081 -PublishFolder 
"C:\WebClient\WebPublish"
```  

The Business Central Web client URL of a SubSite instance is generally longer than a RootSite because it also
contains the application's alias (or virtual path) for the instance, which you define. The URL for a SubSite instance
has the format:

http://[WebserverComputerName]:[port]/[WebServerInstance]

For example: http://localhost:8080/BusinessCentralWebInstance1 and
http://localhost:8080/BusinessCentralWebInstance2 .

At the command prompt, run the New-NAVWebServerInstance cmdlet. The following are simple examples for
creating a RootSite and SubSite deployment type.

RootSite example:

SubSite example:

Susbtitute MyBCWebsite with the name that you want to give the web application in IIS for the web server
instance. If you are creating a SubSite deployment type, this name will become part of the URL for opening
the Business Central Web client application, for example, http://MyWebServer:8081/MyWebApp.

Susbtitute MyBCServer to the name of the computer that is running the Business Central Server to which
you want to connect.

Susbtitute MyBCServerInstance with the name of the Business Central Server instance to use.

Substitute MySiteContainer with name of the container web site under which you want to add the instance.
If you specify a name that does not exist, then a new container web site will be created, which contains the
new web server instance.

Susbtitute 8081 with the port number that you want to bind the instance to. If you do not specify a port
number, then port 80 is used.

Substitute C:\WebClient\WebPublish with the path to your WebPublish folder. By default, the cmdlet looks

NOTE

Modifying a Business Central Web Server instance

See Also

in the'C:\Program Files\Microsoft Dynamics 365 Business Central\140\Web Client' folder. So if you are
working on a computer where the Business Central Web Server components are installed, you do not have
to set this parameter.

This command only sets the required parameters of the NAVWebServerInstance cmdlet. The cmdlet has several other
parameters that can use to configure the web server instance. For more information about the syntax and parameters, see
New-NAVWebServerInstance.

After you create the web server instance, if you want to change its configuration, you can use the Set-
NAVWebServerInstanceConfiguration cmdlet. Or, you can modify the configuration file (navsettings.json) of the
instance directly. For more information, see Configuring Web Server Instances.

Business Central Web Server Overview
Configuring Web Server Instances

https://docs.microsoft.com/en-us/powershell/module/navwebclientmanagement/New-NAVWebServerInstance

Migrating to Multitenancy
3/31/2019 • 2 minutes to read

Tenants and Companies

NOTE

Migration Process

You can choose to migrate your Business Central solution to a multitenant deployment architecture where you
maintain a single application that is used by two or more companies that store their data in separate databases.

This can make maintenance of your solution easier if you support multiple customers with the same application
functionality.

When you upgrade your application and the data to Business Central, you have a database that has the same
number of companies as you had before the upgrade. This database is considered a tenant. This does not mean
that you have to turn your solution into a multitenant deployment. But it means that you can if you want to.

For example, your Business Central deployment in the earlier version consisted of a database that has 20
companies. In other words, you support 20 companies that all share the same application functionality. In this
example, the companies are separate companies that have nothing to do with each other except that they are
supported by you in one database. In Business Central, you can choose to extract the application-wide tables into a
separate database and keep the data for all 20 companies in the original database. This becomes a single-tenant
business data database. Then, you can choose to split the business data database into one for each company so that
you run a truly multitenant environment. The application is stored separately in the application database, and you
maintain application functionality centrally. When you modify the application, you make the changes available to
one tenant at a time. As a result, if something goes wrong, all other tenants are not affected.

Compare this to earlier versions of Business Central where a database could contain several companies. These
companies could be related or not, but they would all use the same application and write to the same database.
Also, when you modified the application, it would affect all companies immediately. So if something went wrong, all
companies would be affected.

The email logging functionality in Business Central requires the Business Central Server service account to have access to the
Exchange server. But in a multitenant deployment, this is not always possible.

In multitenant deployments of Business Central, permission sets are stored centrally in the application database, so
only the administrator of the central application can add, remove, or modify permission sets. Instead, the tenants
can use user groups to manage permissions.

If you decide to move to a multitenant architecture, you must complete the following steps:

1. Move the tables that describe the application to a separate database. For more information, see Separating
Application Data from Business Data.

After this step, you have two databases: an application database and a business data database.

2. Split the business data database into one for each company. For more information, see Creating Tenants
from Companies.

After this step, you have an application database and a business data database for each company in the

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/deployment/Separating-Application-Data-from-Business-Data
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/deployment/Creating-Tenants-from-Companies

See Also

original database. The company-specific business data databases are tenants, and your solution is
multitenant.

If you want to move back to storing application tables and business data in a single database, you can use the
Business Central Windows PowerShell cmdlets to merge the databases. For more information, see Merging an
Application Database with a Tenant Database.

Separating Application Data from Business Data
Creating Tenants from Companies
Upgrading the Application Code
Upgrading the Data
Upgrading to Business Central

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/deployment/Merging-an-Application-Database-with-a-Tenant-Database
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/deployment/Separating-Application-Data-from-Business-Data
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/deployment/Creating-Tenants-from-Companies
file:///T:/q4ru/upgrade/Upgrading-the-Application-Code.html
file:///T:/q4ru/upgrade/Upgrading-the-Data.html

Installation Considerations for Microsoft SQL Server
and Business Central
3/31/2019 • 7 minutes to read

Using Microsoft SQL Server
Storage

Virus scanning

Memory

SQL Server components

Setup options for Microsoft SQL Server

TempDB database configuration

Data file and log file configuration

This article describes the requirements for installing and configuring Microsoft SQL Server to work with Business
Central.

Dynamics NAV can run on Microsoft SQL Server and Microsoft Azure SQL Database. For a list of supported
editions of SQL Server, see SQL Server Requirements.

Use different disks or disk partitions for the following:

Windows operating system.
Data files for the system databases.
Log files for system and user databases.
Data and log files for the TempDB database.

For optimal read/write performance, make sure that disks that are used for SQL Server data files are formatted
using 64 KB block size.

To help you decide which kind of antivirus software to use on the computers that are running Microsoft SQL
Server in your environment, see How to choose antivirus software to run on computers that are running SQL
Server.

For optimal read performance, maximize the available memory on the server according to the version and edition
of SQL Server used. Refer to the SQL Server documentation for maximum values.

If you are installing Microsoft SQL Server for use with Business Central, then install the following components:

Database Engine Services
Client Tools Connectivity
Management Tools - Complete

When you are running Microsoft SQL Server Setup, you must provide additional information. Your responses can
affect how you use SQL Server with Dynamics NAV.

For servers with less than 8 cores, create as many data files for the TempDB database as the number of cores. For
servers with more than 8 cores, start with 8 data files, and increment with 4 files at a time, if needed.

Make sure that all data files for the TempDB database are of the same size.

Consider putting data and log files for TempDB on a local SSD drive if you are using SAN storage.

https://aka.ms/chooseantivirussoftwareforsqlserver

Max degree of parallelism (MAXDOP)

Instance configuration

Database engine service

Startup options

Service account

Database configurations

Statistics

Auto-growth of the database and/or transaction log files in production can degrade performance as all transaction
must queue up and wait for SQL Server to grow the file before it can begin to process transactions again. This can
create bottlenecks. We strongly recommend growing data and log files during off-peak periods and by 10% to
25% of the current size. We do not recommend disabling “Auto-Grow”, as in an emergency it is still better to have
SQL Server to auto-grow files than to run out of disk space and bring the database down.

The SQL queries generated by Dynamics NAV is of OLTP type (many, small transactions). It is therefore
recommended to run Dynamics NAV with MAXDOP set to the value 1.

On SQL Server 2014, MAXDOP can only be set on the instance level, changing an advanced server configuration
option. On SQL Server 2016, MAXDOP can be set on the database level, changing a database scoped configuration.

Both advanced server configuration options and database scoped configurations can be set by using SQL Server
Management Studio, see the SQL Server documentation for details.

NOTE If you are running SQL Server Enterprise Edition, index maintenance can be done in parallel. If you run
maintenance jobs to do this work in off-peak hours, you might want to set MAXDOP back to 0 while running
these jobs. On SQL Server 2016, it is possible to set MAXDOP directly in the Rebuild Index Task wizard.

If you plan on installing the Business Central Demo database, and you want Business Central Setup to use an
already installed version of SQL Server (and not to install SQL Server Express), you must create a SQL Server
instance named NAVDEMO in SQL Server before you run Setup. Otherwise, Setup will install SQL Server
Express automatically, even if there is a valid version of SQL Server already on the computer. If you do not plan to
install the Demo database, or if you have no objection to using SQL Server Express, you are free to use the
default instance and Instance ID on the Instance Configuration page, or to specify any instance name.

Each SQL Server instance is run by its own windows service. The following two things are important to configure
for these services

Enable trace flags 1117 and 1118 as startup options for SQL Server 2014. For SQL Server 2016, these trace flags
are enabled by default.

Startup options can be set by using SQL Server Configuration Manager, see the SQL Server documentation for
details.

We recommend that you use dedicated domain user accounts for the Windows services running your Business
Central Server instances and your SQL Server instances, instead of a Local System account or the Network
Service account.

The Business Central Server account must have privileges on the SQL Server instances and on the Dynamics NAV
database(s). See Provisioning the Server Service Account for details.

For installations on SQL Server 2014, consider adding the service account for the SQL Server engine to the
Perform Volume Maintenance Tasks security policy. For SQL Server 2016, it is possible to do this from the
installer.

After Dynamics NAV has been installed, it is important to check a few settings on the Dynamics NAV database(s).
This is especially important for databases, which have been upgraded from previous versions of SQL Server.

The databases used by Business Central should have set the options AUTO_CREATE_STATISTICS and

Other database options

Backup

Using Microsoft Azure SQL Database

Data Encryption between Business Central Server and SQL Server

See Also

AUTO_UPDATE_STATISTICS to the value ON (this is the default behavior and should not be changed)

SQL Server (2014 and earlier) uses a threshold based on the percent of rows changed before triggering an update
of the statistics for a table regardless of the number of rows in the table. It is possible to change this behaviour by
setting trace flag 2371 as a startup option for the instance. See Knowledge Base article ID 2754171,
https://support.microsoft.com/en-gb/help/2754171/controlling-autostat-auto-update-statistics-behavior-in-sql-
server for more information about when to set this trace flag.

SQL Server (starting with 2016 and under the compatibility level 130) uses a threshold that adjusts according to
the number of rows in the table. With this change, statistics on large tables will be updated more often.

Even with "Auto Update Statistics" enabled, we still strongly recommend running a periodic SQL Agent job to
update statistics. This is because "Auto Update Statistics" will only be triggered according to the rules described
above. On large tables with tens of millions of records (such as Value Entry, Item Ledger Entry and G/L Entry), a
small percentage of data in a given statistic such as [Entry No.] can change and have a material effect on the
overall data distribution in that statistic. This can cause inefficient query plans, resulting in degraded query
performance until any threshold is reached. We recommend using the T-SQL procedure "sp_updatestats" to
update statistics, as it will only update statistics where data has been changed. We recommend creating a SQL
Agent Job that runs daily or weekly (depending on transaction volume) during off-peak hours to update all
statistics where data has changed.

We recommend to set the database option PAGE_VERIFY to the value CHECKSUM for all databases (including
TEMPDB) as this is the most robust method of detecting physical database corruption. This is the default setting
for new installations.

Remember to setup backup of both system and user databases. Remember also to test restore procedures
regularly.

You can deploy a Business Central database to Azure SQL Database. Azure SQL Database is a cloud service that
provides data storage as a part of the Azure Services Platform.

To optimize performance, we recommend that the Business Central Server instance that connects to the database
is also deployed on a virtual machine in Azure. Additionally, the virtual machine and SQL Database must be in the
same Azure region.

For development and maintenance work on Business Central applications, if the Dynamics NAV Development
Environment is installed on the same virtual machine in Azure as the Business Central Server, then you can
connect to the Azure SQL database from the development environment.

For more information, see Deploying a Business Central Database to Azure SQL Database.

When SQL Server and Business Central Server are running on different computers, you can make this data
channel more secure by encrypting the connection with IPSec. (Other encryption options are not supported.) For
information on how to do this, see Encrypting Connections to SQL Server, which is part of SQL Server 2008
Books Online in MSDN library.

Data Access
Troubleshooting: SQL Server Connection Problems

https://support.microsoft.com/en-gb/help/2754171/controlling-autostat-auto-update-statistics-behavior-in-sql-server
http://go.microsoft.com/fwlink/?LinkId=147732
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/troubleshooting-sql-server-connection-problems

Deployment

file:///T:/q4ru/deployment/Deployment.html

Configuring the Business Central Database
3/31/2019 • 7 minutes to read

Set Up an Encryption Key

Create and import encryption key

Configure SQL Authentication on the Database

For a Business Central Server instance to connect to and access a database in SQL Server, the server instance must
be authenticated by the database. As in SQL Server, Business Central supports two authentication modes for
database communication: Windows Authentication and SQL Server Authentication. When you set up Business
Central, you must ensure that database authentication is configured correctly on both the server instance and
database, otherwise the server instance will not be able to connect to the database. By default, Windows
Authentication is configured on the server instance and database. With Windows Authentication the Business
Central Setup does the work for you.

This article describes how to configure SQL Server Authentication. You perform the configuration in two places: on
the databases in SQL Server and on the Business Central Server instance. The procedure is different when the
Business Central Server instance is configured as a multitenant server instance than when it is not a multitenant
server instance.

When using SQL Server authentication, Business Central requires an encryption key to encrypt the credentials
(user name and password) that the Business Central Server instance uses to connect to the Business Central
database in SQL Server. The encryption key must be installed on the computer where the Business Central Server
is installed and also in the database in SQL Server. In a multitenant deployment, the encryption key must be
installed in the application database.

To set up an encryption key, you can use one of the following methods:

You can create and import your own encryption key by using Business Central Administration Shell cmdlets,
as described in the following procedure.

If you are configuring SQL Server authentication on a Business Central Server instance for the first time,
you can use the Business Central Server Administration tool which can automatically create and install a
system encryption key. If you decide to use this method, no action is required.

1. In the Business Central Administration Shell, run the New-NAVEncryptionkey cmdlet.

This creates a file that contains an encryption key. If you already have an encryption key file, you can skip
this step.

2. Run the Import-NAVEncryptionkey cmdlet to install the encryption key on the Business Central Server
instance and database.

On the computer running the Business Central Server instance, the encryption key file has the name BC140.key
and is stored in the %systemroot%\ProgramData\Microsoft\Microsoft Dynamics NAV\[version]\Server\Keys . In the
database, the encryption key is registered in the dbo.ndopublicencryptionkey table. In a multitenant deployment,
the encryption key is registered in the application database.

This section describes how to configure a Business Central database to use SQL Server Authentication with a
Business Central Server instance. You can complete the steps in this procedure by using SQL Server Management
Studio or Transact-SQL.

http://go.microsoft.com/fwlink/?LinkID=521780
http://go.microsoft.com/fwlink/?LinkID=518094

IMPORTANT

Configure SQL Server Authentication on the database in SQL Server

Configure SQL Server Authentication on the Business Central Instance
(Non-Multitenant)

Configure SQL Authentication on a server instance using Business Central Server Administration tool

In a deployment where the Business Central Server instance is configured as a multitenant server instance, you must
complete the following procedure on the application database and tenant database.

1. Configure the SQL Server instance (Database Engine) that hosts the Business Central database to use SQL
Server Authentication.

To use SQL Server authentication, you configure the database instance to mixed authentication mode (SQL
Server and Windows Authentication). For more information, see Change Server Authentication Mode.

2. In the SQL Server instance, create a login that uses SQL Server authentication.

For more information, see Create a Login.

3. Map the login to a user in the Business Central database, and add the user to the db_owner role of the
Business Central database.

For more information, see Create a Database User.

You configure the Business Central Server instance with the login credentials (user name and password) of the user
account in the Business Central database in SQL Server that you want to use for authentication. You can do this
using the Business Central Server Administration tool or Business Central Administration Shell.

1. Open the Business Central Server Administration tool.

2. In the console tree, which is the left pane, expand the node for the computer that contains the Business
Central Server instance, and then select the Business Central Server instance.

3. In the Actions pane, choose Database Credentials.

4. On the Database Credentials page, choose the Edit button.

5. Set the Database Authentication Type to SQL Authentication.

6. In the Database User Name field, type the login name for the database user that you want to use to access
the Business Central database in SQL Server.

7. In the Password field, type the login password for the database user that you want to use to access the
Business Central database in SQL Server.

8. Choose the Save button, and then on the Enable Encryption on SQL Server Connections dialog box,
choose the OK button.

Encryption keys are used to help secure the login credentials over the connection between the Business
Central Server instance and the Business Central database in SQL Server.

9. On the Information dialog box about encryption, choose the OK button.

This dialog box is to inform you to enable encryption on SQL Server connections, which is disabled by
default.

10. If you want to enable encryption on SQL Server connections, in the Action pane, choose Configuration,

http://technet.microsoft.com/en-us/library/ms188670.aspx
http://msdn.microsoft.com/en-us/library/aa337562.aspx
http://msdn.microsoft.com/en-us/library/aa337545.aspx

Configure SQL Authentication on a server instance using Business Central Administration Shell

Configure SQL Server Authentication on Business Central Instance in a
Multitenant Deployment

Configure SQL Authentication using Business Central Server Administration tool

and then choose the Edit button. In the Database tab, select Enable Encryption on SQL Connections,
choose the Save button, and then the OK button.

11. Restart the server instance.

If you are modifying an existing Business Central Server instance, run the Set-NAVServerConfiguration
cmdlet.

Use the DatabaseCredentials parameter to provide the login credentials of the database user that you want
to use to access the application database.

If you are creating a new Business Central Server instance, run the New-NAVServerInstance cmdlet.

Use the DatabaseCredentials parameter to provide the login credentials of the database user that you want
to use to access the application database.

This section describes how to configure a Business Central database to use SQL Server Authentication with a
Business Central Server instance. You can complete the steps in this procedure by using SQL Server Management
Studio or Transact-SQL.

To configure a SQL Server Authentication on a Business Central Server instance, you set up the server instance
with the login credentials (user name and password) for the user accounts for the application and tenant databases
in SQL Server. You can do this using the Business Central Server Administration tool or Business Central
Administration Shell.

1. Open the Business Central Server Administration tool.

2. In the console tree, which is the left pane, expand the node for the computer that contains the Business
Central Server instance, and then select the Business Central Server instance.

3. Configure SQL Server Authentication with the application database as follows:

a. In the Actions pane, choose Database Credentials.

b. On the Database Credentials page, choose the Edit button.

c. Set the Database Authentication Mode to SQL Server Authentication.

d. In the Database User Name field, type the login name for the database user that you want to use to
access the Business Central application database in SQL Server.

e. In the Password field, type the login password for the database user that you want to use to access
the Business Central database in SQL Server.

f. Choose the Save button, and then on the Enable Encryption on SQL Server Connections dialog
box, choose the OK button.

Encryption keys are used to help secure the login credentials over the connection between the
Business Central Server instance and the Business Central database in SQL Server.

g. On the Information dialog box about encryption, choose the OK button.

This dialog box is to inform you to enable encryption on SQL Server connections, which is disabled
by default.

http://go.microsoft.com/fwlink/?LinkID=401394
http://go.microsoft.com/fwlink/?LinkID=401376

Configure SQL Authentication using Business Central Administration Shell

See Also

h. If you want to enable encryption on SQL Server connections, in the Action pane, choose
Configuration, and then choose the Edit button. In the Database tab, select Enable Encryption on
SQL Connections, choose the Save button, and then the OK button.

4. To configure SQL Server Authentication with the tenant database, mount the tenant to the Business Central
Server instance and specify the login credentials (user name and password) for the database user that you
want to use to access the Business Central tenant database in SQL Server.

If the tenant is already mounted to the Business Central Server instance, you must dismount the tenant, and
mount it again.

For more information see Mount or Dismount a Tenant.

5. Restart the server instance.

1. Configure SQL Server Authentication with the application database as follows:

If you are modifying an existing Business Central Server instance, run the Set-
NAVServerConfiguration cmdlet.

Use the DatabaseCredentials parameter to provide the login credentials of the database user that you
want to use to access the application database.

If you are creating a new Business Central Server instance, run the New-NAVServerInstance cmdlet.

Use the DatabaseCredentials parameter to provide the login credentials of the database user that you
want to use to access the application database.

2. To configure SQL Authentication with the tenant database, run the Mount-NAVTenant cmdlet.

Use the DatabaseCredentials parameter to provide the login credentials of the database user that you want
to use to access the tenant database.

Installation Considerations for Microsoft SQL Server
Deployment
Installing Business Central Using Setup

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/mount-dismount-tenant
http://go.microsoft.com/fwlink/?LinkID=401394
http://go.microsoft.com/fwlink/?LinkID=401376
http://go.microsoft.com/fwlink/?LinkID=401372
file:///T:/q4ru/deployment/Deployment.html

Creating and Altering Business Central Databases
3/31/2019 • 11 minutes to read

Create a database

You can create new Business Central databases in the Dynamics NAV Development Environment and by using the
New-NAVDatabase cmdlet in the Dynamics NAV Development Shell.

When you create a database you must specify the SQL Server instance for the database and the authentication
type.

1. In the Dynamics NAV Development Environment, on the File menu, choose Database, and then choose
New.

2. In the Server Name field, enter the name of the SQL Server instance. You can choose the up arrow to
select the server from a list of available servers or you can enter the server name manually.

3. In the Authentication field, select the type of authentication that you require. Choose the drop-down
arrow to select Database Server Authentication or Windows Authentication.

If you select Database Server Authentication, then authentication is performed by the SQL Server
instance that you have selected.

If you select Windows Authentication, then authentication is performed by the Windows domain
controller.

4. In the User ID field, enter your User ID if you have selected Database Server Authentication.

5. In the Password field, enter your password if you have selected Database Server Authentication.

6. To set the network type to be used when connecting to the server, choose the Advanced tab and select the
net type from the drop down list box in the Net Type field. However, it is not usually necessary to change
the network type from the default setting. The Default net type setting allows Business Central to connect
to a server using the default client network type assigned by SQL Server. You can change the net type with
the Client Network Utility, which is part of the SQL Server Client Utilities, if they have been installed on the
client computer.

7. Choose OK to connect to the server and open the New Database window.

In the New Database window, enter the information about the database that you want to create. The
window contains the same tabs as the Alter Database window. For more information, see sections in this
article for the different tabs.

8. Now that you have created a new database, you must configure your Business Central Server instance to
access the database and then restart the service. For more information, see Configuring a Business Central
Server Instance.

9. You must synchronize the schema for all tables of the new database.

From the development environment, on the Tools menu, choose Sync. Schema For All Tables, and then
With Validation.

You can also use the Sync-NAVTenant cmdlet of the Business Central Administration Shell.

http://go.microsoft.com/fwlink/?LinkID=401374

WARNING

Alter a Database

NOTE

Database Files Tab

NOTE

Transaction Log Files Tab

Collation Tab

You can always enlarge a database later on, but you cannot make it smaller.

After you have created the database, you can enter program objects and company data. Before you can create
company data, you must import some basic data from another Business Central database. The imported data must
at least include Data Common to All Companies and Application Objects.

The changes will not take effect until you restart the Dynamics NAV Server instance.

You cannot alter a database by using the development environment if the database is deployed on Azure SQL Database.

Increases the size of the database by either increasing the size of one or more of the database files or adding new
data files to the database.

If you use secondary data files, then you must increase the size of the primary data file only when the catalog that
it contains has become too large. When the catalog has become too large, new SQL Server objects, such as tables,
cannot be created until you increase the size of the primary data file.

When you use secondary data files, you cannot create more space for storing Dynamics NAV data by just
increasing the size of the primary data file. You can create more space for storing data by increasing the size of the
secondary data files that contain Dynamics NAV information. You can also add new secondary data files in order
to store more data.

To open this window, on the File menu, choose Database, choose Alter, and then choose the Database Files tab.

The first data file that is listed on the Database Files tab is the primary file.

Increases the size of the existing transaction log files or adds new files to enable more transactions to be
performed in the database. The transaction log grows as new transactions are performed in the database. SQL
Server truncates the log after it performs a successful database or transaction log backup.

To open this window, on the File menu, choose Database, choose Alter, and then choose the Transaction Log
Files tab.

You can also delete existing transaction log files that are empty. The first transaction log file that is listed is the
primary file. You cannot delete the primary transaction log file.

Changes the collation that is used by the database.

Before you change the collation, you have to select the Single user option on the Options tab.

Changing the Collation of a Dynamics NAV Database

IMPORTANT

NOTE

Options Tab

Access Section

FIELD DESCRIPTION

Single user Specifies that only one user can access the database at a time.
You can use this setting when you are performing
administrative functions such as testing or restoring the
database. By limiting access to the database to one user, you
make sure that the database is not changed when you are
testing it.

Important: Clear this check box when you are finished to give
other users to access the database.

You cannot change the collation directly in an existingdatabase. To change the collation, you must create a new
database that uses the correct collation, and then export the data from the old database and import it to the new
database. For more information, see Changing Collation of Existing Database.

If you change the database collation, then the collation of objects in the database is changed except for tables that
have the LinkedObject property set to Yes. You must manually re-create these objects. For example, you can
script them in SQL Server Management Studio.

If you change the collation from a case-sensitive to a case-insensitive collation or from an accent-sensitive to an
accent-insensitive collation, then duplicates can occur in the primary keys of the tables. Duplicates can be caused
by the values of the character data stored in the primary keys. If duplicates occur, then you receive an error
message and the database collation change is stopped. We recommend that you do not change these attributes of
a collation.

Changing the collation can be a lengthy process that depends on the size of the database and the number of companies in
the database. The system tables and all user table indexes that contain character data must be rebuilt.

The Language drop-down list displays the friendly name of the language, not the full Windows collation name.
For some languages, there are multiple collations that sort characters differently. For example, the Windows
collation languages include multiple Scandinavian languages, some of which sort Aa after Z, Æ, Ø, and some of
which sort Aa after A and before B. If you upgrade from Microsoft Dynamics NAV 2009 to Business Central, you
upgrade the database to the Windows collations. If you used SQL collation in earlier versions of Dynamics NAV,
then after you upgrade, verify that the Windows collation sorts characters in the way that you expect.

If you set the Validate Collation check box, then collation languages that run with a different non-Unicode code
page from your system non-Unicode code page are filtered out of the Language drop-down list. An example
scenario of when you might want to choose a collation language that has a different code page from your system
code page is if you want to prepare a Japanese database on a Danish computer.

Specifies database options that you set when you created the database. For example, you must select the Single
User option before you perform any database tests. You must clear this option when the tests are completed.

To open this window, on the File menu, choose Database, choose Alter, and then choose the Options tab.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-change-database-collation

Settings Section

FIELD DESCRIPTION

Recovery Model Determines the kind of information that is written to the
transaction log and therefore the kind of recovery model that
you want to use in this database.

Note: The Full and Bulk-logged recovery models are similar,
and many users of the Full recovery model will use the Bulk-
logged recovery model occasionally.

Option:
Bulk-logged

Description:

The transaction log will contain only limited information about
certain large-scale or bulk copy operations. The Bulk-logged
recovery model provides protection against media failure
combined with the best performance and the minimal use of
log space for certain large-scale or bulk copy operations.

The backup strategy for bulk-logged recovery consists of:

* Database backups.

* Differential backups (optional).

Option:
Full

Description:

The details of every transaction are stored in the transaction
log. This information can be used when you apply transaction
log backups. The Full recovery model uses database backups
and transaction log backups to provide complete protection
against media failure. If one or more data files are damaged,
media recovery can restore all the committed transactions.
Incomplete transactions are rolled back.

Full recovery lets you recover the database to the point of
failure or to a specific point in time. All operations are fully
logged to guarantee that the database is recoverable. This
includes bulk operations such as SELECT INTO, CREATE INDEX,
and bulk loading data.

The backup strategy for full recovery consists of:

* Database backups.

* Differential backups (optional).

* Transaction log backups.

Option:
Simple

Description:

The database can be recovered to the point at which the last
backup was made. However, you cannot restore the database
to the point of failure or to a specific point in time. To do that,
select either the Full or Bulk-logged recovery model.

select either the Full or Bulk-logged recovery model.

The backup strategy for simple recovery consists of:

* Database backups.

* Differential backups (optional).

ANSI NULL default Specifies whether the database default NULL settings for
column definitions and user-defined data types are to be
applied. When you select this option, all user-defined data
types or columns that have not been explicitly defined as NOT
NULL are set to allow NULL entries. Columns that have been
defined by using constraints follow the constraint rules,
regardless of this setting.

Recursive triggers Specifies recursive trigger settings. Triggers can have direct
recursion or indirect recursion. Direct recursion occurs when a
trigger occurs and performs an action that causes the same
trigger to be fired again. Indirect recursion occurs when a
trigger occurs and performs an action that causes a trigger on
another table to occur. This second trigger updates the
original table which causes the first trigger to occur again.

Torn page detection Enables SQL Server to detect incomplete input/output
operations that have been caused by power failures or other
system outages.

Auto shrink Specifies whether SQL Server can periodically shrink data files
and transaction log files.

FIELD DESCRIPTION

Integration Tab

Objects Options

FIELD DESCRIPTION

Convert Identifiers Defines characters that you want to map to the underscore
character in the names of all SQL Server objects, such as
tables, columns, and constraints. If these characters occur in
tables or fields in Dynamics NAV, then they are converted to
underscores in the SQL Server names.

When the conversion is complete, you must close and reopen
the database before you can use the new identifiers.

License Options

FIELD DESCRIPTION

Save license in database Specifies that the license file is uploaded and stored in the
database instead of on the server. This is useful if you are
hosting several databases with separate license files on the
same server.

Advanced Tab

Specifies database settings that determine how Dynamics NAV integrates with SQL Server and external tools.

To open this window, on the File menu, choose Database, choose Alter, and then choose the Integration tab.

Locking Options

FIELD DESCRIPTION

Lock timeout Specifies whether a session waits to place a lock on a resource
that has already been locked by another session.

If you clear this field, then the session waits indefinitely.

Timeout duration (sec) Specifies the maximum length of time that a session waits to
place a lock on a resource that has already been locked by
another session. The default value is 10 seconds.

Designer Options

FIELD DESCRIPTION

Start ID (UidOffset) Specifies the start ID for elements on new objects. When you
create a new table, page, report, codeunit, query, or XMLport,
the elements have IDs that are offset by the Start ID
(UidOffset) value that you specify. Object elements include
containers, groups, fields, parts, DataItems, columns, filters,
variables, functions, or text constants.

You must specify an Integer that is greater than or equal to 0.

The default value is 1.

Specifies how locking is handled in the database and specifies the start ID for elements on new objects.

Deploy a Business Central Database to Azure SQL
Database
4/10/2019 • 4 minutes to read

IMPORTANT

Prerequisites

Create and configure an Azure SQL Database Server

Prepare the Business Central Database

This topic describes how you can deploy a Business Central database to Microsoft Azure SQL Database.

To deploy a Business Central database to Azure SQL Database, the database must be exported as a data-tier
application (DAC) file, which is known as a .bacpac file. This can be performed by using SQL Server Manager, as
described in this topic.

To optimize, we recommend that the Business Central Server instance that connects to the database is deployed on a virtual
machine in Azure. Additionally, the virtual machine and SQL Database must be in the same Azure region.

Make sure that you have the following prerequisites for completing this procedure:

A Microsoft Azure subscription and access to the Azure Portal.

A Business Central database installed on a SQL Server Database Engine instance.

SQL Server Manager is also installed on the same computer.

Access to the Business Central installation media (DVD).

In the Azure Portal, create an SQL Database Server for hosting the Business Central database. For more
information about how to create and configure an SQL Database server, see Create your first Azure SQL
Database.

Here are some important notes when creating the Azure SQL Database:

1. You must specify a login name and password for the server. You will use this information in the next steps
when you deploy the Business Central database to Azure SQL and set up the Business Central Server to
authenticate with the database.

2. Configure the server to allow for access by Windows Azure Services.

3. Make a note of the SQL Database server name because you will need it later.

The name has a format similar to this: mysqldatabaseserver.database.windows.net .

4. Configure the SQL database server firewall to allow for access by the IP address of the computer that you
are using to deploy the Business Central database.

For information, see How to: Configure Firewall Settings (Azure SQL Database).

Make sure the database meets these requirements:

https://azure.microsoft.com/en-us/documentation/articles/sql-database-get-started/
https://azure.microsoft.com/en-us/documentation/articles/sql-database-configure-firewall-settings/

Export Business Central Database to a BACPAC File (.zip file)

Import the BACPAC to Azure SQL

Configure the SQL Server Authentication on the Business Central

use [Demo Database BC (14-0)]

DROP VIEW [dbo].[deadlock_report_ring_buffer_view]

1. Delete all users of the database that use Windows authentication.

This includes NT AUTHORITY\NETWORK SERVICE and NT AUTHORITY\SYSTEM . Only users with SQL authentication
are allowed in Azure SQL Database..

2. Upload a valid Business Central license file to the database.

For more information, see Uploading a License File for a Specific Database.

3. Delete the deadlock monitors for the Business Central database.

You can do this in SQL Server Management Studio by running a query similar to the following:

For more information about the deadlock monitor, see Monitoring SQL Database Deadlocks.

When you deploy your application online, you must provide a compressed .zip file that contains the database as
data-tier application file, known as BACPAC (.bacpac) file. This article describes how you to create the BACPAC files
and zip. You can do this using SQL Server Management Studio.

1. In SQL Server Management Studio, connect to the server instance that hosts the database.

2. In Object Explorer, right-click either the database, choose Task, and then choose Export Data-tier
Application.

3. Follow the steps in the Export Data-tier Application wizard to export the database to a .bacpac file on
your computer or network.

You can use any name for the .bacpac file. For more information about exporting databases to .bacpac
format, see Export a Data-tier Application.

1. In SQL Server Management Studio, connect to Azure SQL Database server that you created.

a. Select File > Connect Object Explorer.

b. In the Server Name, enter the server name assigned to your Azure SQL Database server.

For example, *mysqldatabaseserver.database.windows.net. You can get this from the Overview page
in the Azure portal.

c. Enter the login name and password that you set up in the first task when creating the Azure SQL
Database server.

2. Import the BACPAC file that you created for the Business Central Database.

a. In Object Explorer, right-click the Database folder, and select Import Data-tier Application.
b. Follow the wizard. On the Import Settings page, browse for the BACPAC that you create, and choose

Next.
c. Review the Database Settings page. Make changes if needed, and then choose the Next > Finish.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-upload-license-file
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/monitor-database-deadlocks
https://msdn.microsoft.com/en-us/library/Hh213241.aspx

Server instance

Changing database login account database

See Also

The last step is configure SQL Server Authentication on the Business Central Server instance. For the database
credentials, use the login name and password that set up when you created the Azure SQL Database server.

For more information, see Configuring SQL Server Authentication.

The Business Central database is now deployed and configured on Azure. For developing, you can connect to the
database from the Dynamics NAV Development Environment.

If you want to use a different login account for the database, to the following:

1. Create a new login that uses SQL Server authentication.

For more information, see Create a Login.

2. Map the login to a user in the Business Central database, and add the user to the db_owner role of the
Business Central database.

For more information, see Create a Database User.

Installation Considerations for Microsoft SQL Server
Optimizing SQL Server Performance
()

http://msdn.microsoft.com/en-us/library/aa337562.aspx
http://msdn.microsoft.com/en-us/library/aa337545.aspx

Administration of Business Central Online
6/25/2019 • 2 minutes to read

Get started with the Cloud Solution provider program

Extending trials

TIP

See Also

As a Business Central reselling partner, you are the administrator of the Business Central tenants of your
customers. You have access to the administration tools of their Office 365 account and their Business Central
administration center where you can specify update windows, for example.

You must enroll in the Cloud Solution Provider program in order to service Business Central online. In the
Microsoft Partner Center documentation, you can learn how to add a customer, assign licenses to users, and create
new subscriptions. Business Central is one of the subscriptions that you can create, and there are Business Central-
specific license types that you can assign to users.

A prospect can sign up for a free trial of Business Central. When they first sign up for Business Central, they get
access to an evaluation version that does not include all capabilities in Business Central. If they then enable the 30
day trial experience, this enables all capabilities. However, sometimes 30 days is not quite enough to decide if they
want to buy Business Central. In that case, they can extend their trial with an additional 30 days. For more
information, see Need More Time to Decide Whether to Subscribe?.

If the prospect wants to extend the trial further than those 30 days, you can extend it another 30 days if you, as the
delegated administrator, log into their Business Central and extend the trial using the same Extend Trial Period
guide. However, after those additional 30 days, the prospect must either purchase Business Central, or you can ask
Microsoft for an additional extension of the trial by contacting Support.

You can suggest your prospects sign up for a trial, but you can also set up a customized demonstration environment based
on your sandbox environment. This way, you can easily add or remove functionality based on your prospects' expectations.
For more information, see Choosing Your Dynamics 365 Business Central Development Sandbox Environment.

The Business Central Administration Center
The Business Central Administration Center API
Resources for Help and Support for Dynamics 365 Business Central
Resell Different Solutions
Deliver consulting services as a VAR: aka.ms/BusinessCentralConsultingServices

https://docs.microsoft.com/partner-center/add-a-new-customer?toc=/dynamics365/business-central/dev-itpro/administration&bc=../breadcrumb/toc.yml
https://docs.microsoft.com/partner-center/assign-licenses-to-users?toc=/dynamics365/business-central/dev-itpro/administration&bc=../breadcrumb/toc.yml
https://docs.microsoft.com/partner-center/create-a-new-subscription?toc=/dynamics365/business-central/dev-itpro/administration&bc=../breadcrumb/toc.yml
https://docs.microsoft.com/dynamics365/business-central/admin-extend-trial?toc=/dynamics365/business-central/dev-itpro/administration&bc=../breadcrumb/toc.yml
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-reseller
https://aka.ms/BusinessCentralConsultingServices

The Business Central Administration Center
6/25/2019 • 2 minutes to read

Accessing the administration center

See also

The Business Central administration center provides a portal for administrators to perform administrative tasks
for a Business Central tenant. Here, administrators can view and work with production and sandbox
environments for the tenant, set up update notifications, and view telemetry for events on the tenant.

The following users are authorized to access the Business Central administration center:

Internal tenant administrators
Admin agent
Helpdesk agent

The admin agent and helpdesk agent roles are assigned through the Microsoft Partner Center for the partner
associated with the tenant. These roles are delegated administrators on the Business Central tenant.

As a partner, you can access the center from the Partner Dashboard in the Microsoft Partner Center:

1. Log into the Partner Dashboard.
2. Select the Customers link in the navigation pane.
3. Select the customer tenant that you want to perform administrative tasks for.
4. Select Service Management.
5. Under the Administer Services heading, select Dynamics 365 Business Central.

You can also get to the administration center by navigating directly to the URL of a tenant's instance. This is
done with the following URL, if you replace [TENANT_ID] with the tenant ID of the tenant.

https://businesscentral.dynamics.com/[TENANT_ID]/admin

Working with Administration Tools
Managing Environments

https://partner.microsoft.com
https://partnercenter.microsoft.com/dashboard
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/Administration

Tenant Notifications
Environment Telemetry
Administration Center API
Business Central Data Security
Introduction to automation APIs
Microsoft Partner Dashboard
Add a new customer in the Partner Center
Assign licenses to users in the Partner Center
Create new subscriptions in the Partner Center
Cloud Solution Provider program - selling in-demand cloud solutions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/security/Data-Security
https://partnercenter.microsoft.com/dashboard
https://docs.microsoft.com/partner-center/add-a-new-customer
https://docs.microsoft.com/partner-center/assign-licenses-to-users
https://docs.microsoft.com/partner-center/create-a-new-subscription
https://docs.microsoft.com/partner-center/csp-overview

Managing Environments
6/25/2019 • 5 minutes to read

Create a new production environment

NOTE

Create a new sandbox environment

NOTE

The Environments tab of the Business Central administration center allows you to view information about the
Business Central production and sandbox environments for the tenant, as well as manage updates for each
environment.

The Environments list page provides an overivew of the production and sandbox environments in the tenant. You
can see the details and additional actions for an environment by clicking the link in the Name column of the list
for the environment.

The Business Central administration center provides an easy method for creating the production environments for
the tenant.

Each Business Central tenant is limited to one production environment.

To create a production environment:

1. On the Environments tab of the Business Central administration center, select the New action on the action
ribbon.

2. In the Create Environment pane, select Production in the Environment Type list.
3. Select Create.

When the new production environment is created, it will be on the latest production version of Business Central.

A sandbox environment is a non-production instance of Business Central. Isolated from production, a sandbox
environment is the pace to safely explore, learn, demo, develop, and test the service without the risk of affecting
the data and settings of your production environment.

Each Business Central tenant is limited to three sandbox environments.

To create a sandbox environment:

1. On the Environments tab of the Business Central administration center, select the New action on the action
ribbon.

2. In the Create Environment pane, provide a name for your environment.
3. Select Sandbox in the Environment Type list.
4. Specify if you want the sandbox environment to contain a copy of another environment. If this option is

selected, select the environment to copy.

Precautions for sandbox environments with production data

Selecting a version for a new sandbox environment

Updating environments

NOTE

5. Select the application version for the new sandbox environment from the Version list.
6. Select Create.

NOTE

When creating a sandbox environment as a copy of another environment, the new environment is created on the
same application version as the environment being copied. The new environment will also contain all the per-tenant
extensions and AppSource extensions installed and published in the environment being copied.

The sandbox environment will not be accessible until the State shows Active.

A single, default sandbox environment can also be created from within a page in the production environment of
the Business Central application. For more information, see How to: Create a Sandbox Environment.

To delete a sandbox environment, choose the environment on the Environments tab of the Business Central
administration center, and then Select Delete on the action ribbon.

If a sandbox is created with a copy of a production environment, a number of precautions are taken for that
sandbox:

The job queue is automatically stopped.
Any base application integration settings are cleared.
Outbound HTTP calls from extensions are blocked by default and must be approved per extension.
Any General Data Protection Regulation (GDPR) action must be handled separately and repeated for the
sandbox. There is no synchronization with the production environment after the sandbox has been created.

To enable outbound HTTP calls, go to the Extension Management page in Business Central, and choose
Configure. Then, on the Extension Settings page, make sure that Allow HttpClient Requests is turned on.
This setting must be enabled per extension.

If, when creating a new sandbox environment, the environment is not a copy of an existing environment, you have
the option to select the application version for the new environment. The version list will show the latest
Production version, which is the version used for new production environments.

The version list may also have one or more Preview versions. Preview versions are early release candidates of
upcoming releases of Business Central that are made available specifically for sandbox environments. This allows
for reviewing new functionality, validating extension compatibility, and other general testing of the upcoming
release.

When a sandbox environment is created on a Preview version, the environment will automatically be updated to
new Preview versions when they become available. However, the environment will not be updated to the
Production version. Once a sandbox environment is on a Preview version, it must stay on a Preview version until it
is deleted. The environment may also be deleted if an update between Preview versions fails. It is recommended
that Preview versions be used only for temporary testing of an upcoming release.

Business Central environments are updated on a monthly cadence. Major updates occur semiannually, and minor
updates occur each month that there is not a major update. The Business Central administration center gives you a
level of control over the timing of updates for each environment.

https://docs.microsoft.com/dynamics365/business-central/across-how-create-sandbox-environment?toc=/dynamics365/business-central/dev-itpro/toc.json

Set the update window

NOTE

Schedule an update date

See also

The update window for an environment defines a window of time during the day in which the environment can be
updated. When an update is rolling out to Business Central online, regardless of whether it's the monthly service
update or a major update, the update will be applied to an environment within the time frame that the update
window defines. This helps to ensure that updates are applied outside of the customer's normal business hours,
for example.

Desktop users who are signed in during the update will receive an alert in Business Central.

To set the update window for an environment:

1. On the Environments tab of the Business Central administration center, Select the Name of the relevant
environment to open the environment details.

2. Select the Set update window action on the Update list on the action ribbon.
3. In the Set update window pane, specify the start time and the end time for the update window for the

environment.

NOTE

4. Select Save.

The update window must be a minimum of six hours.

For major updates only, you have the option to select a specific date on which the environment is updated. When a
major update version is available, a notification is sent to the notification recipients listed on the Notification
recipients tab of the Business Central administration center (See Managing Tenant Notifications for more
information). The Update version field in the Version Management section of the environment details also
displays the version number of the available update version.

To schedule an update date:

NOTE

1. On the Environments tab of the Business Central administration center, Select the Name of the relevant
environment to open the environment details.

2. Select the Schedule Update action on the Update list on the action ribbon.

3. In the Schedule Environment Update pane, select the desired update date.

The selected date must be within a given date range displayed in the pane.

4. Select Schedule Update.

Working with Administration Tools
The Business Central Administration Center
Managing Environments
Managing Tenant Notifications
Introduction to automation APIs

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/Administration

Tenant Notifications
6/25/2019 • 2 minutes to read

Notification recipients

NOTE

See also

Notifications are sent by email for administrative events that occur on the tenant. For example, notifications are
sent when a major update is available for tenant environments, when an environment update has succeeded or
failed, or when extensions require changes to be compatible with an upcoming release. When these and other
similar events occur on the tenant, an email is sent to the notification recipients for the tenant.

Notifications are sent to all email addresses that are listed in the Notification recipients list of the Business
Central administration center. The list is managed manually by adding and removing recipients to ensure the right
individuals are notified of the event.

It is important that at least one administrator's email address has been entered as a notification recipient to ensure proper
awareness of events requiring administrative attention.

Working with Administration Tools
The Business Central Administration Center
Managing Environments
Managing Tenant Notifications
Introduction to automation APIs

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/Administration

Environment Telemetry
3/27/2019 • 2 minutes to read

See also

The Business Central administration center provides telemetry for the tenant environments to enable
troubleshooting and support for the tenant. The Telemetry tab provides telemetry of top-level AL events, and any
errors resulting from calls through the telemetry stack.

To filter the telemetry for an environment:

1. Select a base point-in-time for the timestamp of the telemetry messages.
2. Enter a number of minutes before or after the base point-in-time to set a range of time for the timestamp. A

negative number indicates a number of minutes before the base point-in-time, and a positive number indicates
a number of minutes following the base point-in-time. For example, a value of -15 will filter the telemetry
messages to a timestamp range of up to 15 minutes before the base point-in-time.

3. Choose the message type.
4. Choose the environment.
5. Select Filter.

Working with Administration Tools
The Business Central Administration Center
Managing Environments
Managing Tenant Notifications
Introduction to automation APIs

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/Administration

The Business Central Administration Center API
6/25/2019 • 9 minutes to read

Location

Setting up Azure Active Directory (AAD) based authentication

Getting an access token

The Business Central administration center API enables administrators to programmatically perform
administrative tasks for a Business Central tenant. Using the API, administrators can query and work with
production and sandbox environments for the tenant, set up administrative notifications, and view telemetry for
events on the tenant.

See The Business Central Administration Center for more details on administrative capabilities. This article
describes the API contracts for these administrative capabilities.

The Business Central administration center API is located at the following URL:
https://api.businesscentral.dynamics.com.

Sign in to the Azure Portal to register your client application as an app and enable it to call the Business Central
administration center API.

1. Follow the instructions in the Integrating applications with Azure Active Directory article. The next steps
elaborate on some of the specific settings you must enable.

2. Give the application a Name, such as Business Central Web Service Client.
3. For Application type, choose either Native or Web app/API depending on your scenario. The code

examples below assume Native.
4. Choose a Redirect URI. In the case of a Native app, you can choose for example:

BusinessCentralWebServiceClient://auth. In the case of a Web app/API app, set the value to the actual
URL of the web application.

5. During the registration of the app, make sure to go to Settings, and then under API ACCESS, choose
Required permissions. Choose Add, and then under Add API Access, choose Select an API and search for
the Dynamics 365 option. Choose Dynamics 365, select Delegated permissions, and then choose the
Done button.

NOTE

6. Make a note of both the Application ID and the Redirect URI. They will be needed later.

If Dynamics 365 does not show up in search, it's because the tenant does not have any knowledge of Dynamics
365. To make it visible, an easy way is to register for a free trial for Dynamics 365 Business Central with a user from
the directory.

HTTP requests sent to the Business Central administration center API must include the Authorization HTTP
header, and the value must be an access token.

The following examples show how to obtain such a token using PowerShell. Using C# is straightforward.

Powershell example without prompt:

https://api.businesscentral.dynamics.com
https://portal.azure.com
https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-integrating-applications
https://signup.microsoft.com/signup?sku=6a4a1628-9b9a-424d-bed5-4118f0ede3fd&ru=https%3A%2F%2Fbusinesscentral.dynamics.com%2FSandbox%2F%3FredirectedFromSignup%3D1

 $cred = [Microsoft.IdentityModel.Clients.ActiveDirectory.UserPasswordCredential]::new($UserName, $Password)
 $ctx =
[Microsoft.IdentityModel.Clients.ActiveDirectory.AuthenticationContext]::new("https://login.windows.net/$Tenan
tName")
 $token =
[Microsoft.IdentityModel.Clients.ActiveDirectory.AuthenticationContextIntegratedAuthExtensions]::AcquireTokenA
sync($ctx, "https://api.businesscentral.dynamics.com", <Application ID>,
$cred).GetAwaiter().GetResult().AccessToken

 $ctx =
[Microsoft.IdentityModel.Clients.ActiveDirectory.AuthenticationContext]::new("https://login.windows.net/$tenan
tName")
 $redirectUri = New-Object -TypeName System.Uri -ArgumentList <Redirect URL>
 $platformParameters = New-Object -TypeName
Microsoft.IdentityModel.Clients.ActiveDirectory.PlatformParameters -ArgumentList
([Microsoft.IdentityModel.Clients.ActiveDirectory.PromptBehavior]::Always)
 $token = $ctx.AcquireTokenAsync("https://api.businesscentral.dynamics.com", <Application ID>, $redirectUri,
$platformParameters).GetAwaiter().GetResult().AccessToken

Environments

Get environments and Get environments by application family

{
 "value":
 [
 {
 "friendlyName": string, // Display name of the environment
 "type": string, // Environment type (e.g. "Sandbox", "Production")
 "name": string, // Environment name, unique within an application type
 "countryCode": string, // Country/Region the environment is deployed in
 "applicationFamily": string,
 "aadTenantId": Guid,
 "applicationVersion": string,
 "status": string (enum | "NotReady", "Removing", "Preparing", "Active"),
 "webClientLoginUrl": string // Url to use to log into the environment
 }
]
}

Get environment by application family and name

Powershell example with prompt:

Environments are the instances of the application that have been set up for the tenant. An instance can be of either
a production type or a sandbox type. Currently, there can be one production environment and up to three sandbox
environments per tenant. The environment APIs can be used to get information about the environments currently
set up for the tenant, create a new sandbox environment using sample data or as a copy of the production
environment, and delete the sandbox environment.

Returns a list of all the environments for the tenant.

[200] GET /v1.2/admin/environments

Returns a list of the environments for the specified application family.

[200] GET /v1.2/admin/applications/{applicationFamily}/environments

Response:
Returns a wrapped array of environments.

{
 "friendlyName": string, // Display name of the environment
 "type": string, // Environment type (e.g. "Sandbox", "Production")
 "name": string, // Environment name, unique within an application type
 "countryCode": string, // Country/Region the environment is deployed in
 "applicationFamily": string,
 "aadTenantId": Guid,
 "applicationVersion": string,
 "status": string (enum | "NotReady", "Removing", "Preparing", "Active"),
 "webClientLoginUrl": string // Url to use to log into the environment
}

Create environment

{
 "type": "Sandbox"
}

 {
 "type": string, // Environment type
 "name": string, // Environment name, unique within an application type
 "applicationFamily": string,
 "aadTenantId": Guid,
 "status": string (enum | "NotReady", "Removing", "Preparing", "Active")
 }

Path parameters

Errors

Returns the properties for the provided environment name if it exists.

[200] GET /v1.2/admin/applications/{applicationFamily}/environments/{environmentName}

Response:
Returns a single environment if exists.

Creates a new sandbox environment with sample data.

[201] PUT /v1.2/admin/applications/{applicationFamily}/environments/{environmentName | "Sandbox" or
"Production"}

or

[201] PUT
/v1.2/admin/applications/{applicationFamily}/environments/{environmentName}/{applicationVersion}/{ringName |
"PROD" or "PREVIEW"}

See the section below about Available Versions for information about versions currently supported.

Body

Response:
Returns newly created environment.

- applicationFamily: Family of the application as is.

- environmentName: Free field; but, currently only "sandbox" is used. Stored case sensitive, indexed case
insensitive.

{
 {
 "code": string, // e.g. "DestinationApplicationServiceNotFound"
 "message": string, // e.g. "A suitable destination service cannot be found"
 "target": string, // Such as a field name, where the error is occurred
 "clientError": [
 {
 "code": string,
 "message": string,
 "target": string
 "clientError": [...]
 }
]

 "innerError": {
 "code": string,
 "innerError": [...]
 }
 }
}

Copy environment

{
 "copyFromEnvironmentName": "Production",
 "type": "Sandbox"
}

Delete environment

Available Versions

Versions and Corresponding Rings

Creates a new sandbox environment with a copy of the production environment's data.

[201] PUT /v1.2/admin/applications/{applicationFamily}/environments/{environmentName}

Body

Deletes the specified environment. Warning: A production environment should not be deleted.

[202] DELETE /v1.2/admin/applications/{applicationFamily}/environments/{environmentName}

Get information about the currently supported versions.

[200] GET /v1.2/admin/applications/{applicationFamily}/rings

Response:

{
 "value": [
 {
 "applicationVersion": {
 "major": int,
 "minor": int,
 "build": int,
 "revision": int
 },
 "ringName": string,
 "ringFriendlyName": string
 }
]
}

Updates

Get Update Settings

{
 "preferredStartTimeUtc": datetime, // Start of environment update window
 "preferredEndTimeUtc": datetime, // End of environment update window
}

NOTE

Put Update Settings

{
 "preferredStartTimeUtc": datetime, // Start of environment update window
 "preferredEndTimeUtc": datetime, // End of environment update window
}

The update settings allow you to specify an update window for the time of day an update can be performed on the
tenant environment. The update window must be a minimum of six hours. (e.g. 1:00 - 7:00)

Returns the update settings for the environment. The update settings currently available are the start and end
times for the update window.

[200] GET v1.2/admin/applications/{applicationFamily}/environments/{environmentName}/settings/update

Response:
Returns the environment's update settings, or "null" if not exists

The date components of the values are ignored, only the time components are used.

Set the update window start and end times.

[200] PUT v1.2/admin/applications/{applicationFamily}/environments/{environmentName}/settings/update

Body

Response:
Returns the updated settings

{
 "preferredStartTimeUtc": datetime, // Start of environment update window
 "preferredEndTimeUtc": datetime, // End of environment update window
}

NOTE

Telemetry

Get Environment Telemetry

{
 "queryColumns": [
 {
 "name": string, // Column display name
 "ordinal": int, // Index of the column in the data set
 "dataType": (string or 0 | numeric or 1 | datetime or 2)
 "expectations": (none or 0 | wide or 1) // Flags enum value
 }
],
 "queryResults": object[][] // Raw query data results
}

Notifications

Get Notification Recipients

The date components of the values are ignored, only the time components are used.

Telemetry includes the top-level AL events and any returned errors logged from the service. These events can
provide necessary information and errors that can be used to troubleshoot issues happening in the tenant's
environment.

Returns the telemetry information for the provided environment and filters. It is recommended that you provide
start and end time parameters in order to return a managable data set.

[200] GET v1.2/admin/applications/{applicationFamily}/environments/{environmentName}/telemetry?startDateUtc=
{start}&endDateUtc={end}&logCategory={cat}

Query parameters:

start: datetime // The start of the telemetry entry time window to query
end: datetime // The end of the telemetry entry time window to query
cat: (All or 0) // Category of telemetry to query

Response:
Returns the telemetry logs and with data column headers.

Notifications are sent to the recipient email addresses set up for the tenant. For example, notifications are sent for
update availability, successful updates, update failures, and extension validations.

Returns a list of notification recipients.

[200] GET /v1.2/admin/settings/notification/recipients

Response:
Returns a wrapped array of recipients.

{
 "value":
 [
 {
 "id": GUID, // Unique identifier of the recipient
 "email": string, // Email address of the recipient
 "name": string // Full name of the recipient
 }
]
}

Create Notification Recipient

{
 "email": string, // Email address of the recipient
 "name": string // Full name of the recipient
}

{
 "id": GUID, // Unique identifier of the recipient
 "email": string, // Email address of the recipient
 "name": string // Full name of the recipient
}

Update Notification Recipient

{
 "id": GUID, // Unique identifier of the recipient
 "email": string, // Email address of the recipient
 "name": string // Full name of the recipient
}

{
 "id": GUID, // Unique identifier of the recipient
 "email": string, // Email address of the recipient
 "name": string // Full name of the recipient
}

Delete Notification Recipient

Create a new notification recipient.

[200] PUT /v1.2/admin/settings/notification/recipients

Body

Response:
Returns the newly created recipient.

Modify an existing notification recipient.

[200] PUT /v1.2/admin/settings/notification/recipients

Body

Response:
Returns the updated recipient.

Deletes an existing notification recipient.

Get Notification Settings

{
 "aadTenantId": GUID, // AAD Tenant ID of the caller
 "recipients": [
 {
 "id": GUID, // Unique identifier of the recipient
 "email": string, // Email address of the recipient
 "name": string // Full name of the recipient
 }
]
}

Application Access Management

Get List Of Manageable Applications

{
 "value": [
 {
 "applicationFamily": string,
 "access": boolean
 }
]
}

Control the access to Applications

[200] DELETE /v1.2/admin/settings/notification/recipients/{id}

Returns the properties of the specified notification recipient.

[200] GET /v1.2/admin/settings/notification

Response:
Returns the notification settings.

It is possible for a Delegated Tenant Admin to manage access to application families available in the service.
The application family is Business Central or other independent software vendor (ISV) applications that may be
provisioned through the service.

You can get the list of applications that are available to the tenant. From this list you can determine, by setting the
access property, for which applications an environment may be provisioned on the tenant.

Returns a list of manageable applications.

[200] GET /v1.2/admin/manageableapplications

Response:
Returns a wrapped array of applications.

Pass the application family name in the URL and a boolean in the body.

True - enables the access.
False - disables the access.

[200] PUT /v1.2/admin/manageableapplications/{applicationFamily}

Body

{
 boolean // Desired access state
}

NOTE

Get List Of Accessible Applications

{
 "value": [
 {
 "applicationFamily": string,
 "access": boolean
 }
]
}

Reschedule Updates

Get Scheduled Update

{
 "jobId": int,
 "jobEntryId": int,
 "sourceVersion": string,
 "targetVersion": string,
 "canTenantSelectDate": boolean,
 "didTenantSelectDate": boolean,
 "earliestSelectableUpgradeDate": datetime,
 "latestSelectableUpgradeDate": datetime,
 "upgadeDate": datetime,
 "updateStatus": string (enum | "Scheduled" or "Running"),
 "ignoreUpgradeWindow": boolean,
 "isActive": boolean
}

Reschedule Update

It is only possible to disable the access to applications for the AAD tenant if it does not have application tenant yet.

Tenant Admin can obtain a list of accessible applications.

[200] GET /v1.2/admin/accessibleapplications

Response:
Returns a wrapped array of applications.

Some environment updates are allowed to be rescheduled.

Get information about updates that have already been scheduled for a specific environment.

[200] GET /v1.2/admin/applications/{applicationFamily}/environments/{environmentName}/update

Response:
Returns information about the update job for that environment.

Reschedule an update, if able.

[200] PUT /v1.2/admin/applications/{applicationFamily}/update

{
 "jobId": int,
 "jobEntryId": int,
 "runOn": datetime,
 "ignoreUpgradeWindow": boolean
}

NOTE

See Also

Body

All datetime values are in UTC

Microsoft Dynamics 365 Business Central Server Administration Tool

Introduction to automation APIs
3/31/2019 • 3 minutes to read

Create a company

POST
https://api.businesscentral.dynamics.com/v1.0/api/microsoft/automation/{apiVersion}/companies({companyId})/au
tomationCompanies
Authorization: Bearer {token}
Content-type: application/json
{
 "name": "CRONUS",
 "displayName": "CRONUS",
 "businessProfileId": ""
}

NOTE

Upload and apply a RapidStart package

GET
https://api.businesscentral.dynamics.com/v1.0/api/microsoft/automation/{apiVersion}/companies({companyId})/co
nfigurationPackages

Authorization: Bearer {token}

Automation APIs provide capability for automating company setup through APIs. Once the tenants have been
created, the automation APIs can be used, in order to hydrate the tenant - to bring the tenant up to a desired state.
Usually this involves creating a new company on the tenant, running RapidStart packages, installing extensions,
adding users to user groups and assigning permission sets to users.

Delegated admin credentials and Dynamics 365 Business Central users with permissions, can call the APIs.

Automation APIs are placed in the microsoft/automation API namespace. In all the examples below, parameters
are marked in parenthesis {} . Make sure that only valid parameters are passed.

To create a company, an automationCompany endpoint is available. To create a Company issue a POST request as
shown in the following example.

The {companyId} must be the ID of an valid company on the tenant. Issue a GET automationCompany request to
fetch existing companies.

The company which is created will not be initialized.

To rename a company, issue a PATCH automationCompanies.

RapidStart is uploaded, installed, and applied using the APIs described below. RapidStart operations can be time
consuming. To get the current status of the RapidStart packages and running operations issue a GET
configurationPackages as shown in the following example.

In the response, status for the import and apply status will be shown, as well as information about the RapidStart
package.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/dynamics-microsoft-automation-automationcompanies-post
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/dynamics-microsoft-automation-automationcompanies-get
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/dynamics-microsoft-automation-automationcompanies-patch
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/dynamics-microsoft-automation-configurationpackage-get

Insert RapidStart

POST
https://api.businesscentral.dynamics.com/v1.0/api/microsoft/automation/{apiVersion}/companies({companyId})/co
nfigurationPackages

Authorization: Bearer {token}
Content-type: application/json
{
 "code":"{SAMPLE}",
 "packageName": "{SAMPLE}"
}

Upload RapidStart package

PATCH
https://api.businesscentral.dynamics.com/v1.0/api/microsoft/automation/{apiVersion}/companies({{companyId}})/
configurationPackages('{SAMPLE}')/file('{SAMPLE}')/content

Authorization: Bearer {token}
Content-type: application/octet-stream
If-Match: *
Body: RapidStart file.

Import and apply RapidStart package

POST
https://api.businesscentral.dynamics.com/v1.0/api/microsoft/automation/{apiVersion}/companies({{companyId}})/
configurationPackages('SAMPLE}')/Microsoft.NAV.import

Authorization: Bearer {token}

POST
https://api.businesscentral.dynamics.com/v1.0/api/microsoft/automation/{apiVersion}/companies({companyId})/co
nfigurationPackages('SAMPLE}')/Microsoft.NAV.apply

Authorization: Bearer {token}

Managing users, user groups, and permission sets

Modifying user properties

First step is to create the configuration package, by issuing a POST configurationPackages in the Dynamics 365
Business Central tenant. Once the configuration package is created, the RapidStart package can be uploaded. See
the example below.

Once the configuration package is created, a RapidStart package can be uploaded with a PATCH
configurationPackages. See the example below.

Once uploaded, the RapidStart package needs to be imported by issuing a POST on the bound action
Microsoft.NAV.import.

When the RapidStart package is imported it can applied with a POST on bound action Microsoft.NAV.apply.

The automation APIs enable users to be set up in Dynamics 365 Business Central.

Get the current user properties by issuing a GET users. This will get the UserSecurityId needed on subsequent
requests.

To modify the user, create a PATCH user request as shown in the example below.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/dynamics-microsoft-automation-configurationpackage-post
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/dynamics-microsoft-automation-configurationpackage-patch
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/dynamics-microsoft-automation-configurationpackage-post
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/dynamics-microsoft-automation-configurationpackage-post
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/dynamics-microsoft-automation-user-get
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/dynamics-microsoft-automation-user-patch

PATCH
https://api.businesscentral.dynamics.com/v1.0/api/microsoft/automation/beta/companies({id})/users({userSecuri
tyId})
Content-type: application/json
If-Match:*
{
 "state": "Enabled",
 "expiryDate": "2035-01-01T21:03:53.444Z"
}

Assign user permissions and user groups

POST
https://api.businesscentral.dynamics.com/v1.0/api/microsoft/automation/{apiVersion}/companies({companyId})//u
sers({userSecurityId})/userGroupMembers

Authorization: Bearer {token}
{
 "code": "D365 EXT. ACCOUNTANT",
 "companyName" :"CRONUS USA, Inc."
}

POST
https://api.businesscentral.dynamics.com/v1.0/api/microsoft/automation/{apiVersion}/companies({companyId})//u
sers({userSecurityId})/userPermissions

Authorization: Bearer {token}
{
 "id": "SECURITY"
}

Handling tenant extensions

Installing and uninstalling published add-on extensions

To assign users to a user group, issue a POST request against the userGroupMembers entity. See the example
below.

To retrieve the list of user groups issue a GET userGroups. This will return the information that you need for the
payload above.

Assigning permission sets is identical to adding users to user groups. GET permissionSet returns information
about the available permission sets. To assign a permissionSet issue a POST userPermission as shown in the
following example.

Removing the permissionSet from the user is done by issuing a DELETE userPermissions on the users entity.

Add-on extensions which are already published to the tenant can be installed and uninstalled. Per-tenant
extensions can be uploaded and installed. To get the list of all extensions on the tenant, issue a GET extensions.
This will return the packageId needed for installing and uninstalling extensions.

There are two bound actions available on the extensions endpoint: Microsoft.NAV.install and
Microsoft.NAV.uninstall .

Issue a POST extension using the bound actions. See the example below.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/dynamics-microsoft-automation-usergroupmember-post
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/dynamics-microsoft-automation-usergroup-get
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/dynamics-microsoft-automation-permissionset-get
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/dynamics-microsoft-automation-userpermission-post
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/dynamics-microsoft-automation-userpermission-delete
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/dynamics-microsoft-automation-extension-get
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/dynamics-microsoft-automation-extension-post

POST
https://api.businesscentral.dynamics.com/v1.0/api/microsoft/automation/{apiVersion}/companies({companyId})//e
xtensions({extensionId})/Microsoft.NAV.install

Authorization: Bearer {token}

Upload and install a per-tenant extension

NOTE

See Also

Issue a PATCH against the extensionUpload endpoint to upload and install the extension.

Installing per-tenant extensions using Automation APIs is only possible in SaaS.

Uninstalling the extension can be done through the bound action Microsoft.NAV.uninstall, as with the add-on
extensions.

Automation API overview

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/dynamics-microsoft-automation-extensionupload-patch
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/dynamics-microsoft-automation-extension-post

Automation Overview
3/31/2019 • 2 minutes to read

RESOURCE TYPE DESCRIPTION

automationCompany resource type Represents a user resource type in Dynamics 365 Business
Central

company resource type Represents a user resource type in Dynamics 365 Business
Central.

configurationPackages resource type Represents a configurationPackage resource type in Dynamics
365 Business Central.

extension resource type Represents an extension resource type in Dynamics 365
Business Central.

permissionSet resource type Represents a permissionSet resource type in Dynamics 365
Business Central.

user resource type Represents a user resource type in Dynamics 365 Business
Central.

userGroup resource type Represents a userGroup resource type in Dynamics 365
Business Central.

userGroupMember resource type Represents a userGroup resource type in Dynamics 365
Business Central.

userPermission resource type Represents a userPermissions resource type in Dynamics 365
Business Central.

See Also

The following table provides an overview of the available resource types on a Dynamics 365 Business Central
tenant. For an overview of how to use the automation APIs, see Introduction to Automation APIs.

Introduction to Automation APIs

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/dynamics-microsoft-automation-automationcompany
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/dynamics-microsoft-automation-company
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/dynamics-microsoft-automation-configurationpackages
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/dynamics-microsoft-automation-extension
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/dynamics-microsoft-automation-permissionset
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/dynamics-microsoft-automation-user
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/dynamics-microsoft-automation-usergroup
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/dynamics-microsoft-automation-usergroupmember
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/dynamics-microsoft-automation-userpermission

Connect to the Intelligent Cloud from On-Premises
with Dynamics 365 Business Central
5/21/2019 • 8 minutes to read

Setting up your connection to the intelligent cloud

The assisted setup guide

Customers running their workloads on-premises can get access to the same intelligent cloud scenarios that
customers using Business Central online have. Each on-premises solution that connects to the intelligent cloud
through Business Central will be able to replicate data from on-premises to the cloud tenant. In this way, users can
access intelligent cloud scenarios of Machine Learning, Power BI, Flow, and others to drive suggested actions.

For the list of currently supported on-premises solutions, see Which products and versions are supported for
connecting to the intelligent cloud? in the FAQ.

This section provides the steps required to get intelligent insights through a connection to Business Central online.
This can simply be done by following the instructions in the Intelligent Cloud Setup assisted setup wizard in
your Business Central online tenant.

There are a few key points that need to be understood before proceeding with the setup:

It is always a best practice to test this configuration in your Sandbox environment before making changes to a
production tenant. For more information see Choosing Your Dynamics 365 Business Central Development
Sandbox Environment.
Any existing data in your Business Central tenant will be overwritten with data from your on-premises
solution, or source, once the data replication process is run. If you do not want data in your Business Central
online tenant to be overwritten, do not configure the connection.
All users that do not have SUPER permissions will be automatically reassigned to the intelligent cloud user
group. This will limit them to read-only access within the Business Central tenant. See more below.
If your data source is Business Central (on-premises), several stored procedures will be added to the SQL
server you define. These stored procedures are required to replicate data from your SQL server to the Azure
SQL server associated with your Business Central tenant.
In the current version of Business Central, the amount of data that can be replicated for any tenant is limited to
150GB. If your database is larger than 150GB, try reducing the number of companies you are replicating data
for. This can done using the company selection within the assisted setup guide. Additional options for
databases exceeding 150GB will be available in future updates.
Before setting up the connection to the intelligent cloud, ensure that at least one user in the system that has
SUPER permissions. This is the only user that will be allowed to make changes in the Business Central tenant.
Configuring the intelligent cloud environment will have no impact on any users or data in your on-premises
solution.

To begin configuring the connection, navigate to the assisted setup page and launch the Intelligent Cloud Setup
assisted setup guide. If you are using Business Central on-premises, the same setup guide is also available in your
on-premises solution. You will automatically be redirected to your Business Central online tenant to continue the
configuration process.

The assisted setup guide consists of up to 6 pages that take you through the process of connecting your solution
to the intelligent cloud.

https://docs.microsoft.com/dynamics365/business-central/dev-itpro/administration/faq-intelligent-cloud#which-products-and-versions-are-supported-for-connecting-to-the-intelligent-cloud

FIELD DESCRIPTION

SQL Connection SQL Server, which is your locally installed SQL Server
instance, or Azure SQL.

SQL Connection string You must specify the connection string to your SQL
Server. For more information, see the SQL Server blog.
The following snippets illustrate a couple connection
strings with different formats:
Server={SQL Server Name};Initial Catalog=
{Database Name};UserID={SQL Authenticated
UserName};Password={SQL Authenticated Password};

Server={SQL Server Name};Database={Database
Name};User Id={SQL Server Authenticated
UserName};Password={SQL Server Authenticated
Password};

The SQL connection string is passed to Azure Data
Factory (ADF), where it is encrypted and delivered to your
Self-Hosted Integration Runtime and used to
communicate with your SQL Server instance during the
data replication process.

Integration runtime name If your SQL connection is SQL Server, you must specify
the runtime service that will be used to replicate the data
from the defined source to your Business Central online
tenant.
If you are a hosting partner, you may have multiple
tenants running on the same Integration runtime service.
Each tenant will be isolated in their own data pipeline. To
add tenants to an existing integration runtime service,
enter the name of the existing integration runtime service
into this field. The integration runtime name can be found
in the Microsoft Integration Runtime Manager. To create a
new runtime service, leave the field empty, and then
choose the Next button. Once you choose Next, a new
replication pipeline will be created in the Azure service.
This should take less than a minute to complete.

1. Welcome and Consent page

This page provides an overview of what the wizard will do. You must agree to the displayed warning
message before you can continue to the next step.

2. Product selection

On this page, specify the on-premises solution that you want to replicate data from. All supported sources
will appear in the list. If you don’t see your product, navigate to the Manage Extensions page, and then
verify that the intelligent cloud extension for your on-premises solution is installed.

3. SQL Connection

If the product you selected requires a SQL connection, this page will be presented. Other source
applications may require different information to connect to them. This page will display the connection
information based on the product that you specified in the previous page. This is defined from the installed
extensions for the product you have selected.

4. Self-Hosted Integration Runtime (SHIR)

This is the service will allow access to the Azure replication services to your on-premises SQL Database
during the replication process. Follow the instructions on this page to install the Self-Hosted Integration

https://blogs.msdn.microsoft.com/sqlforum/2010/12/20/faq-how-do-i-find-the-correct-server-or-data-source-value-for-an-sql-server-instance-in-a-connection-string/

NOTE

Adding a tenant to an existing runtime service, or updating companies

User groups and permission sets

Service (SHIR) to a local machine.

5. Company Selection

You will be provided with a list of companies from your on-premises solution, or source. Select the
companies you would like to replicate data for. If the company does not exist in your Business Central
tenant, it will be automatically created for you. This process may take several minutes depending on the
number of companies that need to be created.

6. Enable & Scheduling Replication

The final page in the wizard allows you to enable the replication process and create a schedule for when the
data replication should occur. These settings are also available within your Business Central tenant on the
Intelligent Cloud Management page. You have the option to schedule replication daily or weekly. We
recommend that you schedule your data replication for off-peak business hours.

Depending on the amount of data, your SQL configuration and your connection speed, a full replication could take several
hours to complete. Subsequent replications will complete more quickly as only changed data is replicating.

There are some scenarios where it will be necessary for you to run the intelligent cloud assisted setup wizard
more than once.

One example is if you want to change the companies you replicate data for. If the companies in your on-premises
solution have changed, either added or deleted, or you want to change the companies to replicate, simply run the
assisted setup wizard again.

Another example of why you would want to run the wizard again is you may be a hosting partner and want to add
tenants to your existing runtime service.

In both examples, you will be making updates to an existing runtime service. When you get to the point of the
wizard where you can specify an existing runtime services name, open the Microsoft Integration Runtime Service
Manager and enter the runtime name in the field in the wizard; you will not be allowed to copy/paste. The runtime
service will identify that you are making updates to an existing service and will not create a new one.

Complete the steps in the wizard to update the runtime service. If the change was related to adding tenants to an
existing service, a new data pipeline will be created for that tenant. Changing your replication schedule or
regenerating an Azure Data Factory (ADF) key may be done using the Intelligent Cloud Management page in
your Business Central cloud tenant. For more information, see Managing your Intelligent Cloud environment.

When running as connected with an on-premises solution, the Business Central online tenant will be, with very
few exceptions, read-only. Because the on-premises solution is your primary application for running your business
activities such as data entry, tax reporting, and sending invoices, these tasks will need to be completed in the on-
premises solution. We limit the amount of data you can enter into your Business Central tenant to data that is not
replicated, otherwise any data that was written to the tenant database would be continuously overwritten during
the replication process.

To make setting up this read-only tenant more efficient, we created a new Intelligent Cloud user group and an
Intelligent Cloud permission set. Once the intelligent cloud environment is configured, all users without SUPER
permissions will be automatically assigned to the Intelligent Cloud user group. Only users with SUPER
permissions will be allowed to make modifications to the system at this point.

NOTE

WARNING

Extensions

System requirements

See Also

Before you configure the a connection from on-premises to bBusiness Central, make sure that at least one user in each
company is assigned SUPER permissions.

Users that are reassigned to the Intelligent Cloud user group will have access to read ALL data by default. If you
need to further restrict what data a user should be able to read, the SUPER user may create new user groups and
permissions sets and assign users accordingly. It is highly recommended to create any new permissions sets from
a copy of the Intelligent Cloud permission set and then take away permissions you do not want users to have.

If you grant insert, modify or delete permissions to any resource in the application that was set to read-only, it could have a
negative impact on the data in the Business Central cloud tenant. If this occurs, you may have to clear all your data and
rerun a full replication to correct this.

When an intelligent cloud environment is configured, it is highly recommended that you test the impact of any
extension in a sandbox environment before having it installed in your production Business Central tenant to help
avoid any data failures or untended consequences.

To connect to the intelligent cloud through Business Central the on-premises solution must use SQL Server 2016
or a later version, and the database must have compatibility level 130 or higher. The on-premises solution must
also be one of the supported versions. For more information, see Which products and versions are supported for
connecting to the intelligent cloud? in the FAQ.

Managing your intelligent cloud environment
Replicating on-premises data
Frequently Asked Questions about connecting to the intelligent cloud
Your Access to the Intelligent Cloud

https://docs.microsoft.com/dynamics365/business-central/dev-itpro/administration/faq-intelligent-cloud#which-products-and-versions-are-supported-for-connecting-to-the-intelligent-cloud
file:///T:/q4ru/administration/FAQ-Intelligent-Cloud.html
https://docs.microsoft.com/dynamics365/business-central/about-intelligent-cloud

Replicating On-Premises Data to Business Central
5/28/2019 • 7 minutes to read

Data replication from Business Central on-premises

Replicating data from extensions

Data replication is the process of securely migrating data from your on-premises SQL Server instance to your
Business Central online tenant. The process uses the Azure Data Factory (ADF) to migrate the data between
databases directly, meaning it does not look at any permissions within the applications you are transferring data
between, only SQL permissions.

In order for the data migration to take place, you must successfully complete the Intelligent Cloud Setup
assisted setup wizard in your Business Central online tenant. Once the wizard is complete and data replication is
activated, an initial data replication will happen at the scheduled time. Alternatively, you can trigger the data
replication process manually.

Data is replicated between the two systems on a per-table basis, and success and failures are tracked for each
table. If a table fails to replicate, the error will be captured, and the replications moves on to the next table until
completed. Tables will fail to replicate if they cannot be found, or if the schema does not match between the cloud
and the on-premises tables.

If a table fails to replicate, a blocker is placed on the table in Business Central online tenant. It is meant as a way for
the service to inform you that the data you are viewing has not replicated to prevent you from viewing data that
may be out of date. At no point will there be an impact on your on-premises SQL Server data.

The initial data replication time can vary depending factors such as the amount of data to replicate, your SQL
Server configuration, and your connection speeds. The initial replication will take the longest amount of time to
complete because all data is replicating. After the initial replication, only changes in data will be replicated so they
should run more quickly.

Your Business Central on-premises solution can have an identical twin in a Business Central online tenant. The
data replication can be started quite easily from the assisted setup wizard in your on-premises solution. For more
information, see Connect to the Intelligent Cloud from On-Premises.

When your on-premises solution is connected to the intelligent cloud, it is highly recommended that you test the
impact of any extension in a sandbox environment before you install the extensions in your Business Central
production tenant to help avoid any data failures or unintended consequences.

In order to support data replication, tables and table extensions must specify if data from that table must be
replicated or not. By default, the ReplicateData property is set to Yes so that, by default, any extension that is
installed in the Business Central cloud tenant will have all its tables replicated.

In certain circumstances, you may want to not replicate all data. Here are a few examples:

The extension is installed in the Business Central online tenant but not in the Business Central on-premises
solution

In this case, Business Central will attempt to replicate the data but fail. Since the extension is not installed
on-premises, any table related to that extension table will fail to replicate, and blocker notifications will
appear on pages that are associated with those tables.

If you own the extension, we recommend that you set the ReplicateData property to No on the extension
tables. If you do not, and if you want data to replicate, install the extension in both your Business Central

Data that is not replicated

Data replication from Dynamics GP

cloud tenant and your on-premises solution. If you do not want data to replicate, uninstall the extension
from your Business Central cloud tenant.

The extension references a base table

This can cause your base table to appear empty when you view data in your Business Central cloud tenant.
If that happens, uninstall the extension from your Business Central cloud tenant, and then run the data
replication process again.

During the data replication process, Business Central does not replicate most system tables, users, and
permissions.

When using the intelligent cloud replication for Dynamics GP 2018 R2, the following information is replicated
from Dynamics GP to Business Central online:

ACCOUNT NUMBER ACCOUNT NAME AMOUNT

000-1100-00 Cash 100.00

100-1100-00 Cash Admin 200.00

200-1100-00 Cash Accounting 200.00

000-1100-01 Cash West 200.00

000-1100-02 Cash Midwest 100.00

ACCOUNT NUMBER ACCOUNT NAME AMOUNT

1100 Cash 800.00

Chart of Accounts master records as of the time of the replication

The chart of accounts will be set up as the main account segment from Dynamics GP, and the additional
segments will be set up as dimensions in Business Central

Account Balance as of the time of the replication

The account balances are brought over as a sum amount of the balances grouped by the main account
number.

Let’s take a look at an example using Fabrikam data in Dynamics GP:

Because the account number's main segment in Dynamics GP is defined as the second segment, the data
replication creates new accounts in Business Central based on the number 1100 in this example. The data
replication process then sets up an account in Business Central as shown in the following table:

The data replication generates dimensions on that account based on the different segments. User will see a
Department dimension with the values 000, 100, and 200 respectively. Another dimension, Division, will
show the values 00, 01, and 02 respectively.

Customer master records and outstanding transactions from the Receivables module

These transactions will be brought in as the amount remaining in Dynamics GP.

Data replication from Dynamics NAV

Vendor master records and outstanding transactions from the Payables module

These transactions will be brought in as the amount remaining in Dynamics GP.

Inventory items

Inventory is imported with the cost valuation method that was selected when the company setup wizard
was run. Currently, the data replication brings in the quantity on hand for the items at the time of migration.
This quantity is brought into the blank location.

Historical data from Sales Order Processing, Purchase Order Processing, and Inventory

This data can be used in Power BI reports and Power Apps. In Business Central online, the data is included
in the SmartList views in the Customers, Vendors, and Items lists. Technically, the data is stored in table
extensions.

The data replication process for Microsoft Dynamics NAV 2018 is very similar to the process for Business Central
on-premises with one major exception: A transformation process that is run on tables that have upgrade logic on
them because of differences in data structure between Microsoft Dynamics NAV 2018 and Business Central.

In order to set up the data replication process, you must upgrade to Microsoft Dynamics NAV 2018 CU 15 or later.
Cumulative update 15 added an extension that is needed to set up the replication process.

From the standpoint of walking through the wizard, the process is the same. For more information, see Connect to
the Intelligent Cloud from On-Premises.

Let’s look at an example of the transformation process. In Dynamics NAV, the Sales & Receivables Setup
window includes a field, Archive Quotes and Orders, that specifies whether to automatically archive sales quotes
and sales orders when a sales quote or order is deleted. In Business Central, the Sales & Receivables Setup
window includes an Archiving FastTab where you can specify how and when to archive quotes and orders
separately.

Upgrading to a new version of Business Central

IMPORTANT

See also

When you connect your Microsoft Dynamics NAV 2018 to Business Central, the data replication process must
make the relevant data transformation to put the correct values into the Business Central table. Technically, it is the
same process that is used for upgrading from Dynamics NAV to Business Central.

If you upgrade to a new version of Business Central, including a cumulative update, then you must update the
extensions as well. Depending on your on-premises solution, your Business Central tenant contains different
extensions for the intelligent insights. For more information, see Business Central Intelligent Cloud Extensions.

You must always install, publish, or upgrade the Intelligent Cloud Base Extension extension first, and then the product-
specific extension or extensions. Also, if your on-premises solution is Business Central on-premises, then you must update
the extensions both on-premises and online.

Connect to the Intelligent Cloud from On-Premises
Managing your Intelligent Cloud Environment
ReplicateData Property
Intelligent Insights with Business Central

https://docs.microsoft.com/dynamics365/business-central/ui-extensions-data-replication?toc=/dynamics365/business-central/dev-itpro/toc.json
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-replicatedata-property
https://docs.microsoft.com/dynamics365/business-central/about-intelligent-cloud

Managing your intelligent cloud environment
3/31/2019 • 2 minutes to read

Intelligent cloud management

ACTION DESCRIPTION

Manage Schedule Opens a page where you can set the replication schedule
without having to run the assisted setup wizard again.

Run Replication Now You can disable automatic data migration and trigger data
replication manually. Ideally, this would be used only when
you received errors in the scheduled data replication, you
corrected any errors, and want to push updated data to the
cloud outside of a normally scheduled run.

Reset Cloud Data You may run into instances where you need to reset your
cloud data. This option will clear all data in your cloud tenant
and enable you to start over with data replication. If you need
to clear data in your cloud tenant and are have connectivity
issues that persist for more than 7 days, you will need to
contact customer support. They will create a ticket to have
your tenant data cleared.

Reset Runtime Key If at any time you feel that your Self Hosted Integration
Runtime key is no longer secure, you may select this option to
regenerate a new key. A new key will be generated for you
and automatically be updated in the Self Host Integration
Runtime service.

Get Runtime Key Returns the existing runtime key.

Disable Intelligent Cloud Opens a guide that helps you through a checklist of
instructions to disable the intelligent cloud configuration.
Once the steps in this process are complete, data replication
will be discontinued, and you can choose to use your Business
Central cloud tenant as your primary solution.

You can connect your on-premises solution to the Intelligent Cloud through a Business Central cloud tenant. Once
you have set up this configuration, you have access to the Intelligent Cloud Management page in the Business
Central cloud tenant, from where you can manage your Intelligent Cloud environment and data replication.

The Intelligent Cloud Management page provides information about your data replication runs as well as the
ability to manage your replication services, for example.

The page provides a view of the status of all replications. You can view the time the replication ran, the status of
each replication, and when your next replication is scheduled to run. The Replication Statistics tiles show the
number of tables replicated and the number of tables that did not replicate due to any errors that occurred during
the replication process. Choose a tile to drill into additional details regarding the replication status of each table as
well as any messaging to assist you in correcting any errors.

The following table describes the actions that you can run from the page:

See also
Frequently Asked Questions about Connecting to the Intelligent Cloud
Replicating on-premises data
Connect to the Intelligent Cloud with Dynamics 365 Business Central
Your Access to the Intelligent Cloud

file:///T:/q4ru/administration/FAQ-Intelligent-Cloud.html
https://docs.microsoft.com/dynamics365/business-central/about-intelligent-cloud

Frequently Asked Questions about Connecting to the
Intelligent Cloud from On-Premises Solutions
5/21/2019 • 6 minutes to read

Which products and versions are supported for this connection?

How is my on-premises data replicated to my Business Central online
tenant?

Are there any limits on the amount or type of data will replicate?

Is my SQL connection string required to set up the connection?

I am a hosting partner - do I need to configure the Self-Hosted
Runtime Service for each tenant?

Will data from tables with code customizations replicate?

This section contains answers to frequently asked questions about connecting on-premises solutions to the
intelligent cloud through Business Central online.

The current version of Business Central can connect the following products in order to provide intelligent insights:

Dynamics GP 2018 R2

Business Central on-premises

Dynamics NAV 2018 CU 16

Support added with the April 2019 Business Central update

Data is replicated using an Azure service called Azure Data Factory (ADF). The Azure Data Factory is a service that
is always running within the Business Central online service manager. When the intelligent cloud is configured for
your on-premises solution, a data pipeline is created within the ADF service that enables data to flow from your on-
premises solution to your Business Central cloud tenant. If your data source is a local SQL Server instance, you will
also be asked to configure a self-hosted integration runtime (SHIR). The runtime is installed locally and enables the
communication between the cloud services and your on-premise data to communicate without opening any ports
or firewalls.

Data replication for the initial release will have a limit of 150GB. There are no restrictions on the type of data that
can be replicated.

Yes. The SQL connection string is passed to Azure Data Factory, where it is encrypted and delivered to your Self-
Hosted Integration Runtime, and used to communication with your SQL Server instance during the data replication
process. For more information, see How do I find my SQL connection string?.

No, there is no limit on the number of tenants that can be added to your Self-Hosted Integration Runtime. Each
added tenant will have a dedicated pipeline created.

No, only tables that are available in both your on-premises solution and your Business Central online tenant will

Why are my permissions restricted in the Business Central online
tenant?

Can I ‘turn off’ my intelligent cloud?

Will my on-premises users and permissions replicate?

Can I view insights from cloud services in my on-premises solution?

Can you export to Excel, modify the contents, and import the data back
in?

Is the data replication only one-way?

Is there a cost to connect to the intelligent cloud?

Why did my Role Center change after configuring the intelligent cloud?

replicate. Any customization would need to be made into an extension and installed on both your on-premises
solution and your Business Central online tenant to replicate.

When you connect your on-premises solution to Business Central online for intelligent insights, all existing users
are automatically added to the Intelligent Cloud user group, unless they have the SUPER permission set. In this
configuration, your on-premises solution is the master where all business transactions take place. The Business
Central online environment is read-only, and the data is used to generate intelligent business insights based on
your on-premises data for you. We restrict permissions to prevent users from accidentally entering transactions or
updating master records only to have that information overwritten and lost when data replication takes place.

You can switch off your connection to the Business Central online environment at any point. Once you disable your
intelligent cloud configuration, your on-premises solution and the Business Central online tenant will become
completely independent of one another. If you switch off the connection, and you want to use your Business Central
online environment as your primary solution to run and manage your business, you must reassign permissions to
provide read/write access to the relevant users.

For more information, see Managing Users and Permissions.

No. Since you are not required to configure your on-premises solution with Azure Active Directory (Azure AD), we
cannot guarantee a mapping between on-premises users and users in your Business Central online tenant.
Business Central online requires Azure AD accounts, and users must be manually added. All permissions must be
granted in the Business Central tenant, independent from your on-premises permissions.

For more information, see Managing Users and Permissions.

Yes, the Intelligent Cloud Insights page can be hosted within your on-premises solution if that is one of the
currently supported solutions. Each user will need to have a Business Central license to view the data.

You can export the list to Excel from the Business Central online tenant, but since the data is read-only you cannot
make changes and import it again.

Yes, data is only replicated from the on-premises solution to your Business Central online tenant.

Currently, the only costs associated with the intelligent cloud are your named user license costs. For more
information, see the Business Central Licensing Guide (download).

https://docs.microsoft.com/dynamics365/business-central/ui-how-users-permissions
https://docs.microsoft.com/dynamics365/business-central/ui-how-users-permissions
https://go.microsoft.com/fwlink/?LinkId=871590

Should I uninstall all my Business Central extensions?

How do I build an extension that enables data replication?

How do I find my SQL connection string?

How do I find the Integration Runtime name?

Can I connect my Microsoft Invoicing data to the intelligent cloud?

See also

To keep the Role Center experience as clean as possible and avoid permission errors, we automatically hide actions
that would generate a permission error for the user.

Not necessarily. Most extensions will run without issues in the online environment. You may want to consider
uninstalling extensions that send data to an external service to avoid potential duplicated calls to that service. It is a
best practice to test any extension in a sandbox tenant configured for the Business Central online environment that
you are connecting to.

The extension must be created in the same manner as any other extension. For data to replicate, you must add a
ReplicateData property to your table and set the value to True. If your extension connects with an external service
and you want to restrict any service calls from your Business Central online tenant, a good practice would be to
store the connection information in a separate table and set the ReplicateData property to False. This would
enable you to keep the extension installed but prevent it from making any type of service calls from the read-only
Business Central tenant. Once the extension is installed in Business Central online and on-premises, the data will
begin to replicate.

A connection string to your SQL database can be found in SQL Management Studio or using Visual Studio. The
user name and password defined in the connection requires a SQL Authenticated user name/password. Your
connection string should look something like this:

Server=tcp:{ServerName},1433;Initial Catalog={DatabaseName};Persist Security Info=False; User ID=
{UserName};Password=
{Password};MultipleActiveResultSets=False;Encrypt=True;TrustServerCertificate=True;Connection Timeout=30;

The Integration Runtime name can be found in the Microsoft Integration Runtime Manager. You can find this
application in your Windows system tray or by searching for the program. You will not be able to copy and paste
the name. You must manually type the name.

No. Microsoft Invoicing currently does not support connecting to the intelligent cloud through Business Central. If
your organization has an existing Invoicing tenant and want to create a Business Central tenant, you must contact
Support to have them delete your existing Invoicing tenant.

For more information, see Using the same Office 365 Account in Dynamics 365 Business Central and Microsoft
Invoicing.

Connect to the intelligent cloud with Business Central
Managing your intelligent cloud environment
Replicating on-premises data
ReplicateData Property

https://docs.microsoft.com/dynamics365/business-central/about-reuse-company-invoicing
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-replicatedata-property

-- title: "Microsoft Dynamics 365 Business Central Administration
Center Tool" ms.custom: na ms.date: 04/01/2019 ms.reviewer: na
ms.suite: na ms.tgt_pltfrm: na ms.topic: article ms.service:
"dynamics365-business-central"

5/3/2019 • 4 minutes to read

Business Central Server Administration tool

TIP

Install the Business Central Server Administration tool

Run the Business Central Server Administration tool

mmc

IMPORTANT

Navigating the Business Central Server Administration tool

The Business Central Server Administration tool is a Microsoft Management Console (MMC) snap-in for creating
and managing Business Central Server instances.

You can also administrate your Business Central deployment using Windows PowerShell cmdlets. For more information, see
Microsoft Dynamics 365 Windows PowerShell Cmdlets.

To install Business Central Server Administration tool, use the Business Central Setup and choose either Server
Option or Administration Tool under the custom options page. For more information, see Installing Business
Central Using Setup.

You typically run the Business Central Server Administration tool by choosing Business Central Administration
from the Start menu. Or, you can open the MMC first and then add the Business Central snap-in. In this case,
choose Run from the Start menu and then specify the Microsoft Management Console:

Only members of the Administrator group on the computer are able to use the Business Central Server Administration tool.

The Business Central Server Administration tool is not supported for multi-user environments.

Business Central Server Administration tool is divided into panes:

The left pane shows a tree view that lists all Business Central Server computers that you are administering
from this computer and all Business Central Server instances on those computers.

https://docs.microsoft.com/en-us/powershell/business-central/overview

Connect to remote computers and multiple server instances

The center pane shows information about the item that you have selected in the left pane. When the
selected item is a computer running Business Central Server, the center pane shows a list of Business
Central Server instances on that computer and the status of each instance (running or stopped), and the
name of the account the instance is running under.

When the item selected in the left pane is a Business Central Server instance, the center pane shows the
settings for that instance. For information about a specific setting, see Configuring Business Central Server
Instances.

If the Business Central Server is configured for multitenancy, then you can expand the Business Central
Server instance items in the left pane to display a Tenants item. Select the Tenants item to display all the
tenants that are mounted on a Business Central Server instance in the center pane. For more information,
see Multitenant Deployment Architecture

The right pane displays available actions for the object that is selected in the left pane. These options differ
depending on whether a Business Central Server computer or a Business Central Server instance is
selected.

The Windows PowerShell History pane lists the Windows PowerShell commands that the equivalent of
the tasks you perform in the Business Central Server Administration tool. You can access the Windows
PowerShell History pane from the Actions menu and from the right pane. To run a command that is
shown in the Windows PowerShell History pane, you can copy the command and paste it into the
Dynamics NAV Administration Shell, for example.

You can use the Business Central Server Administration tool to connect to other computers on your network
where Business Central Server instances are installed, and then manage those instances.

1. Configure the remote computers to receive Windows PowerShell remote commands by running the
Enable-PSRemoting cmdlet on each computer.

2. Next, you can start the Business Central Server Administration tool.

3. If you want to connect to a single remote computer, you can start the Business Central Server
Administration tool from the Start menu of your computer.

4. If you want to connect to multiple remote computers, you must start the Business Central Server
Administration tool from the Run program that you can access in the Start menu,

a. Enter the command mmc .
b. In the Management Console, on the File menu, choose Add/Remove Snap-in to open the Add or

remove Snap-ins dialog box.
c. In the Available snap-ins list, double-click Microsoft Dynamics 365 Business Central.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/deployment/Multitenant-Deployment-Architecture
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/enable-psremoting

See Also

TIP

d. In the Connect to another computer dialog box, type the name of a Business Central Server
computer in the Server Name box, and then choose OK.

e. Double-click Microsoft Dynamics 365 Business Central* again, and then enter the name of a different
Business Central Server computer in the Server Name box. Choose OK.

You can also accept the default value, which is (Local), if this is one of the Business Central Server
computers that you will be administering.

f. Continue selecting Business Central Server computers as needed. When you are finished selecting
computers, choose OK to close the Add or remove Snap-ins dialog box.

Now you see multiple Business Central Server computers listed in the tree view pane of the Business
Central Server Administration tool.

When you close MMC, you are prompted to save your settings to a Microsoft Management Console (.msc) file. If
you save your settings, then you can use this file to open MMC with your Business Central Server computers
already listed

Configuring Business Central Server Instances
Administration Center API

Authentication and Credential Types for Dynamics
365 Business Central
3/31/2019 • 4 minutes to read

Configuring Authentication for On-Premises Deployments

IMPORTANT

Credential Types

CREDENTIAL TYPES DESCRIPTION

Windows With this credential type, users are authenticated using their
Windows credentials. You can only specify Windows as the
credential type if the corresponding user exists in Windows
(Active Directory, local workgroup, or the local computer’s
users). Because they are authenticated through Windows,
Windows users are not prompted for credentials when they
access Business Central.

UserName With this setting, the user is prompted for
username/password credentials when they access Business
Central. These credentials are then validated against
Windows authentication by Business Central Server. There
must already be a corresponding user in Windows. Security
certificates are required to protect the passing of credentials
across a wide-area network. Typically, this setting should be
used when the Business Central Server computer is part of
an authenticating Active Directory domain, but the
computer where the Dynamics NAV Client connected to
Business Central is installed is not part of the domain.

In Business Central online, users are added through the Office 365 Admin Center. Once users are created in
Office 365, they can be imported into the Users window in Business Central. For more information, see
Managing Users and Permissions in the business functionality content.

An on-premises deployment of Business Central supports several credential authorization mechanisms for
users. When you create a user, you provide different information depending on the credential type that you are
using in the current Business Central Server instance.

All users of a Business Central Server instance must be using the same credential type. In on-premises deployments, you
can specify which credential type is used for a particular Business Central Server instance in the Business Central Server
Administration tool.

Business Central on-premises supports the following credential types.

https://docs.microsoft.com/dynamics365/business-central/ui-how-users-permissions

NavUserPassword With this setting, authentication is managed by Business
Central Server but is not based on Windows users or Active
Directory. The user is prompted for username/password
credentials when they start the client. The credentials are
then validated by an external mechanism. Security
certificates are required to protect the passing of credentials.
This mode is intended for hosted environments, for example,
where Business Central is implemented in Azure.

AccessControlService With this setting, Business Central relies on Azure Active
Directory (Azure AD\ for user authentication services.

Azure AD is a cloud service that provides identity and access
capabilities, such as for applications on Azure, in Microsoft
Office 365, and for applications that install on-premises. If
the Business Central Server instance is configured to use
AccessControlService authentication, you can specify an
Azure AD account for each user in the Office 365
Authentication field so that they can access both the
Business Central and their Office 365 site. Also, if you use
Business Central in an app for SharePoint, users have single
sign-on between the SharePoint site and Business Central.
For more information, see Authenticating Users with Azure
Active Directory or Authenticating Users with Active
Directory Federation Services.

Security certificates are required to protect the passing of
credentials across a wide-area network.

None For internal use on system sessions and typically should not
be used. If you choose None, then the Business Central
Server instance cannot start.

ExchangeIdentity and TaskScheduler For internal use only. Do not use.

CREDENTIAL TYPES DESCRIPTION

IMPORTANT

Configuring the Credential Type for Client and Server

Server Configuration

If Business Central Server is configured to use NavUserPassword or AccessControlService authentication, then the
username, password, and access key can be exposed if the SOAP or OData data traffic is intercepted and the connection
string is decoded. To avoid this condition, configure SOAP and OData web services to use Secure Socket Layer (SSL). For
more information, see Walkthrough: Configuring Web Services to Use SSL (SOAP and OData) in the ITPro content for
Microsoft Dynamics NAV 2018.

For on-premises deployment, you must make sure that clients and Business Central Server are configured to
use the same credential type.

When you change the credential type for a Business Central Server instance and the relevant client
configurations, the changes take effect when you restart the Business Central Server instance and users connect
to the instance again.

To edit the configuration for the Business Central Server instance, you can use either the Business Central
Server Administration tool or the Business Central Administration Shell. In the Business Central Server
Administration tool, you configure the credential type in the Credential Type field on the General tab.
Alternatively, you can edit the CustomSettings.config file. For more information, see Configuring Business

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/authenticating-users-with-azure-active-directory
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/authenticating-users-with-active-directory-federation-service
https://docs.microsoft.com/dynamics-nav/Walkthrough--Configuring-Web-Services-to-Use-SSL--SOAP-and-OData-.md

IMPORTANT

Client Configuration

Security Certificates

See Also

Central Server.

When Business Central Server services are deployed on Azure but not as part of Business Central online, you must
configure them on Azure. For more information, see How to: Open Microsoft Dynamics NAV Clients that Connect to
Microsoft Dynamics NAV on Microsoft Azure in the ITPro content for Microsoft Dynamics NAV 2018.

In the relevant configuration file, find the ClientServicesCredentialType parameter and change the value to
one of the options listed earlier.

For the Business Central Web client users, you must modify the navsettings.json for the Business Central Web
Server. The navsettings.json file is a Java Script Object Notification file type that is similar to files that use the
XML file format. The file is stored in the physical path of the web server instance, which is by default is
c:\inetpub\wwwroot\BC140. For more information, see Settings in the navsettings.json.

For each Dynamics NAV Client connected to Business Central user, you must modify the
ClientUserSettings.config file. The default location for this file is C:\Users\
<username>\AppData\Roaming\Microsoft\Microsoft Dynamics NAV\130, where <username> is the
name of the user. For more information, see Configuring the Microsoft Dynamics NAV Windows Client in the
ITPro content for Microsoft Dynamics NAV 2018.

With UserName, NavUserPassword, and AccessControlService credential types require that you install and
configure security certificates on components. For more information, see Using Security Certificates with
Business Central On-Premises

Understanding Users, Profiles, and Role Centers
Configuring Business Central Server

[]

https://docs.microsoft.com/dynamics-nav/How-to--Open-Microsoft-Dynamics-NAV-Clients-that-Connect-to-Microsoft-Dynamics-NAV-on-Microsoft-Azure
https://docs.microsoft.com/dynamics-nav/configuring-the-windows-client
https://docs.microsoft.com/dynamics365/business-central/admin-users-profiles-roles

Configuring Business Central Server
5/21/2019 • 49 minutes to read

NOTE

Configuring Business Central Server in Setup

Configuring Business Central Server After Installation

Restarting Business Central Server after modifications

Business Central Server Instance Settings

General Settings

When you run Business Central Setup and install Business Central Server, you provide information that is then used as the configuration for
the default Business Central Server instance. This information is stored in a configuration file for the server instance called
CustomSetting.config. The default location of the CustomSettings.config file is C:\Program Files\Microsoft Dynamics 365 Business
Central\140\Service.

After you install Business Central Server, you can change any of the settings that you provided during Setup, plus several other settings that
were not available to you in Setup.

Each Business Central Server instance has its own CustomSettings.config file.

You configure the default instance of Business Central Server by running Business Central Setup and selecting one of the following:

Demo Option
Server Option
Developer Option
Customize > Server

After you specify an installation option or customize your component list, the Specify parameters pane is displayed in Setup. The list of
parameters that you see in the Specify parameters pane depends on which components you have selected for configuration. Setup
provides a short description for each parameter.

After you install Business Central Server, you can change the configuration settings in the CustomSettings.config file of a Business Central
Server instance in the following ways:

Using the Business Central Server Administration tool.

For more information, see Settings in the Business Central Server Administration Tool and Business Central Server Administration
Tool.

Using the Set-NAVServerConfiguration cmdlet that is available in the Business Central Administration Shell.

For more information, see Using Administration Shell Cmdlets to Modify Settings.

By directly editing CustomSettings.config using a text editor.

We recommend that you do not directly edit the configuration file, because if you make any errors in typing, then you may not be able
to start the instance.

If you use the Business Central Server Administration tool or modify the CustomSettings.config file directly, you must restart the Business
Central Server instance before any changes can take effect.

If you use the Set-NAVServerConfiguration cmdlet, whether you need to restart the server instance will depend on the configuration setting
that you change. There are several settings that are dynamically updatable, which means that a server instance restart is not necessarily
required after modification. For more information, see Modifying dynamically updatable settings. In the tables that follow, these settings are
indicated by the text Dynamically Updatable: Yes.

This section describes all the configuration settings for a Business Central Server instance. The settings are grouped according to the tabs
under which they appear in the Business Central Server Administration tool.

The Setting column displays the name of the setting as it appears in the Business Central Server Administration tool.
The Key Name column displays the name of the setting as it appears in the CustomSettings.config file, and is also the name to use for
the setting when using the Set-NAVServerConfiguration cmdlet.

https://go.microsoft.com/fwlink/?linkid=401394
https://go.microsoft.com/fwlink/?linkid=401394

SETTING KEY NAME DESCRIPTION

Build Restriction ClientBuildRestricti
on

Specifies what
happens when a
Business Central
client tries to
connect to the
Business Central
Server instance
when the client is
running a different
build version of
Business Central
than the server
instance.

Values:

AlwaysConnect

WarnClient
Before connecting
the client to the
server instance, a
message appears
that informs the
user that the build
versions for the
client and server
instance are
different. The user
can choose to
continue or cancel
the connection.

DoNotAllow
A message
appears that
informs the user
that the client and
server instance
build versions are
different, and the
client does not
connect to the
server instance.

Note: With the
Business Central
Web client and
Business Central
Tablet client, this
setting compares
the build version
of the Business
Central Web
Server on IIS with
the Business
Central Server
instance. It
controls the
connection
between Business
Central Web
Server and the
server instance.

Default:
WarnClient
Dynamically
Updatable: No

The following table describes fields on the General tab in the Business Central Server Administration tool.

Certificate
Thumbprint

ServicesCertificate
Thumbprint

If you use security
certificates to
protect
communications
between Business
Central Server and
client services or
web services over
an open or wide-
area network, you
must provide the
certificate
thumbprint to
Business Central
Server by
updating this
setting. For more
information, see
Using Security
Certificates.

Default:
Dynamically
Updatable: No

Compile and Load
Business
Application

CompileBusinessA
pplicationAtStartu
p

Specifies whether
the Business
Central Server
instance compiles
all the business
application
assemblies and
loads them to
cache memory
when the server
instance is started.
The assemblies are
then retrieved
from memory
when requested
by a Business
Central client.

Enabling this
setting will reduce
the time it takes
for the server
instance to load
application objects
the first time they
are requested by a
Business Central
client after the
server instance
started. However,
it will also slightly
increase the
memory usage by
the server
instance.

If you enable this
setting, when the
server instance
starts for the first
time, the business
application
assemblies will be
compiled and
loaded to the
cache memory of
the computer that
is running the
server instance.
The assemblies,
along with
metadata such
object timestamp
information, are

SETTING KEY NAME DESCRIPTION

also stored to a
temporary folder
on the computer's
file system.
Whenever the
server instance is
restarted, it will
compare the
assemblies that
are stored in
memory with
corresponding
objects in the
connected
database to
determine
whether the
assemblies in
memory can be
reused. An
assembly will be
reused if the
following
conditions are
met:

- The connected
database is the
same as before,
based on the
databasemagic
field in the
dbproperty table.

- The object time
stamp that is
recorded on the
compiled assembly
matches the
object timestamp
in metadata of the
connected
database.

If the conditions
are not met for an
assembly or an
assembly for an
object in the
database is not
found in the
memory, then a
new assembly is
built and stored
for reuse to cache
memory and the
file system of the
server instance
compute for reuse.

If you disable this
setting, individual
assemblies will be
compiled on-
demand as
application objects
are requested by
the Business
Central client. The
compiled
assemblies will not
be reused on
subsequent server
instance restarts.

Notes:

SETTING KEY NAME DESCRIPTION

This setting
does not
apply to
query
objects.
Assembly

Default: Enabled
Dynamically
Updatable: No

SETTING KEY NAME DESCRIPTION
compilatio
n happens
asynchron
ously.
On
average, all
application
objects will
be loaded
within the
first few
minutes
that the
server
instance
operates.

Credential Type ClientServicesCred
entialType

Specifies the
authentication
mechanism for
Business Central
users of this
Business Central
Server instance.

The options are
Windows,
Username,
NavUserPasswor
d,
AccessControlSe
rvice, and None.
For more
information, see
Authentication
and User
Credential Types.

If you choose
AccessControlSe
rvice, you must
specify a
federation
metadata location
for use with Azure
AD. If you choose
NavUserPasswor
d, and you specify
a token signing
key, you can use
both
NavUserPassword
and
AccessControlServi
ce for this server
instance.

Notes:

Default: Windows
Dynamically
Updatable: No

SETTING KEY NAME DESCRIPTION

None is for
internal
use on
system
sessions
and
typically
should not
be used. If
you choose
None,
then the
Business
Central
Server
instance
cannot
start.
ExchangeI
dentity
and
TaskSched
uler are for
internal
use only,
and should
not be
used.

Data Cache Size DataCacheSize The contextual size
of the data cache.
The value must be
in the range 1-20.

Default: 9
Dynamically
Updatable: Yes

Default Client DefaultClient Specifies the client
type that is used
to generate URLs
when the client
type is set to
Default.

The options are
Current,
Windows, Web,
SOAP, and
OData.

Default: Current
Dynamically
Updatable: No

SETTING KEY NAME DESCRIPTION

Default Language DefaultLanguage Specifies which of
the installed
Business Central
languages on the
server instance will
be used as the
default language
in the clients. Set
the value to a
valid language
culture name, such
en-US or da-DK.

In the Business
Central Web and
Tablet clients, the
Default
Language setting
determines the
language that is
used if the web
browser's
language setting
does not match
any installed
language or a
language in the
Supported
Languages
setting, if used. In
the Business
Central Windows
client, this is the
language that is
used if the
language setting
of the computer
does not have a
match.

If there are
application-specific
configuration
settings, this
setting will be
overridden by the
default language
setting that is
specified in
application-specific
configuration file.
For more
information, see
Set-
NAVServerAppCo
nfiguration cmdlet.

Default: en-US
Dynamically
Updatable: No

SETTING KEY NAME DESCRIPTION

https://go.microsoft.com/fwlink/?linkid=827798

Diagnostic Trace
Level

TraceLevel Specifies the
lowest severity
level of custom
telemetry events
to be emitted and
recorded in the
event log for the
Business Central
Server instance.
This includes
system telemetry
trace events and
custom telemetry
events. Telemetry
events have IDs
from 700-706.

The setting has
the following
values, which
correspond to the
event severity
levels (listed from
highest to lowest
level): Critical,
Error, Warning,
Normal (this
corresponds to
the Information
level), Verbose,
and Off.

You use this
setting to filter out
lower-level events
from the log. For
example, if you set
this setting to
Error, only Error
and Critical
events will be
logged.

Set to Off if you
do not want to
record telemetry
events. When set
to Off, events are
not emitted.

Note: Telemetry
trace events are
recorded in the
Business Central
Server channel
logs, which you
can see in Event
Viewer, under
Applications and
Services Logs >
Microsoft >
Dynamics365Busi
nessCentral >
Common >
Admin.

Default: Normal
Dynamically
Updatable: Yes

SETTING KEY NAME DESCRIPTION

Diagnostic Trace
Level for External
Proxies

ExternalTraceLevel Specifies the
lowest severity
level of telemetry
events from
external proxies
that you want the
Business Central
Server instance to
emit if an error
related to the
external system
occurs on the
server instance.
This setting
pertains to
systems and
components that
Business Central
integrates with,
like Dynamics 365
for Sales
(CRM/Xrm).

The server
instance listens for
event traces from
the external proxy.
If an error occurs
on the server
instance, it will
emit the last 10
telemetry trace
events from the
external proxy. The
trace events can
then be recorded
in the Windows
event log or
picked up by other
event trace
collection tools.

The setting has
the following
values, which
correspond to the
event severity
levels (listed from
highest to lowest
level): Critical,
Error, Warning,
Information,
Verbose, and Off.

Events that have a
lower severity level
than the set value
will not be
emitted. For
example, if you set
this setting to
Error, only Error
and Critical
events will be
emitted. Set to Off
if you do not want
to emit any of
these events.

Default: Error
Dynamically
Updatable: Yes

SETTING KEY NAME DESCRIPTION

Disable Token-
Signing Certificate
Validation

DisableTokenSigni
ngCertificateValida
tion

Specifies whether
to enable or
disable the
validation of the
token-signing
certificate used by
Active Directory
Federation
Services (AD FS). If
the check box is
cleared (or the
value set to
false), the

validation is
enabled. If the
check box is
selected (or the
value is set to
true), then

validation is
disabled.

You should disable
token signing
certificate
validation when
configuring Azure
Active Directory
authentication
with single sign-
on.

Default: Checkbox
cleared; set to
false .

Dynamically
Updatable: No

Enable Certificate
Validation

ServicesCertificate
ValidationEnabled

Specifies whether
validation should
be performed on
the security
certificate.

Default: Enabled
Dynamically
Updatable: No

Enable Debugging EnableDebugging Specifies whether
the Business
Central Server
instance starts
with debugging
enabled.

If this option is
enabled, the
following occurs:

When the client
first connects, all
C# files for the
application are
generated. C# files
persist between
Business Central
Server restarts.
Application objects
are compiled with
debug
information.

Default: Not
enabled
Dynamically
Updatable: No

SETTING KEY NAME DESCRIPTION

Enable Event
Logging to
Windows
Application Log

EnableApplication
ChannelLog

Specifies whether
to record admin
and operational
type events
(errors, warnings,
and information
messages) that
occur on Business
Central Server
instances in the
Windows
Application log
on the computer
that is running
Business Central
Server.

Because Business
Central Server
instance events
are always logged
to the
Application and
Services Logs,
you can disable
logging Business
Central Server
instance events in
the Windows
Application log
and not lose any
data. For more
information, see
Monitoring
Business Central
Server Events
Using Event
Viewer and
Disable Logging
Events to the
Windows
Application Log.

Important: If you
are using System
Center Operations
Manager to
monitor Business
Central Server
instances, do not
disable logging to
the Windows
Application log. If
you do,
monitoring will
not work.

Default: Enabled
Dynamically
Updatable: No

Enable File Access
by AL Functions

EnableALServerFile
Access

Specifies whether
AL functions of
the file data type
can access files on
the Business
Central Server
computer.

Default: Enabled
Dynamically
Updatable: No

SETTING KEY NAME DESCRIPTION

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/disable-logging-events-windows-application-log

Enable Full AL
Function Tracing

EnableFullALFuncti
onTracing

Specifies whether
full AL function
tracing is enabled
on Event Tracing
for Windows
(ETW) sessions.

When this setting
is enabled, all AL
function calls and
statements are
traced.

When this setting
is disabled, only
root AL function
calls are traced.
Statements and
functions that are
called from a
function are not
traced.

For more
information, see
Monitoring
Business Central
Server Events .

Default: Not
enabled
Dynamically
Updatable: Yes

Enable
Incremental
Company Deletion

UseIncrementalCo
mpanyDelete

Specifies whether
to delete
companies
incrementally. If
you enable this
setting, when you
delete a company,
the company
record is deleted
from the database
immediately but
the company data
that is stored in
the SQL tables will
be deleted later by
a system task in
task scheduler.

You can override
this setting when
using the
Remove-
NAVCompany
cmldet by setting
the -
ForceImmediateDa
taDeletion
parameter.

Default: Not
enabled
Dynamically
Updatable: Yes

SETTING KEY NAME DESCRIPTION

https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.management/remove-navcompany

Enable Session
While Sync
Pending

AllowSessionWhile
SyncPending

Specifies whether
new client sessions
can be created
while the tenant’s
state is
OperationalWith
SyncPending.

The
OperationalWith
SyncPending
state occurs when
changes have
been made to one
or more
application tables,
but the schema
changes have not
been synchronized
with the tenant. In
this state, unless
you enable client
sessions, clients
trying to connect
with will get an
error message
similar to: The
tenant ‘tenantID’
is not accessible.

Default: Not
enabled
Dynamically
Updatable: Yes

Encryption Key
Provider

EncryptionProvide
r

Specifies where
the encryption key
is that is used to
encrypt data in
the database,
either
LocalKeyFile or
AzureKeyVault
values. If you use
AzureKeyVault,
see the Azure
Key Vault
Encryption
Provider tab
settings.

Default:
LocalKeyFile
Dynamically
Updatable: No

Lockout Sign-In
Attempts Count

LockoutPolicyFaile
dAuthenticationCo
unt

Specifies the
number of failed
sign-in attempts
on a user account
(within the time
window set by the
Lockout Failed
Sign-In Attempts
Window setting)
at which the user
account is
disabled.

Default: 0
Dynamically
Updatable: No

SETTING KEY NAME DESCRIPTION

Lockout Failed
Sign-In Attempts
Window

LockoutPolicyFaile
dAuthenticationWi
ndow

Specifies time
window, in
seconds, during
which consecutive
failed
authentication
attempts are
counted. This
setting works in
conjunction with
the Account
Lockout Max.
Sign-In Attempts
setting. When the
number of failed
sign-in attempts
by a user hits the
value of the
Account Lockout
Max. Sign-In
Attempts setting
within this time
window, the user
account is
disabled.

Default: 0
Dynamically
Updatable: No

Max Concurrent
Calls

MaxConcurrentCal
ls

The maximum
number of
concurrent client
calls that can be
active on this
Business Central
Server instance.

Range: 1 -
2,147,483,647

You can also use
MaxValue as a
value to indicate
no limit.

Default: 40
Dynamically
Updatable: No

SETTING KEY NAME DESCRIPTION

Max Data Rows
Allowed to Send
to Excel

MaxRowsToExport
ToExcel

Specifies the
maximum number
of rows that can
be included in an
Excel document
that is generated
from data in a list
type page in the
client.

If you do not want
to have a limit on
rows, set the value
to MaxValue.

Note: This setting
only pertains to
list type pages in
the client. For
other pages types,
like cards, the limit
on rows is
configured in the
client.

Default: MaxValue
Dynamically
Updatable: Yes

Maximum Stream
Read Size

MaxStreamReadSiz
e

Specifies the
maximum number
of bytes that can
be read from a
stream (InStream
object) in a single
AL read operation,
such a READ or
InStream.READTEX
T function call. This
setting pertains to
UTF-8 and UTF-16
text encoding; not
MS-DOS
encoding.

Default: 1000000
Dynamically
Updatable: Yes

Multitenant Multitenant Specifies if the
Business Central
Server instance
can be used in a
multitenant
environment.

Tenant databases
can only be
mounted on the
Business Central
Server instance if
this setting is
selected. For more
information, see
Multitenant
Deployment
Architecture.

Default: Not
enabled
Dynamically
Updatable: No

SETTING KEY NAME DESCRIPTION

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/deployment/Multitenant-Deployment-Architecture

Network Protocol NetworkProtocol Specifies the
network protocol
for accessing the
database.

Valid values:
Default, Named,
Sockets,
MultiProtocol

Default: Default
Dynamically
Updatable: No

Services Default
Company

ServicesDefaultCo
mpany

Specifies the
Business Central
company that the
client services,
OData web
services, and NAS
services use as the
default company.

If your Business
Central database
contains only one
company, leave
the setting blank.

Default:
Dynamically
Updatable: No

SETTING KEY NAME DESCRIPTION

Services Default
Time Zone

ServicesDefaultTim
eZone

Specifies the time
zone in which web
service and NAS
services calls are
run.

Values:

UTC
All business logic
for web services
and NAS services
on the server
instance runs in
Coordinated
Universal Time
(UTC).

Server Time
Zone
Services use the
time zone of the
computer that is
running Business
Central Server.

ID of any time
zone recognized
by the current
version of
Windows
Specifies any
Windows time
zone as defined in
the system
registry under
HKEY_LOCAL_MA
CHINE\SOFTWARE
\Microsoft\Windo
ws
NT\CurrentVersion
\Time Zones. For
example, Romance
Standard Time.

Default: UTC
Dynamically
Updatable: No

Services Language ServicesLanguage Specifies the
global language
version to use for
text strings with
SOAP and OData
web services.

The value must be
valid culture name
for a language
that is available for
the Microsoft
Dynamics NAV
solution, such as
en-US and da-DK.

Default: en-US
Dynamically
Updatable: No

SETTING KEY NAME DESCRIPTION

Services Option
Text Source

ServicesOptionFor
mat

Specifies the
source of the text
strings to use for
the option values
of an option data
type field.

Values:

OptionString
Uses the text
strings that are
specified by the
OptionString
Property of a field.

OptionCaption
Uses the text
strings that are
specified by the
OptionCaption
Property of a field.

Default:
OptionCaption
Dynamically
Updatable: No

Session Event
Table Retain
Period

SessionEventTable
RetainPeriod

Specifies the
number of months
that sessions in
the Session Event
table remain
before they are
deleted.

Default: 3
Dynamically
Updatable: No

Non-Interactive
Sessions Log
Retain Period

NonInteractiveSes
sionsLogRetainPeri
od

Specifies the
number of days
that background
and web service
sessions remain in
the Session Event
table before they
are deleted.

Default: 5
Dynamically
Updatable: No

SETTING KEY NAME DESCRIPTION

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-optionstring-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-optioncaption-property

Supported
Languages

SupportedLangua
ges

Specifies which of
the installed
Business Central
languages on the
server instance will
be available for
use in the clients.
If you do not
specify a language,
then all installed
languages will be
available. In the
client, users can
switch among the
supported
languages.

The setting's value
is a semicolon-
separated list that
contains the
language culture
names for each
language. For
example, if you
want client users
to be able to
choose among da-
DK, en-US, and
en-CA, set the
value to da-
DK;en-US;en-CA.

If you specify any
languages in this
setting, then you
must include the
language that you
specified in the
Default Language
setting.

If there are
application-specific
configuration
settings, this
setting will be
overridden by the
supported
language setting
that is specified in
application-specific
configuration file.
For more
information, see
Set-
NAVServerAppCo
nfiguration cmdlet.

Default:
Dynamically
Updatable: No

SETTING KEY NAME DESCRIPTION

https://go.microsoft.com/fwlink/?linkid=827798

Token Signing
Validation Mode

TokenSigningCertif
icateValidationMo
de

Specifies which
certificate
validation mode to
use for token
signing validation.
This setting is
applicable only if
the Enable
Certificate
Validation setting
is selected.
IssuerNameValid
ation validates
tokens by
verifying the issuer
name (tenant)
only. Peer
OrChainValidatio
n validates tokens
by verifying that
the certificate is
either in the
Trusted People
store or is part of
a chain trust to a
certification
authority in the
Trusted Root
store.

Default:
IssuerNameValidat
ion
Dynamically
Updatable: No

UI Elements
Removal

UIElementRemoval
Option

Specifies whether
UI elements are
hidden when the
related object is
not accessible
according to the
license or
according to user
permissions or
both. For more
information, see
Hiding UI
Elements.

Default:
LicenseFileandUser
Permissions
Dynamically
Updatable: No

Use NTLM
Authentication

ServicesUseNTLM
Authentication

Specifies whether
NTLM
authentication is
enabled for web
services. To
require Kerberos
authentication,
disable this option.

Default: Not
enabled
Dynamically
Updatable: No

not available XmlMetadataCach
eSize

For internal use
only.

Default: 500

SETTING KEY NAME DESCRIPTION

Database Settings

NOTE

SETTING KEY NAME DESCRIPTION

The following table describes fields on the Database tab in the Business Central Server Administration tool.

If the Business Central Server instance is configured as a multitenant server instance, then except for the Database Name, Database Instance, and
Database Server settings, the settings apply to both the application database and the tenant database.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/hide-ui-elements

Database Instance DatabaseInstance The name of the SQL Server database instance to
connect to. If the value is a null string (""),
Business Central Server instance connects to the
default database instance of SQL Server.

If the Business Central Server instance is
configured as a multitenant server instance, then
this setting specifies the SQL Server database
instance that hosts the application database.

Default: NAVDEMO
Dynamically Updatable: No

Database Name DatabaseName The name of the Business Central database in
SQL Server.

If the Business Central Server instance is
configured as multi-tenant server instance, then
this setting specifies the application database.

Default: "Demo Database BC (14-0)"
Dynamically Updatable: No

Database Server DatabaseServer A valid network name for the computer that is
running SQL Server.

If the Business Central Server instance is
configured as multi-tenant server instance, then
this setting specifies the computer that hosts the
application database.

Default: The computer that you selected in
Business Central Setup.
Dynamically Updatable: No

Disable SmartSQL DisableSmartSql Specifies whether the SmartSQL performance
optimization feature is disabled.

- If the check box is selected, SmartSQL is
disabled.

- If the check box is cleared, SmartSQL is enabled.

When SmartSQL is enabled, Business Central
Server converts FIND calls and FlowField
calculations into a single SQL statement. This can
improve performance when running pages that
contain FlowFields. However, it can be helpful to
disable SmartSQL when troubleshooting database
queries because statements are separated into
more discrete statements. For more information,
see Troubleshooting: Long Running SQL Queries
Involving FlowFields by Disabling SmartSQL.

Default: SmartSQL performance optimization is
enabled (check box is cleared)
Dynamically Updatable: Yes

Disable SQL Query Hint FORCE ORDER DisableQueryHintForceOrder Specifies whether the FORCE ORDER Query Hint
is used in queries. FORCE ORDER instructs the
query optimizer to preserve the join order that is
indicated by the query syntax.

If you clear the check box (false), the
OPTIMIZE FOR UNKNOWN hint is used in
queries.

For more information, see Configuring Query
Hints for Optimizing SQL Server Performance.

Default: OPTIMIZE FOR UNKNOWN hint is
disabled (check box is selected)
Dynamically Updatable: Yes

SETTING KEY NAME DESCRIPTION

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/Troubleshooting-Queries-Involving-FlowFields-By-Disabling-SmartSQL
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/sql-server-query-hints

Disable SQL Query Hint LOOP JOIN DisablQueryHintLoopJoin Specifies whether the LOOP JOIN Query Hint is
used in queries. LOOP JOIN instructs the query
optimizer to use LOOP JOIN for all join
operations in the whole query.

If you clear the check box (false), the
OPTIMIZE FOR UNKNOWN hint is used in
queries.

For more information, see Configuring Query
Hints for Optimizing SQL Server Performance.

Default: OPTIMIZE FOR UNKNOWN hint is
disabled (check box is selected)
Dynamically Updatable: Yes

Disable SQL Query OPTIMIZE FOR UNKNOWN DisableQueryHintOptimizeForUnknown Specifies whether the OPTIMIZE FOR UNKNOWN
Query Hint is used in queries. OPTIMIZE FOR
UNKNOWN instructs the query optimizer to use
statistical data instead of the initial values for all
local variables when the query is compiled and
optimized, including parameters created with
forced parameterization.

If you clear the check box (false), the
OPTIMIZE FOR UNKNOWN hint is used in
queries.

For more information, see Configuring Query
Hints for Optimizing SQL Server Performance.

Default: OPTIMIZE FOR UNKNOWN hint is
enabled (check box is cleared)
Dynamically Updatable: Yes

Enable Buffered Insert BufferedInsertEnabled Specifies whether to buffer rows that are being
inserted into a SQL Server database table.

When this parameter is enabled, up to 5 rows will
be buffered in the table queue before they are
inserted into the table.

To optimize performance in a production
environment, you should enable this parameter.
In a test environment, you can disable this
parameter to help debug failures that occur when
you insert rows in an SQL database table. For
more information, see Bulk Inserts.

Default: Enabled
Dynamically Updatable: No

Enable Encryption on SQL Server Connections EnableSqlConnectionEncryption Specifies whether the SQL connect string should
request encryption when connecting to SQL
Server services.

Default: Not enabled
Dynamically Updatable: No

Enable Trust of SQL Server Certificate TrustSQLServerCertificate Specifies whether Business Central Server should
trust the SQL Server certificate.

Default: Not enabled
Dynamically Updatable: No

Search Timeout SearchTimeout Specifies the time (in seconds) that a search
operation on lists in the client will continue until it
is terminated. When the limit is reached, the
following message displays in the client:
Searching for rows is taking too long. Try to
search or filter using different criteria.

Time format: hh:mm:ss
Default: 00:00:10
Dynamically Updatable: Yes

SETTING KEY NAME DESCRIPTION

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/sql-server-query-hints
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/sql-server-query-hints

SQL Bulk Import Batch Size SqlBulkImportBatchSize Specifies how many SQL memory chunks that a
data import must be distributed across. Lowering
the value increases the number of network
transfers and decreases performance, but also
lowers the amount of memory that the server
instance consumes. If the database is on SQL
Server 2016 or later, a low value can lead to large
data files. If you do not want to use batching,
specify 0.

Default: 448
Dynamically Updatable: No

SQL Command Timeout SqlCommandTimeout The contextual time-out for a SQL command.

Default: 0:30:00
Dynamically Updatable: No

SQL Connection Idle Timeout SqlConnectionIdleTimeout Specifies the time that a SQL connection can
remain idle before being closed. The value has the
format HH:MM:SS.

Default: 00:05:00
Dynamically Updatable: Yes

SQL Connection Timeout SqlConnectionTimeout Specifies the time to wait while trying to connect
to the database before terminating the attempt
and generating an error. This setting also applies
to begin, rollback and commit of transactions.

The value has the format HH:MM:SS.

Default: 00:01:30
Dynamically Updatable: Yes

Enable SQL Parameters by Ordinal SqlParametersByOrdinal Specifies whether parameters in SQL statements
are referenced by their ordinal number.

Enabling this setting improves performance when
using buffered inserts.

Default: Enabled
Dynamically Updatable: No

SQL Query Logging Threshold SqlLongRunningThreshold Specifies the amount of time (in milliseconds) that
an SQL query can run before a warning event is
recorded in the application log for the server
instance. If this threshold is exceeded, the
following event is logged: Action completed
successfully, but it took longer than the given
threshold.

Default: 1000
Dynamically Updatable: Yes

SETTING KEY NAME DESCRIPTION

Client Services Settings

SETTING KEY NAME DESCRIPTION

The following table describes fields on the Client Services tab in the Business Central Server Administration tool.

Allowed File Types ClientServicesAllowedFileTypes Specifies the file types that can be stored by the
server when requested by the client. The value is
a semicolon-separated list of the file name
extensions. The server will not store other file
types.

Example values:

Trailing semicolons are ignored.

Default: blank
Dynamically Updatable: Yes

Chunk Size ClientServicesChunkSize The default size for a chunk of data that is
transferred between Business Central Server and
the Dynamics NAV Client connected to Business
Central or Business Central Web Server, in
kilobytes.

The range of values is from 4 to 80.

Default: 28
Dynamically Updatable: No

Compression Threshold ClientServicesCompressionThreshold The threshold in memory consumption at which
Business Central Server starts compressing
datasets, in kilobytes.

Default: 64
Dynamically Updatable: No

Enable Client Services ClientServicesEnabled Specifies whether client services are enabled for
this Business Central Server instance.

Default: Enabled
Dynamically Updatable: No

SETTING KEY NAME DESCRIPTION

Blank or empty string (""): The setting is
disabled. File types will be limited based on
Prohibited File Types setting instead.
Asterisk (*): Specifies that all file types
are allowed.
List of file type extensions separated by
semi-colons, for example txt;xml;pdf :
Specifies that only .txt, .xml, and .pdf file
types can be stored.

Exchange Auth. Metadata Location ExchangeAuthenticationMetadataLocation Specifies the URLs for Microsoft Exchange
authentication metadata document of the
services or authorities that are trusted to sign
Exchange identity tokens.

This setting is used for setting up the Office Add-
Ins for Outlook. For more information about the
Office Add-ins, see Setting Up the Office Add-Ins
for Outlook Integration

The value is URL that is used to confirm the
identity of the signing authority when using
Exchange Authentication. The URL is compared to
the Exchange authentication metadata document
URL in the Exchange identity token. The scheme
and host part of the two URLs must match to
pass authentication. Paths in the URLs require
only a partial match.

With a multitenant server instance, the Exchange
Auth. Metadata Location setting (if any) on the
tenant will overrule the value of this setting.

Value:
- One or more valid URLs. A URL must include
the scheme, such as http:// or https://, and the
host name.
- Separate multiple URLs with a comma.
- Wildcards (*) in URLs are supported.
Default: https://outlook.office365.com/
Dynamically Updatable: No

Idle Client Timeout ClientServicesIdleClientTimeout The interval of time that a Business Central Server
client session can remain inactive before the
session is dropped.

Time interval format: [dd.]hh:mm:ss[.ff]

Where:
dd: days
hh: hours
mm: minutes
ss: seconds
ff: hundredths of a second

Set Idle Client Timeout to equal or lower than
the Keep Alive Interval, to enable Idle Client
Timeout. You can also use MaxValue as a value
to indicate no time-out.

Default: MaxValue
Dynamically Updatable: Yes

Keep Alive Interval ClientServicesKeepAliveInterval Specifies the time interval between keep-alive
messages that are sent from the Dynamics NAV
Client connected to Business Central to the server
instance. This setting is used to keep inactive
sessions alive until the time that is specified by
the Idle Client Timeout setting expires. You
should use a time interval that is less than the
Idle Client Timeout setting, to hold the session
constantly alive. For more information, see
Understanding Session Timeouts.

Time interval format: [dd.]hh:mm:ss[.ff]

Default: 120
Dynamically Updatable: No

Max Concurrent Connections ClientServicesMaxConcurrentConnections Specifies the maximum number of concurrent
client connections that the current Business
Central Server instance accepts. You can use
MaxValue as a value to indicate no limit.

Default: 500
Dynamically Updatable: No

SETTING KEY NAME DESCRIPTION

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/Setting-up-Office-Add-Ins-Outlook-Inbox
https://outlook.office365.com/

Max Items in Object Graph ClientServicesMaxItemsInObjectGraph The maximum number of objects to serialize or
deserialize.

Default: 512
Dynamically Updatable: No

Max Number of Orphaned Connections ClientServicesMaxNumberOfOrphanedConnectio
ns

Specifies the maximum number of orphaned
connections to be kept alive at the same time for
the time that is specified by ReconnectPeriod.

A connection is orphaned when the client is
involuntarily disconnected from Business Central
Server.

You can also use MaxValue as a value to indicate
no limit.

Default: 20
Dynamically Updatable: No

Max Upload Size ClientServicesMaxUploadSize The maximum size of files that can be uploaded to
or downloaded from Business Central Server, in
megabytes. Use this setting to avoid out-of-
memory errors.

Default: 150
Dynamically Updatable: No

Operation Timeout ClientServicesOperationTimeout The maximum time that Business Central Server
can take to return a call from the client.

Time span format: [dd.]hh:mm:ss[.ff]

Where:
dd: days
hh: hours
mm: minutes
ss: seconds
ff: hundredths of a second

You can also use MaxValue as a value to indicate
no time-out.

Default: MaxValue
Dynamically Updatable: No

Port ClientServicesPort The listening HTTP port for client services.

Valid range: 1 - 65535
Default: 7046
Dynamically Updatable: No

SETTING KEY NAME DESCRIPTION

Prohibited File Types ClientServicesProhibitedFileTypes Specifies the file types that cannot be stored by
the server when requested by the client. The
value is a semicolon-separated list of the file
name extensions. This setting is ignored if the
Allowed File Types setting has a value.

Example values:

Trailing semi-colons will be ignored.

Default: ade;adp;app;asp;bas;bat;chm;cmd;com;cpl;
csh;exe;fxp;gadget;hlp;hta;inf;ins;isp;its;js;jse;
ksh;lnk;mad;maf;mag;mam;maq;mar;mas;mat;mau
;
mav;maw;mda;mdb;mde;mdt;mdw;mdz;msc;msi;
msp;mst;ops;pcd;pif;prf;prg;pst;reg;scf;scr;
sct;shb;shs;url;vb;vbe;vbs;vsmacros;vss;
vst;vsw;ws;wsc;wsf;wsh
Dynamically Updatable: Yes

Protection Level ClientServicesProtectionLevel Specifies the security services for protecting the
data stream between clients and Business Central
Server.

All Dynamics NAV Client connected to Business
Central clients connecting to the Business Central
Server instance must have the same
ProtectionLevel value in their
ClientUserSettings.config files. For more
information, see Configuring the Windows Client
in the Dev and IT Pro Help for Microsoft
Dynamics NAV 2018.

For background information about transport
security, see Understanding Protection Level (links
to MSDN Library).

Values: EncryptAndSign, Sign, None
Default: EncryptAndSign
Dynamically Updatable: No

Reconnect Period ClientServicesReconnectPeriod The time during which a client can reconnect to a
running instance of Business Central Server.

Time span format: [dd.]hh:mm:ss[.ff]

Where:
dd: days
hh: hours
mm: minutes
ss: seconds
ff: hundredths of a second

You can also use MaxValue as a value to indicate
no time limit.

Default: 00:10:00
Dynamically Updatable: No

SETTING KEY NAME DESCRIPTION

Asterisk (*): All file types are prohibited.
Blank or empty string (""): The default
value is used.
Whitespace string (" "): All file types are
allowed.
List of file types separated by a semicolon,
for example txt;xml;pdf : Prohibits the
file types txt, xml and pdf.

https://docs.microsoft.com/dynamics-nav/configuring-the-windows-client
http://msdn.microsoft.com/en-us/library/aa347692.aspx

Token Signing Key ClientServicesTokenSigningKey Specifies the signing information that you obtain
from the Azure management portal. The
parameter value is a 256-bit symmetric token
signing key for use with Azure Access Control
service (ACS). This parameter is relevant only
when Credential Type, on the General tab, is
set to AccessControlService.

Default: EncryptAndSign
Dynamically Updatable: No

Use the Simplified Filters UseSimplifiedFilters Specifies how the search on list pages behaves for
plain text search filters (that is, filters that do not
use search symbols like @ or *).

If you enable this setting, the search uses a case
sensitive and accent sensitive search to find fields
that start with the provided filter text. For
example, the search on man returns all records
that include a field that starts with man (with a
lowercase m), and the search on Man returns all
records that include a field that starts with Man
(with an uppercase M). Notice that you can get
the same results by entering man* and Man*
respectively.

If the setting is disabled (which is default), the
search on man and Man return the same results,
which is all records that include fields that contain
the text man, regardless of the case.

For more information about the search, see
Sorting, Searching, and Filtering Lists.

Default: Not enabled
Dynamically Updatable: No

Web Client Base URL PublicWebBaseUrl Specifies the root of the URLs that are used to
open hyperlinks to pages and reports in the
Business Central Web client. For example, you can
change the value if you want to change the
externally facing endpoint.

The base URL must have the following syntax:

http[s]://[hostname]:
[port]/[webserverinstance]

This field maps to the PublicWebBaseUrl setting
in the CustomSettings.config file for the Business
Central Server instance.

Default: The URL of the Web client
Dynamically Updatable: No

Windows Client Base URL PublicWinBaseUrl Specifies the root of the URLs that are used to
open hyperlinks to pages and reports in the
Dynamics NAV Client connected to Business
Central. For example, you can change the value if
you want to change the externally facing
endpoint.

The base URL must have the following syntax:

DynamicsNAV://[hostname]:
[port]/[instance]/

This field maps to the PublicWinBaseUrl setting
in the CustomSettings.config file for the Business
Central Server instance.

Default: The URL of the Wndows client
Dynamically Updatable: No

SETTING KEY NAME DESCRIPTION

SOAP Services Settings

https://docs.microsoft.com/dynamics365/business-central/ui-enter-criteria-filters

SETTING KEY NAME DESCRIPTION

Enable SOAP Services SOAPServicesEnabled Specifies whether SOAP web services are enabled
for this Business Central Server instance.

Default: Not enabled
Dynamically Updatable: No

Enable SSL SOAPServicesSSLEnabled Specifies whether SSL (https) is enabled for the
SOAP web service port. For more information, see
Using Security Certificates with Business Central
On-Premises.

Default: Not enabled
Dynamically Updatable: No

Max Message Size SOAPServicesMaxMsgSize The maximum permitted size of a SOAP web
services request, in kilobytes.

Important: This setting also pertains to OData
web services.

Default: 1024
Dynamically Updatable: No

Port SOAPServicesPort The listening HTTP port for SOAP web services.

Valid range: 1 - 65535
Default: 7047
Dynamically Updatable: No

SOAP Base URL PublicSOAPBaseUrl Specifies the root of the URLs that are used to
access SOAP web services. For example, you can
change the value if you want to change the
externally facing endpoint.

The base URL must have the following syntax:

http[s]://hostname:port/instance/WS/

This field maps to the PublicSOAPBaseUrl

setting in the CustomSettings.config file for the
Business Central Server instance.

Default: The SOAP URL for the server instance
Dynamically Updatable: No

OData Services Settings

SETTING KEY NAME DESCRIPTION

Enable Add-in Annotations ODataEnableExcelAddInAnnotations Specifies whether Excel add-in annotations should
be provided in OData metadata.

Default: Enabled
Dynamically Updatable: No

Enable API Services ApiServicesEnabled Specifies whether API web services are enabled
for this server instance.

Default: Not enabled
Dynamically Updatable: No

Enable OData Services ODataServicesEnabled Specifies whether OData web services are enabled
for this Business Central Server instance.

Default: Enabled
Dynamically Updatable: No

The following table describes fields on the SOAP Services tab in the Business Central Server Administration tool.

The following table describes fields on the OData Services tab in the Business Central Server Administration tool.

Enable SSL ODataServicesSSLEnabled Specifies whether SSL (https) is enabled for the
OData web service port. For more information,
see Using Security Certificates with Business
Central On-Premises.

Default: Not enabled
Dynamically Updatable: No

Enable V3 Endpoint ODataServicesV3EndpointEnabled Specifies whether the ODataV3 service endpoint
will be enabled.

Default: Enabled
Dynamically Updatable: No

Enable V4 Endpoint ODataServicesV4EndpointEnabled Specifies whether the ODataV4 service endpoint
will be enabled.

Default: Enabled
Dynamically Updatable: No

Max Connections ODataMaxConnections Specifies the maximum number of simultaneous
OData requests on the server instance (for all
tenants). When the limit is exceeded, a 429 (Too
Many Requests) error occurs. If you do not want
a limit, set the value 0.

OData requests consume server instance
resources and can affect the performance of the
clients if the number of requests gets too large.
This setting enables you to control the resources
allocated for OData requests.

Default: 0
Dynamically Updatable: Yes

Max Connections Per Tenant ODataMaxConnectionsPerTenant Specifies the maximum number of simultaneous
OData requests per tenant. When the limit is
exceeded, a 429 (Too Many Requests) error
occurs. If you do not want a limit, set the value 0.

If the server is not configured for multitenancy or
only has a single tenant, then this setting does
the same as the Max Connections
(ODataMaxConnections) setting.

OData requests consume server instance
resources and can affect the performance of the
clients if the number of requests gets too large.
This setting enables you to control the resources
allocated for OData requests.

Default: 0
Dynamically Updatable: Yes

Max Page Size ODataServicesMaxPageSize Specifies the maximum number of entities
returned per page of OData results. For more
information, see Server-Driven Paging in OData
Web Services.

Default: 1000
Dynamically Updatable: No

SETTING KEY NAME DESCRIPTION

file:///T:/q4ru/webservices/Server-Driven-Paging-in-OData-Web-Services.html

OData Base URL PublicODataBaseUrl Specifies the root of the URLs that are used to
access OData web services. For example, you can
change the value if you want to change the
externally facing endpoint.

The base URL must have the following syntax:

http[s]://hostname:port/instance/OData/

This field maps to the PublicODataBaseUrl

setting in the CustomSettings.config file for the
Business Central Server instance.

Default: The OData URL for the server instance
Dynamically Updatable: No

Port ODataServicesPort The listening HTTP port for Business Central
OData web services.

Valid range: 1 - 65535
Default: 7048
Dynamically Updatable: No

Timeout ODataServicesOperationTimeout Specifies the maximum amount of time that the
server instance can allocate to a single OData
request. When the limit is exceeded, a 408
(Request Timeout) error occurs.

If you do not want a limit, set the value to
MaxValue .

Time format: hh:mm:ss
Default: 00:05:00
Dynamically Updatable: Yes

SETTING KEY NAME DESCRIPTION

IMPORTANT

NAS Services Settings

NOTE

SETTING KEY NAME DESCRIPTION

Enable Debugging NASServicesEnableDebugging Specifies if the Business Central Debugger must
attach to the NAS Services session. When this is
enabled, the NAS Services session waits 60
seconds before the first AL statement is run.

Default: Not enabled
Dynamically Updatable: No

The maximum permitted size of an OData web services request is specified by the Max Message Size option on the SOAP Services tab.

The following table describes fields on the NAS Services tab in the Business Central Server Administration tool.

Instead of using NAS services, we recommend that you use the Task Scheduler (see Task Scheduler. If you decide to use NAS, and want to read more about
its configuration, see Configuring NAS Services in the Dev and IT Pro Help for Microsoft Dynamics NAV 2018.

https://docs.microsoft.com/dynamics-nav/configuring-nas-services

Run NAS Services with Admin Rights NASServicesRunWithAdminRights Specifies whether NAS services run operations
with administrator rights instead of the rights
granted to the Business Central Server service
account.

If you select this setting, NAS services will have
full permissions in Business Central, similar to the
permissions that are granted by the SUPER
permission set. The Business Central Server
service account is not required to be set up as a
user in Business Central.

If you clear this setting, the Business Central
Server service account must be added as a user in
Business Central and assigned the permissions
that are required to perform the operations.

Default: Not enabled
Dynamically Updatable: No

Startup Argument NASServicesStartupArgument Specifies a string argument that will be used when
NAS services start. The argument typically
specifies an application type, sometimes with
additional configuration information.

Example value: "OSYNCH"

Default:
Dynamically Updatable: No

Startup Codeunit NASServicesStartupCodeunit Specifies the codeunit that contains the method
that will be called by the NASStartupMethod
setting.

Example values:

0
When NASStartupCodeunit is set to 0, NAS
Services do not start. This is the default value.

55
When NAS services start, they run the trigger
specified by the NAS Startup Method in codeunit
55.

Note: When the codeunit specified by
NASStartupCodeunit is a single instance
codeunit, the NAS service session will remain alive
even after you run all code in the specified
NASStartupMethod.

Default:
Dynamically Updatable: No

Startup Method NASServicesStartupMethod Specifies the method that will be called in the
NASStartupCodeunit.

Example values:

""
If no start method is specified (null string), the
OnRun trigger is called.

StartNAS
NAS services runs the StartNAS method in the
NAS Startup Codeunit.

Default:
Dynamically Updatable: No

SETTING KEY NAME DESCRIPTION

Management Services Settings
The following table describes fields on the Management Services tab in the Business Central Server Administration tool.

SETTING KEY NAME DESCRIPTION

Enable Management Services ManagementServicesEnabled Specifies whether Business Central Server
Administration tool is enabled for this Business
Central Server instance.

Default: Enabled
Dynamically Updatable: No

Port ManagementServicesPort The listening TCP port for the Business Central
Server Administration tool.

Valid range: 1 - 65535
Default: 7045
Dynamically Updatable: No

Azure Key Vault Encryption Provider Tab Settings

NOTE

SETTING KEY NAME DESCRIPTION

Client Certificate Store Location AzureKeyVaultClientCertificateStoreLocation Specifies the location of the certificate store for
the Key Vault client certificate if you set the
Encryption Key Provider field to
AzureKeyVault.

LocalMachine specifies that the certificate is
stored in a certificate store for the computer that
the Business Central Server is running on.

CurrentUser specifies that the certificate is stored
in a certificate store for your account on the
computer that the Business Central Server is
running on.

Default: LocalMachine
Dynamically Updatable: No

Client Certificate Store Name AzureKeyVaultClientCertificateStoreName Specifies the certificate store where the Key Vault
client certificate is stored.

Default: My
Dynamically Updatable: No

Client Certificate Thumbprint AzureKeyVaultClientCertificateThumbprint Specifies the thumbprint of the Key Vault client
certificate

Default: My
Dynamically Updatable: No

Client ID AzureKeyVaultClientId Specifies the unique identifier (GUID) of the Key
Vault client application in Microsoft Azure.

Default: 00000000-0000-0000-0000-
000000000000
Dynamically Updatable: No

Key URI AzureKeyVaultKeyUri Specifies the URI of the key in the Key Vault
encryption provider setup.

Default:
Dynamically Updatable: No

Azure Active Directory (Azure AD) Settings

The following table describes fields on the Azure Key Vault Encryption Provider tab in the Business Central Server Administration tool.

These settings are used when you want to use Azure Key Vault to help encrypt data in the database. If you want to use Azure Key Vault to encrypt the
connection between Business Central Server and an Azure SQL database, you must store that key in the database.

The following table describes fields on the Azure Active Directory (Azure AD) tab in the Business Central Server Administration tool.

SETTING KEY NAME DESCRIPTION

Application Client Certificate Thumbprint AzureActiveDirectoryClientCertificateThumbprint Specifies the thumbprint of the x509 certificate
that is used with the Azure AD application client
for authentication.

A public certificate file (.cer) must be installed on
the application client and associated with an
Azure AD service principal.

A private certificate file (.pfx) must be installed on
the computer on which the Business Central
Server instance is installed. The server instance
service account must have access to the private
key of that certificate.

Default:
Dynamically Updatable: No

Application Client ID AzureActiveDirectoryClientId Specifies the ID of the application tenant. The ID
is used when accessing data in Azure AD.

The authentication token for communicating with
Azure AD should be retrieved by specifying the
Application Client Certificate Thumbprint,
with a fallback to use the Application Client
Secret.

Default: 00000000-0000-0000-0000-
000000000000
Dynamically Updatable: No

Application Client Secret AzureActiveDirectoryClientSecret Specifies the secret to use with Application
Client ID for Azure AD authentication.

Default:
Dynamically Updatable: No

Azure AD App ID URI AppIdUri Specifies the App ID URI that is registered for
Business Central in the Microsoft Azure Active
Directory (Azure AD). You use this setting to
configure Business Central web services for
OAuth authentication, specifically when the
Credential Type setting is
AccessControlService. It is used to validate the
security tokens that the server instance receives
in SOAP and OData calls.

The App ID URI is a logical identifier and does not
have to represent a valid location, although it is
common practice to use the physical URL of the
Business Central web service.

The App ID URI is typically the same as the value
of wtrealm parameter of the ACSUri setting that
is included in the ClientUserSettings.config file for
the Dynamics NAV Client connected to Business
Central.

An example of an App ID URI is
https://localhost:7047/.

For more information about how to use the Azure
Active Directory App ID URI with OAuth
authentication, see Using OAuth to Authenticate
Web Services (Odata and SOAP).

Default:
Dynamically Updatable: No

The settings in this tab configure the Business Central Server instance to use Azure AD authentication. The settings are only relevant when
the server instance is configured Access Control Service, that is, when the Credential Type is set to AccessControlService. For more
information about authenticating using Azure AD, see Authenticating Users with Azure Active Directory.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/authenticating-users-with-azure-active-directory
http://go.microsoft.com/fwlink/?LinkID=510894

Enable Membership Entitlement EnableMembershipEntitlement Configures the server instance to use
membership entitlement for controlling access the
Business Central.

This setting is typically only used for software as a
service (SaaS) solutions.

Default:
Dynamically Updatable: No

Excel add-in AAD client app ID ExcelAddInAzureActiveDirectoryClientId This setting is used to set up the Excel Add-in
that enables users to use Excel to modify and
update Business Central data.

The setting specifies the client ID of the Azure AD
tenant that is used for the Excel add-in. The Excel
add-in requires a separate Azure AD tenant. For
more information, see Configuring the Excel Add-
In.

Default:
Dynamically Updatable: No

Extended Security Token Lifetime ExtendedSecurityTokenLifetime Specifies the number of hours that are added to
the lifetime of Azure AD security tokens, which
are used to authenticate client users. When the
lifetime expires, the client is disconnected from
the server instance. An event with a message
such as "The SAML2 token is invalid because its
validity period ended." is recorded in the event
log for the server instance. In general, the lifetime
of security tokens is 1 hour.

Valid range: 0 to 24 hours
Default: 0
Dynamically Updatable: No

Valid Audiences ValidAudiences Specifies the allowed audiences for Azure AD
authentication. This setting is used to
authenticate other Azure AD applications that will
communicate with the server instance.

The value is a semicolon-separated list of
audiences. You specify an audience by using the
App URI ID or App ID that is assigned to the
application in Azure AD.

Default:
Dynamically Updatable: No

WS-Federation Login Endpoint WSFederationLoginEndpoint Specifies the URL for the federation sign-on page
that Business Central redirects to when
configured for single sign-on.

You must specify a URL in the following format:

https://login.microsoftonline.com/[AADTENANTID]/wsfed?
wa=wsignin1.0%26wtrealm=...%26wreply=....

The placeholder [AADTENANTID] represents the
GUID of your Azure AD tenant. If the server
instance has to support multiple Azure AD
tenants, then the Azure AD Tenant ID parameter
that is specified when mounting a tenant replaces
the placeholder.

Default:
Dynamically Updatable: No

SETTING KEY NAME DESCRIPTION

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/configuring-excel-addin

WS-Federation Metadata Location ClientServicesFederationMetadataLocation Specifies the URL for the federation metadata
document that describes the configuration
information for your Azure AD tenant. The
federation metadata document is used to validate
the security tokens that the Business Central Web
client and Business Central Tablet client receive,
and to establish a trust relationship with between
Business Central and an application that you have
added to Azure AD.

You must specify a URL in the following format:

https://login.microsoftonline.com/[AADTENANTID]/FederationMetadata/2007-
06/FederationMetadata.xml

The placeholder [AADTENANTID] represents the
GUID of your Azure AD tenant. If the server
instance has to support multiple Azure AD
tenants, then the Azure AD Tenant ID parameter
that is specified when mounting a tenant replaces
the placeholder.

This parameter is relevant only when Credential
Type, on the General tab, is set to
AccessControlService. For more information,
see Authenticating Users with Azure Active
Directory.

Default:
Dynamically Updatable: No

SETTING KEY NAME DESCRIPTION

Task Scheduler Settings

SETTING KEY NAME DESCRIPTION

Enable Task Scheduler EnableTaskScheduler Specifies whether the server instance starts with
the task scheduler enabled.

If this option is enabled, the server instance will
process scheduled tasks.

Default: Enabled
Dynamically Updatable: No

Maximum Concurrent Running Tasks TaskSchedulerMaximumConcurrentRunningTasks Specifies the maximum number of tasks that can
run simultaneously on the server instance.

The value that you specify will depend on the
hardware (CPUs) of the deployment environment
and what you want to prioritize: client
performance or scheduled tasks (such as job
queue entries). The setting is particularly relevant
when the server instance is used for both
scheduled tasks and client services. If there are
many jobs running at the same time, you might
experience that the response time for clients gets
slower. In which case, you could decrease the
value. However, if the value is too low, it might
take longer than desired for scheduled tasks to
process. When you have a dedicated server
instance for scheduled tasks, this setting is less
important with respect to client performance.

Default: 10
Dynamically Updatable: Yes

The following table describes fields on the Task Scheduler tab in the Business Central Server Administration tool.

The task scheduler processes jobs and other processes on a scheduled basis. For more information about task scheduler, see Task Scheduler.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/authenticating-users-with-azure-active-directory

System Task Start Time TaskSchedulerSystemTaskStartTime Specifies the time of day after which system tasks
can start. The time is based on the time zone of
the computer that is running the server instance.

The value has the format HH:MM:SS.

Default: 00:00:00
Dynamically Updatable: Yes

System Task End Time TaskSchedulerSystemTaskEndTime Specifies the time of day after which system tasks
cannot start. The time is based on the time zone
of the computer that is running the server
instance.

The value has the format HH:MM:SS.

Default: 23:59:59
Dynamically Updatable: Yes

SETTING KEY NAME DESCRIPTION

Reports Settings

SETTING KEY NAME DESCRIPTION

Enable Application Domain Isolation ReportAppDomainIsolation Specifies whether application domain isolation is
used for rendering custom RDLC layouts. This
setting pertains to on-premise installations only.

Enabling application domain isolation provides a
more secure and reliable environment for
processing custom RDLC layouts; however, it can
considerably increase the time it takes to render
reports. Disabling application domain isolation
can improve the rendering time but might have a
negative impact on security and reliability.

Default: Enabled
Dynamically Updatable: No

Enable Save as Excel on Request Pages of RDLC-
layout Reports

EnableSaveToExcelForRdlcReports Specifies whether users can open or save a report
as an Microsoft Excel document if the report uses
an RDLC layout.

If you clear this check box, the Excel option is
removed from the Print menu on the request
page.

Default: Enabled
Dynamically Updatable: No

Enable Save as Word on Request Pages of RDLC-
layout Reports

EnableSaveToWordForRdlcReports Specifies whether users can open or save a report
as a Microsoft Word document if the report uses
an RDLC layout.

If you clear this check box, the Word option is
removed from the Print menu on the request
page.

Default: Enabled
Dynamically Updatable: No

Enable Save from Report Preview EnableSaveFromReportPreview Specifies whether users can save a report as a
PDF, Microsoft Word, or Microsoft Excel
document from the report preview window.

If you clear this check box, the Save As icon is
removed from the report preview window.

Default: Enabled
Dynamically Updatable: No

The following table describes fields on the Reports tab in the Business Central Server Administration tool.

Report PDF Font Embedding ReportPDFFontEmbedding Specifies whether fonts are embedded in PDF files
that are generated for reports when the report
uses an RDLC report layout at runtime. This
setting applies when reports are run and saved as
PDF files on the client (from the report request
page or print preview window) or on the server
instance (by the SAVEAS function or SAVEASPDF
function in AL code).

Note: This setting does not apply when a report
uses a Word report layout at runtime.

Embedding fonts in a PDF of a report makes sure
that the PDF will use the same fonts as the
original file, regardless of where the PDF is
opened and which fonts are installed on the
computer. However, embedding fonts can
significantly increase the size of the PDF files. By
disabling font embedding, you can decrease the
size of the report PDF files.

Note: This is a global setting for font embedding
in report PDF files. You can override this setting
on a report basis by the specifying the
PDFFontEmbedding property.

Default: Enabled
Dynamically Updatable: No

not available CalculateBestPaperSizeForReportPrinting Determines the paper size to use when printing
reports from the client.

If set to true , the system calculates which of the
available paper sizes on the printer is best suited
for printing, and then uses that paper size.

If set to false , the printer's default paper size is
used.

Default: true

SETTING KEY NAME DESCRIPTION

Development Settings

SETTING KEY NAME DESCRIPTION

Allowed Extension Target Level ExtensionAllowedTargetLevel Specifies the allowed target level when publishing
extensions. The options are Internal, Extension,
Solution, and Personalization.

- If you specify the Internal option, the allowed
compilation target is set to everything on-
premises. The Internal setting allows using all
restricted APIs. The target setting in the
app.json file must also be set to Internal. For

more information, see JSON Files.

- If you specify the Extension option, the allowed
extension target level is set to SaaS.

- By adding the setting "target":"Extension"

in the manifest enables you to submit the
extension to AppSource.

The Personalization and Solution settings are
currently for internal use only.

Note: It is recommended to use either Internal
or Extension options to set Allowed Extension
Target Level.

Default: Internal
Dynamically Updatable: No

The following table describes fields on the Development tab in the Business Central Server Administration tool.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-saveas-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-saveaspdf-method-report
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-pdffontembedding-property

Debugger – Long Running SQL Statements
Threshold

LongRunningSqlStatementsInDebuggerThreshold Specifies the amount of time (in milliseconds) that
an SQL query can run before it is logged in
debugger telemetry.

Default: Enabled
Dynamically Updatable: Yes

Debugger - Number of SQL Statements to Show AmountOfSqlStatementsInDebugger Specifies the amount of SQL statements used in
the debugger; the higher number you choose,
the more data will be sent to the debugger.

Default: Enabled
Dynamically Updatable: Yes

Debugger - Show Long Running SQL Statements EnableLongRunningSqlStatementsInDebugger Specifies whether long running SQL statements
will be shown in the debugger.

Default: Enabled
Dynamically Updatable: Yes

Debugger - Show SQL Statements EnableSqlInformationDebugger Specifies whether the debugger should collect the
last used SQL statements and show them in the
debugger.

Default: Enabled
Dynamically Updatable: Yes

Debugging Allowed DebuggingAllowed Specifies whether AL debugging is allowed for this
Business Central Server instance.

Default: Enabled
Dynamically Updatable: No

Enable Debugging EnableDebugging Specifies whether the Business Central Server
instance starts with debugging enabled.

If this option is enabled, the following occurs:

When the client first connects, all C# files for the
application are generated. C# files persist between
Business Central Server restarts. Application
objects are compiled with debug information.

Default: Not enabled
Dynamically Updatable: No

Enable Developer Service Endpoint DeveloperServicesEnabled Specifies whether the Developer service endpoint
is enabled. This setting must be enabled to
publish extensions and download symbols.

- If the check box is selected, the extension can be
published to the allowed extension target level.

- If the check box is not selected, the extension
cannot be published.

- This setting can also be controlled from the .xml
file.

Default: Not enabled (check box is cleared)
Dynamically Updatable: No

Enable Loading Application Symbol References at
Server Startup

EnableSymbolLoadingAtServerStartup Specifies whether application symbol references
should be loaded at server startup. This setting
must be enabled to allow any symbol generation.
If the setting is not enabled, the
generatesymbolreference setting does not
have any effect. For more information, see
Running C/SIDE and AL Side-by-Side.

Default: Not enabled (check box is cleared)
Dynamically Updatable: No

SETTING KEY NAME DESCRIPTION

Enable SSL DeveloperServicesSSLEnabled Specifies whether SSL (HTTPS) is enabled for the
developer web service port.

SSL (Secure Sockets Layer) secures the connection
for the web services.

- If the check box is selected, then SSL is enabled.

- If the check box is not selected, the developer
web service port cannot establish a secure
connection.

Default: Not enabled (check box is cleared)
Dynamically Updatable: No

HttpClient AL Function Maximum Timeout NavHttpClientMaxTimeout Specifies the maximum allowed timeout value that
can be set for the HttpClient Timeout AL function.

The value has the format HH:MM:SS.

Default: 00:05:00
Dynamically Updatable: Yes

HttpClient AL Function Response Size NavHttpClientMaxResponseContentSize Specifies the maximum size in megabytes of a
response buffer used by the HttpClient AL
function.

The maximum allowed extension size can be
adjusted based on the HttpClient AL Function
Maximum Timeout setting.

Default: 15
Dynamically Updatable: Yes

Port DeveloperServicesPort The listening HTTP port for Microsoft Dynamics
NAV Developer web services.

Valid range: 1 - 65535
Default: 7049
Dynamically Updatable: No

SETTING KEY NAME DESCRIPTION

Compatibility Settings

SETTING KEY NAME DESCRIPTION

Security Protocol SecurityProtocol Specifies the default security protocol level for the
server instance.

Values: Ssl3, Tls, Tls11, Tls12, SystemDefault.
For more information about these values, see
SecurityProtocolType Enum.

Default: Tls12
Dynamically Updatable: No

Use Client Timestamp For Report Execution
Timestamp

ReplaceReportExecutionTimeWithClientTime Specifies whether to replace the report execution
timestamp with the client timestamp instead of
the server instance timestamp.

Default: Enabled (check box is selected)
Dynamically Updatable: No

The following table describes settings that you can adjust for compatibility with other systems. In most cases, we do not recommend that you
change these settings from their default values.

https://docs.microsoft.com/en-us/dotnet/api/system.net.securityprotocoltype

Use FIND('-') to Populate Pages Instead of
FIND('=><')

UseFindMinusWhenPopulatingPage Specifies whether pages are initially populated by
using FIND('-') instead of FIND('=><'). This
setting is relevant to pages that display lists in
descending order. Enabling this setting ensures
that the first record, instead of the last record, is
in focus when the page opens. Pages that use the
OnFindRecord trigger will ignore this setting and
always use FIND('=><').

Default: Enabled (check box is selected)
Dynamically Updatable: No

SETTING KEY NAME DESCRIPTION

Using Business Central Administration Shell to Modify Server Instance Settings

Set-NAVServerConfiguration -ServerInstance "MyInstance" -KeyName "DatabaseServer" -KeyValue "DatabaseServer.Domain.Com"

Modifying dynamically updatable settings

OPTION DESCRIPTION

ConfigFile Saves the change to the configuration file of the server instance. The change
will not take effect until the server instance is restarted.

Memory Applies the change only to the server instance's current state. The changes
take effect immediately, without having to restart the server instance. The
change is stored in memory, so the next time the server instance is restarted,
it reverts to the setting in the configuration file.

All Applies the change to the server instance's current setting state (in memory)
and to the configuration file. The changes take effect immediately, without
having to restart the server instance.

Set-NAVServerConfiguration -ServerInstanceMyInstance -KeyName MaxStreamReadSize -KeyValue 42424242 -ApplyTo Memory

See Also

The Business Central Administration Shell includes several Set- cmdlets that enable you to create and modify Business Central Server
instances.

The main cmdlet for configuring a server instance is the Set-NAVServerConfiguration cmdlet. You can use this cmdlet to change any of the
configuration settings that are listed in the previous sections. To change a configuration setting, you set -KeyName parameter to the Key
Name that corresponds to the setting, and set the -KeyValue parameter to the new value. For example, you can change the value for
DatabaseServer to DatabaseServer.Domain.Com for the server instance named MyInstance by executing this cmdlet:

For dynamically updatable settings, use the -ApplyTo parameter to specify how to apply the change. The change can be written directly to
the configuration file (CustomSettings.config) and/or applied to the current server instance state. The option you choose will determine
whether a server instance restart is required for the change to take effect. The parameter has three options, as described in the following
table:

For example, the following command sets the value for the MaxStreamReadSize key to 42424242 , without having to restart the server
instance.

For more information about running the Business Central Administration Shell, see Microsoft Dynamics NAV Windows PowerShell
Cmdlets.

w
Business Central Server Administration Tool
Enhancing Business Central Server Security
Business Central Windows PowerShell Cmdlets
Configuring Help
Hiding UI Elements
Debugging

https://docs.microsoft.com/en-us/powershell/business-central/overview
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/security/enhancing-server-instance-security
https://docs.microsoft.com/en-us/powershell/business-central/overview
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/hide-ui-elements

Configuring Business Central Web Server Instances
6/17/2019 • 11 minutes to read

About the configuration file

Where to find the navsettings.json file

Modify the navsettings.json file directly

Accessing Business Central from the Business Central Web client or App requires a Business Central Web
Server instance on IIS. You create a Business Central Web Server instance for the Business Central Web Server
by using the Business Central Setup to install the Business Central Web Server or by running the New-
NAVWebServerInstance cmdlet. When you set up a web server instance, you are configuring the connection
from the Business Central Web Server to the Business Central Server instance. The connection settings, along
with several other configuration settings, are saved in a configuration file for the web server instance.

The configuration file for the web server instances is a .json file type called navsettings.json. The
navsettings.json file is a Java Script Object Notification file type that is similar to files that use the XML file
format.

After installation, you can change the configuration by modifying the navsettings.json. There are two ways to
modify this file: directly or using PowerShell.

The navsettings.json file is stored in the physical path of the web server instance, which is by default is
%systemroot%\inetpub\wwwroot\[WebServerInstanceName].

[WebServerInstanceName] corresponds to the name (alias) of the web server instance in IIS, for example,
c:\inetpub\wwwroot\BC140.

"ClientServicesCredentialType": "Windows",

1. Open the navsettings.json in any text or code editor, such as Notepad or Visual Studio Code.

Each setting is defined by a key-value pair.

"keyname": "keyvalue",

In the navsettings.json file, a setting has the format:

The keyname is the name of the configuration setting and the keyvalue is the value.

For example, the configuration setting that specifies the Windows credential type for authenticating users
is:

Include values in double quotes.

2. Find the configuration settings that you want to change, and then change the values.

See the Settings section for a description of each setting.

3. When you are done making changes, save the file.

4. Restart the Business Central Web Server instance for the changes to take effect.

https://docs.microsoft.com/en-us/powershell/module/Microsoft.Dynamics.Nav.Management/new-navwebserverinstance

Modify the navsettings.json file by using the Set-
NAVWebServerInstanceConfiguration cmdlet

Settings in the navsettings.json

{
 "NAVWebSettings": {
 "//ServerInstance": "Name of the Business Central Server instance to connect to (for client) or listen
on (for server).",
 "ServerInstance": "BC140",
 [...more keys]
 },
 "ApplicationIdSettings": {
 "BlogLink": "https://myBCBlog.com",
 [...more keys]
 }
}

For example, in IIS Manager, in the Connections pane, select website node for Business Central Web
Server, and then in the Actions pane, choose Restart. Or, from your desktop, run iisreset .

The PowerShell script module NAVWebClientManagement.psm1 includes the Set-
NAVWebServerInstanceConfiguration cmdlet that enables you to configure a web server instance.

Set-NAVWebServerInstanceConfiguration -Server [MyComputer] -ServerInstance [ServerInstanceName] -
WebServerInstance [MyBCWebServerInstance] -KeyName [Setting] -KeyValue [Value]

1. Depending on your installation, run the Dynamics NAV Development Shell or Windows PowerShell as an
administrator.

For more information, see Get started with the Business Central Web Server cmdlets.

2. For each setting that you want to change, at the command prompt, run the following command:

Replace:

[MyComputer] with the name of the computer that is running the Business Central Server
[ServerInstanceName] with the name of the server instance, such as BC140.
[MyBCWebServerInstance] with the name of the web server instance for the Business Central Web

Server.
[KeyName] with the name of the setting. Refer to the next section in this article.
[KeyValue] with the new value of the setting.

The navsettings.json has the following structure, where settings are included under one of two root elements:
NAVWebSettings and ApplicationIdSettings :

// indicates a comment that provides help for the setting, and has no affect on the Web Server instance.

The following table describes the settings that are available in the navsettings.json for each root element. If you
do not see a setting in the file, this is because some settings are not automatically included as a key in the file.
For these settings, you can add the key manually. If you do not add the key, the default value of the setting is
used.

https://docs.microsoft.com/en-us/powershell/module/Microsoft.Dynamics.Nav.Management/Set-NAVWebServerInstanceConfiguration

IMPORTANT

NAVWebSettings element settings

SETTING/KEYNAME DESCRIPTION

AllowedFrameAncestors Specifies the host name of any web sites in which the
Business Central Web client or parts of are embedded. By
default, the Business Central Web Server will not allow a
website to display it inside an iframe unless the website is
hosted on the same web server. This value of this setting is a
comma-separated list of host names (URIs). Wildcard names
are accepted. For example:
https:mysite.sharepoint.com, https:*.myportal.com

GlobalEndPoints Specifies the comma-separated list of global endpoints that
are allowed to call this website. The values must include http
scheme and fully qualified domain name (FDQN), such as
https://financials.microsoft.com .

Default value: none

LoadScriptsFromCdn Specifies whether to load scripts from Content Distribution
Networks (CDNs). This only applies to scripts that are
available from a CDN, like jQuery.

If set to false , scripts will be loaded from the Web server,
which is useful in, for example, an intranet scenario where
there is no internet access.
Default value: true

AllowNtlm Specifies whether NT LAN Manager (NTLM) fallback is
permitted for authentication.

To require Kerberos authentication, set this value to false .

Values: true , false

Default value: true

ClientServicesChunkSize Sets the maximum size, in kilobytes, of a data chunk that is
transmitted between Business Central Web Server and
Business Central Server. Data that is transmitted between
Business Central Web Server and Business Central Server is
broken down into smaller units called chunks, and then
reassembled when it reaches its destination.

Values: From 4 to 80.

Default value: 28

If modifying the file directly, place values in double quotes "" .

ClientServicesCompressionThreshold Sets the threshold in memory consumption at which
Business Central Web Server starts compressing data sets.
This limits amount of consumed memory. The value is in
kilobytes.

Default value: 64

ClientServicesProtectionLevel Specifies the security services used to protect the data
stream between the Business Central Web Server and
Business Central Server. This value must match the value
that is specified in the Business Central Server configuration
file. For more information, see Configuring Business Central
Server.

Values: EncryptAndSign, Sign, None

Default value: EncryptAndSign

Server Specifies the name of the computer that is running the
Business Central Server.

Default value: localhost

ServerInstance Specifies the name of the Business Central Server instance
that the Business Central Web Server connects to.

Default value: BC140

ClientServicesCredentialType Specifies the authorization mechanism that is used to
authenticate users who try to connect to the Business
Central Web Server. For more information, see
Authentication and User Credential Type.

The credential type must match the credential type
configured for the Business Central Server instance that the
Business Central Web Server connects to. For information
about how to set up the credential type on Business Central
Server, see Configuring Business Central Server.

Values: Windows, UserName, NavUserPassword,
AccessControlService

Default value: Windows

ClientServicesPort Specifies the TCP port for the Business Central Server. This is
part of the Business Central Server’s URL.

Values: 1-65535

Default value: 7046

ManagementServicesPort The listening TCP port for the Business Central management
endpoint.

Valid range: 1-65535
Default value: 7045

SETTING/KEYNAME DESCRIPTION

ServicePrincipalNameRequired If this parameter is set to true , then the Business Central
Web Server can only connect to a Business Central Server
instance that has been associated with a service principal
name (SPN).

If this parameter is set to false , then the Business Central
Web Server attempts to connect to the configured Business
Central Server service, regardless of whether that service is
associated with an SPN.

For more information about SPNs, see Configure Delegation.

Default: false

SessionTimeout Specifies the maximum time that a connection between the
Business Central Web Server and the Business Central Server
can remain idle before the session is stopped.

In the Business Central Web Server, this setting determines
how long an open Business Central page or report can
remain inactive before it closes. For example, when the
SessionTimeout is set to 20 minutes, if a user does not take
any action on a page within 20 minutes, then the page
closes and it is replaced with the following message: The
page has expired and the content cannot be displayed.

The time span has the format [dd.]hh:mm:ss[.ff]:

- dd is the number of days
- hh is the number of hours
- mm is the number of minutes
- ss is the number of seconds
- ff is fractions of a second

Default value: 00:20:00

RequireSsl Specifies whether SSL (https) is required. If the value is set to
true all cookies will be marked with a
\u0027secure\u0027 attribute. If SSl is enable on the Web

server, you should set this to true .

Values: true , false

Default value: false

ShowPageSearch Specifies whether to show the Tell me what you want
to do icon in the Business Central header. This feature lets
users find Business Central objects, such as pages, reports,
and actions.

If you do not want to show the Tell me what you want to
do icon, then set the parameter to false .

Default value: true

SETTING/KEYNAME DESCRIPTION

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/deployment/configure-delegation-web-server

UnknownSpnHint Specifies whether to use a server principal name when
establishing the connection between the Business Central
Web Server server and Business Central Server. This setting
is used to authenticate the Business Central Server, and it
prevents the Business Central Web Server server from
restarting when it connects to Business Central Server for
the first time. You set values that are based on the value of
the ServicePrincipalNameRequired key.

Value: The value has the following format.

(net.tcp://BCServer:Port/ServerInstance/Service)=NoSpn|SPN

- BCServer is the name of the computer that is running the
Business Central Server.
- Port is the port number on which the Business Central
Server is running.
- ServerInstance is the name of the Business Central Server
instance.
- NoSpn|SPN specifies whether to use an SPN. If the
ServicePrincipalNameRequired key is set to false , then set
this value to NoSpn. If the ServicePrincipalNameRequired key
is set to true , then set this value to Spn.

Default value:
(net.tcp://localhost:7046/BC140/Service)=NoSpn

If you set this key to the incorrect value, then during startup,
the Business Central Web Server will automatically determine
a correct value. This will cause the Business Central Web
Server to restart. Note: For most installations, you do not
have to change this value. Unlike the Dynamics NAV Client
connected to Business Central, this setting is not updated
automatically. If you want to change the default value, then
you must change it manually.

DnsIdentity Specifies the subject name or common name of the service
certificate for Business Central Server.

This parameter is only relevant when the
ClientServicesCredentialType is set to UserName,
NavUserPassword, or AccessControlService, which requires
that security certificates are used on the Business Central
Web Server and Business Central Server to protect
communication. Note: You can find the subject name by
opening the certificate in the Certificates snap-in for
Microsoft Management Console (MMC) on the computer
that is running Business Central Web Server or Business
Central Server.

For more information, see Authentication and User
Credential Type.

Value: The subject name of the certificate.

Default value: none

SETTING/KEYNAME DESCRIPTION

AuthenticateServer Specifies whether to authenticate the server by enabling
service identity checks on protocol between the Web server
and the Business Central Server instance.

Values: true , false

Default value: true

HelpServer Specifies the name of the Business Central Help Server if the
deployment uses Help Server. If the deployment uses an
online library, remove this setting.

Default value: none

HelpServerPort Specifies the TCP port on the specified Business Central Help
Server if the deployment uses Help Server. If the deployment
uses an online library, remove this setting.

Default value: none

OfficeSuiteShellServiceClientTimeout Defines the time Business Central will wait for the Office Suite
Shell Service to respond.

Important: This setting has been deprecated in Business
Central, and it has no effect on the Web Server instance.

Default value: 10

UseAdditionalSearchTerms Specifies whether Tell me uses the additional search terms
that are defined on pages and reports.

The additional search terms are specified by the
AdditionalSearchTerms and AdditionalSearchTermsML
properties.

If you set this to false the additional search terms are
ignored.

Default value: true

DefaultRelativeHelpPath Specifies the default Help article to open if no other context-
sensitive link is specified.

Default value: none

PersonalizationEnabled Specifies whether personalization is enabled in the Business
Central Web client. Set to true to enable personalization.

For more information, see Managing Personalization.

SETTING/KEYNAME DESCRIPTION

ApplicationIdSettings element settings

SETTING/KEYNAME DESCRIPTION

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-additionalsearchterms-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-additionalsearchtermsml-property
https://docs.microsoft.com/en-us/dynamics365/business-central/ui-personalization-manage

BaseHelpUrl Specifies the link to the online Help library that the
deployment uses, such as https://mysite.com/{0}/mylibrary/.

Default value: none

For more information, see Configuring the Help Experience.

BlogLink Specifies the target of the blog link on the Help & Support
page. Use this link to give users access to your end-user
blog.

Value: a valid URL
Default value: https://go.microsoft.com/fwlink/?
linkid=2076643|

ComingSoonLink Specifies the target of coming soon link on the Help &
Support page. Use this link to give users access to
information about your roadmap or any upcoming features
and fixes.

Value: A valid URL.
Default value: https://go.microsoft.com/fwlink/?
linkid=2047422

CommunityLink Specifies the URL to a community or resource for sharing
information.

Value: a valid URL
Default value: http://go.microsoft.com/fwlink/?
LinkId=287089|

ContactSalesLink Specifies the target of the contact sales link on the Help &
Support page. Use this link to give users access to your
sales-focused web page where users can engage with your
sales process. Note This setting and link are not used for
Business Central on-premises.

SigninHelpLink Specifies the URL to open if the user selects help on the sign
in page box.

Value: a valid URL
Default value: none

SETTING/KEYNAME DESCRIPTION

See Also
Setting up Multiple Business Central Web Server Instances
Install Business Central Components
Business Central Web Server Overview
Configuring Business Central Server
Configuring the Help Experience

https://mysite.com/%7B0%7D/mylibrary/
https://go.microsoft.com/fwlink/?linkid=2076643%7C
https://go.microsoft.com/fwlink/?linkid=2047422
http://go.microsoft.com/fwlink/?LinkId=287089%7C

Setting Up Multiple Business Central Web Server
Instances Using PowerShell
3/31/2019 • 5 minutes to read

CMDLET DESCRIPTION

New-NAVWebServerInstance Creates a new Business Central Web Server instance and
binds this instance to a Business Central Server instance.

Set-NAVWebServerInstanceConfiguration Specifies configuration values for a named Business Central
Web Server instance.

Get-NAVWebServerInstance Gets the information about the Business Central Web Server
instances that are registered on a computer.

Remove-NAVWebServerInstance Removes an existing Business Central Web Server instance.

Get started with the Business Central Web Server cmdlets

Although you can use the Business Central Setup to install the Business Central Web Server components and
create a single web server instance in IIS for client connection, there may be scenarios when you want to set up
multiple instances. For example, you could set up a separate Business Central Web Server instance for the
different companies of a business. For this scenario, you can use the Business Central Web Server PowerShell
cmdlets, which are outlined in the following table.

The Business Central Web Server cmdlets are contained in the PowerShell script module
NAVWebClientManagement.psm1, which is available on the Business Central installation media (DVD).

The module is installed with the Business Central Server or the Business Central Web Server components.

There are different ways to launch this module and start using the cmdlets:

Import-Module -Name [filepath]

Import-Module -Name "C:\Program Files\Microsoft Dynamics 365 Business
Central\130\Service\NAVWebClientManagement.psm1"

If you are working on the computer where the Business Central Server was installed, run the Business
Central Administration Shell as an administrator.

For more information, see Business Central PowerShell Cmdlets.

If you installed the Business Central Web Server components, just start Windows PowerShell as an
administrator.

Otherwise, start Windows PowerShell as an administrator, and use the Import-Module cmdlet to import
the NAVWebClientManagement.psm1 file:

For example:

https://docs.microsoft.com/en-us/powershell/module/navwebclientmanagement/New-NAVWebServerInstance
https://docs.microsoft.com/en-us/powershell/module/navwebclientmanagement/Set-NAVWebServerInstanceConfiguration
https://docs.microsoft.com/en-us/powershell/module/navwebclientmanagement/Get-NAVWebServerInstance
https://docs.microsoft.com/en-us/powershell/module/navwebclientmanagement/Remove-NAVWebServerInstance
https://docs.microsoft.com/en-us/powershell/business-central/overview
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/import-module

Creating Business Central Web Server instances
Get Access to the WebPublish folder

Decide on the site deployment type for the instance

- Sites
 - BusunessCentralWebSite (web site)
 + nn-NN (language versions)
 + www (content)
 navsettings.json
 ...

For more information about starting Windows PowerShell, see Starting Windows PowerShell.

To create a new web server instance, you need access to the WebPublish folder that contains the content files
for the Business Central Web Server components.

This folder is available on the Business Central installation media (DVD) and has the path
"DVD\WebClient\Microsoft Dynamics NAV\13x\Web Client\WebPublish".

If you installed the Business Central Web Server components, this folder has the path "C:\Program
Files\Microsoft Dynamics 365 Business Central\140\Web Client\WebPublish".

You can use either of these locations or you can copy the folder to more convenient location on your computer or
network.

When you create a new Business Central Web Server instance, you can choose to create either a RootSite or
SubSite type. Each instance type has a different hierarchical structure in IIS, which influences its configuration
and the URLs for the accessing from the Business Central Web client.

RootSite

A RootSite instance is a root-level web site that is complete with content files for serving the Business Central
Web client. It is configured with its own set of bindings for accessing the site, such as protocol (http or https) and
communication port. The structure in IIS looks like this:

The Business Central Web client URL for the RootSite instance has the format:

http://[WebserverComputerName]:[port]

For example: http://localhost:8080 .

SubSite

A SubSite instance is a web application that is under a container web site. The container web site is configured
with a set of bindings, but the site itself has no content files. The content files are contained in the application
(SubSite). The SubSite inherits the bindings from the container web site. This is the deployment type that is
created when you install Business Central Web Server components in the Setup wizard. Using the New-
NAVWebServerInstance cmdlet, you can add multiple SubSite instances in the container web site. The structure
in IIS for two instances looks like this in IIS:

https://docs.microsoft.com/en-us/powershell/scripting/setup/starting-windows-powershell

- Sites
 - BusunessCentralWebSite (web site)
 - BusinessCentralWebInstance1 (application)
 + nn-NN (language versions)
 + www
 navsettings.json
 ...
 - BusinessCentralWebInstance2 (application)
 + nn-NN (language versions)
 + www
 navsettings.json
 ...

Run the New-NAVWebServerInstance cmdlet

```  
New-NAVWebServerInstance -WebServerInstance MyBCWebsite -Server MyBCServer -ServerInstance MyBCServerInstance 
-SiteDeploymentType RootSite -WebSitePort 8081 -PublishFolder "C:\Web Client\WebPublish"
```  

```  
New-NAVWebServerInstance -WebServerInstance MyWebApp -Server MyBCServer -ServerInstance MyBCServerInstance -
SiteDeploymentType Subsite -ContainerSiteName MySiteContainer -WebSitePort 8081 -PublishFolder 
"C:\WebClient\WebPublish"
```  

The Business Central Web client URL of a SubSite instance is generally longer than a RootSite because it also
contains the application's alias (or virtual path) for the instance, which you define. The URL for a SubSite instance
has the format:

http://[WebserverComputerName]:[port]/[WebServerInstance]

For example: http://localhost:8080/BusinessCentralWebInstance1 and
http://localhost:8080/BusinessCentralWebInstance2 .

At the command prompt, run the New-NAVWebServerInstance cmdlet. The following are simple examples for
creating a RootSite and SubSite deployment type.

RootSite example:

SubSite example:

Susbtitute MyBCWebsite with the name that you want to give the web application in IIS for the web
server instance. If you are creating a SubSite deployment type, this name will become part of the URL for
opening the Business Central Web client application, for example, http://MyWebServer:8081/MyWebApp.

Susbtitute MyBCServer to the name of the computer that is running the Business Central Server to which
you want to connect.

Susbtitute MyBCServerInstance with the name of the Business Central Server instance to use.

Substitute MySiteContainer with name of the container web site under which you want to add the
instance. If you specify a name that does not exist, then a new container web site will be created, which
contains the new web server instance.

Susbtitute 8081 with the port number that you want to bind the instance to. If you do not specify a port
number, then port 80 is used.

Substitute C:\WebClient\WebPublish with the path to your WebPublish folder. By default, the cmdlet looks

NOTE

Modifying a Business Central Web Server instance

See Also

in the'C:\Program Files\Microsoft Dynamics 365 Business Central\140\Web Client' folder. So if you are
working on a computer where the Business Central Web Server components are installed, you do not
have to set this parameter.

This command only sets the required parameters of the NAVWebServerInstance cmdlet. The cmdlet has several other
parameters that can use to configure the web server instance. For more information about the syntax and parameters, see
New-NAVWebServerInstance.

After you create the web server instance, if you want to change its configuration, you can use the Set-
NAVWebServerInstanceConfiguration cmdlet. Or, you can modify the configuration file (navsettings.json) of the
instance directly. For more information, see Configuring Web Server Instances.

Business Central Web Server Overview
Configuring Web Server Instances

https://docs.microsoft.com/en-us/powershell/module/navwebclientmanagement/New-NAVWebServerInstance

Configuring the Business Central Database
3/31/2019 • 7 minutes to read

Set Up an Encryption Key

Create and import encryption key

Configure SQL Authentication on the Database

For a Business Central Server instance to connect to and access a database in SQL Server, the server instance
must be authenticated by the database. As in SQL Server, Business Central supports two authentication modes for
database communication: Windows Authentication and SQL Server Authentication. When you set up Business
Central, you must ensure that database authentication is configured correctly on both the server instance and
database, otherwise the server instance will not be able to connect to the database. By default, Windows
Authentication is configured on the server instance and database. With Windows Authentication the Business
Central Setup does the work for you.

This article describes how to configure SQL Server Authentication. You perform the configuration in two places:
on the databases in SQL Server and on the Business Central Server instance. The procedure is different when the
Business Central Server instance is configured as a multitenant server instance than when it is not a multitenant
server instance.

When using SQL Server authentication, Business Central requires an encryption key to encrypt the credentials
(user name and password) that the Business Central Server instance uses to connect to the Business Central
database in SQL Server. The encryption key must be installed on the computer where the Business Central Server
is installed and also in the database in SQL Server. In a multitenant deployment, the encryption key must be
installed in the application database.

To set up an encryption key, you can use one of the following methods:

You can create and import your own encryption key by using Business Central Administration Shell
cmdlets, as described in the following procedure.

If you are configuring SQL Server authentication on a Business Central Server instance for the first time,
you can use the Business Central Server Administration tool which can automatically create and install a
system encryption key. If you decide to use this method, no action is required.

1. In the Business Central Administration Shell, run the New-NAVEncryptionkey cmdlet.

This creates a file that contains an encryption key. If you already have an encryption key file, you can skip
this step.

2. Run the Import-NAVEncryptionkey cmdlet to install the encryption key on the Business Central Server
instance and database.

On the computer running the Business Central Server instance, the encryption key file has the name BC140.key
and is stored in the %systemroot%\ProgramData\Microsoft\Microsoft Dynamics NAV\[version]\Server\Keys . In the
database, the encryption key is registered in the dbo.ndopublicencryptionkey table. In a multitenant
deployment, the encryption key is registered in the application database.

This section describes how to configure a Business Central database to use SQL Server Authentication with a
Business Central Server instance. You can complete the steps in this procedure by using SQL Server Management
Studio or Transact-SQL.

http://go.microsoft.com/fwlink/?LinkID=521780
http://go.microsoft.com/fwlink/?LinkID=518094

IMPORTANT

Configure SQL Server Authentication on the database in SQL Server

Configure SQL Server Authentication on the Business Central Instance
(Non-Multitenant)

Configure SQL Authentication on a server instance using Business Central Server Administration tool

In a deployment where the Business Central Server instance is configured as a multitenant server instance, you must
complete the following procedure on the application database and tenant database.

1. Configure the SQL Server instance (Database Engine) that hosts the Business Central database to use SQL
Server Authentication.

To use SQL Server authentication, you configure the database instance to mixed authentication mode (SQL
Server and Windows Authentication). For more information, see Change Server Authentication Mode.

2. In the SQL Server instance, create a login that uses SQL Server authentication.

For more information, see Create a Login.

3. Map the login to a user in the Business Central database, and add the user to the db_owner role of the
Business Central database.

For more information, see Create a Database User.

You configure the Business Central Server instance with the login credentials (user name and password) of the
user account in the Business Central database in SQL Server that you want to use for authentication. You can do
this using the Business Central Server Administration tool or Business Central Administration Shell.

1. Open the Business Central Server Administration tool.

2. In the console tree, which is the left pane, expand the node for the computer that contains the Business
Central Server instance, and then select the Business Central Server instance.

3. In the Actions pane, choose Database Credentials.

4. On the Database Credentials page, choose the Edit button.

5. Set the Database Authentication Type to SQL Authentication.

6. In the Database User Name field, type the login name for the database user that you want to use to access
the Business Central database in SQL Server.

7. In the Password field, type the login password for the database user that you want to use to access the
Business Central database in SQL Server.

8. Choose the Save button, and then on the Enable Encryption on SQL Server Connections dialog box,
choose the OK button.

Encryption keys are used to help secure the login credentials over the connection between the Business
Central Server instance and the Business Central database in SQL Server.

9. On the Information dialog box about encryption, choose the OK button.

This dialog box is to inform you to enable encryption on SQL Server connections, which is disabled by
default.

10. If you want to enable encryption on SQL Server connections, in the Action pane, choose Configuration,

http://technet.microsoft.com/en-us/library/ms188670.aspx
http://msdn.microsoft.com/en-us/library/aa337562.aspx
http://msdn.microsoft.com/en-us/library/aa337545.aspx

Configure SQL Authentication on a server instance using Business Central Administration Shell

Configure SQL Server Authentication on Business Central Instance in a
Multitenant Deployment

Configure SQL Authentication using Business Central Server Administration tool

and then choose the Edit button. In the Database tab, select Enable Encryption on SQL Connections,
choose the Save button, and then the OK button.

11. Restart the server instance.

If you are modifying an existing Business Central Server instance, run the Set-NAVServerConfiguration
cmdlet.

Use the DatabaseCredentials parameter to provide the login credentials of the database user that you want
to use to access the application database.

If you are creating a new Business Central Server instance, run the New-NAVServerInstance cmdlet.

Use the DatabaseCredentials parameter to provide the login credentials of the database user that you want
to use to access the application database.

This section describes how to configure a Business Central database to use SQL Server Authentication with a
Business Central Server instance. You can complete the steps in this procedure by using SQL Server Management
Studio or Transact-SQL.

To configure a SQL Server Authentication on a Business Central Server instance, you set up the server instance
with the login credentials (user name and password) for the user accounts for the application and tenant databases
in SQL Server. You can do this using the Business Central Server Administration tool or Business Central
Administration Shell.

1. Open the Business Central Server Administration tool.

2. In the console tree, which is the left pane, expand the node for the computer that contains the Business
Central Server instance, and then select the Business Central Server instance.

3. Configure SQL Server Authentication with the application database as follows:

a. In the Actions pane, choose Database Credentials.

b. On the Database Credentials page, choose the Edit button.

c. Set the Database Authentication Mode to SQL Server Authentication.

d. In the Database User Name field, type the login name for the database user that you want to use to
access the Business Central application database in SQL Server.

e. In the Password field, type the login password for the database user that you want to use to access
the Business Central database in SQL Server.

f. Choose the Save button, and then on the Enable Encryption on SQL Server Connections dialog
box, choose the OK button.

Encryption keys are used to help secure the login credentials over the connection between the
Business Central Server instance and the Business Central database in SQL Server.

g. On the Information dialog box about encryption, choose the OK button.

This dialog box is to inform you to enable encryption on SQL Server connections, which is disabled
by default.

http://go.microsoft.com/fwlink/?LinkID=401394
http://go.microsoft.com/fwlink/?LinkID=401376

Configure SQL Authentication using Business Central Administration Shell

See Also

h. If you want to enable encryption on SQL Server connections, in the Action pane, choose
Configuration, and then choose the Edit button. In the Database tab, select Enable Encryption
on SQL Connections, choose the Save button, and then the OK button.

4. To configure SQL Server Authentication with the tenant database, mount the tenant to the Business Central
Server instance and specify the login credentials (user name and password) for the database user that you
want to use to access the Business Central tenant database in SQL Server.

If the tenant is already mounted to the Business Central Server instance, you must dismount the tenant, and
mount it again.

For more information see Mount or Dismount a Tenant.

5. Restart the server instance.

1. Configure SQL Server Authentication with the application database as follows:

If you are modifying an existing Business Central Server instance, run the Set-
NAVServerConfiguration cmdlet.

Use the DatabaseCredentials parameter to provide the login credentials of the database user that
you want to use to access the application database.

If you are creating a new Business Central Server instance, run the New-NAVServerInstance cmdlet.

Use the DatabaseCredentials parameter to provide the login credentials of the database user that
you want to use to access the application database.

2. To configure SQL Authentication with the tenant database, run the Mount-NAVTenant cmdlet.

Use the DatabaseCredentials parameter to provide the login credentials of the database user that you want
to use to access the tenant database.

Installation Considerations for Microsoft SQL Server
Deployment
Installing Business Central Using Setup

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/mount-dismount-tenant
http://go.microsoft.com/fwlink/?LinkID=401394
http://go.microsoft.com/fwlink/?LinkID=401376
http://go.microsoft.com/fwlink/?LinkID=401372
file:///T:/q4ru/deployment/Deployment.html

Business Central Performance Counters
3/31/2019 • 9 minutes to read

Client session counters

COUNTER DESCRIPTION

Active sessions Number of active sessions on the Business Central Server
instance.

An active session is a connection to the Business Central
Server instance from a Business Central client, such as the
Dynamics NAV Client connected to Business Central or
Business Central Web client, and Web services (OData and
SOAP).

Server operations/sec Number of operations that have started on the Business
Central Server per second.

An operation is a call to the Business Central Server instance
from a Business Central client to run Business Central objects.

Note: OData and SOAP requests are not included.

Average server operation time (ms) Average duration of server operations in milliseconds.

SQL Server connection counters

COUNTER DESCRIPTION

Mounted tenants Number of tenants that are mounted on the Business Central
Server instance. This counter is relevant with a multitenant
server instance, where tenants are often mounted and
dismounted.

Open connections The current number of open connections from the Business
Central Server instance to Business Central databases on SQL
Servers.

The value is always equal to the sum of the # Open tenant
connections counter and the # Open application
connections counter. -We recommend that you use these
counters instead.

The following table describes the performance counters that are available in Business Central for monitoring
Business Central Server instances.

These counters pertain to sessions from the clients, NAS, and web services, to the server instance.

These counters pertain to the connection from the server instance to the SQL Server instance and databases.

Open application connections Current number of open application connections from the
Business Central Server instance to the Business Central
application database on SQL Servers.

Because all connections are to only one application database,
you will see failures when the total number of connections for
all server instances exceeds the maximum number of
connections allowed to the database.

Open tenant connections Current number of open tenant connections from the
Business Central Server instance to Business Central tenant
databases on SQL Servers.

If there are multiple tenant databases, you cannot see the
distribution of opened connections per database (or database
pool).

With Azure SQL Database, connections are denied if the
throttling limit is reached. The limit depends on the database
configuration. Be aware that in clusters, other server instances
will also have connections to the same database, so the total
load on a database requires that you look at multiple server
instances.

% Query repositioning rate Percentage of queries that are re-executed when fetching the
query result.

Hard throttled connections Number of connections that were hard-throttled.

Soft throttled connections Number of connections that were soft-throttled.

Transient errors Number of transient errors.

Heartbeat time (ms) The time that it takes to complete a single write to a system
table. Conceptually, this counter measures the time it takes to
call the application database server to update the 'last active'
field the dbo.Service Instance table for the Business Central
Server instance. Every 30 seconds, the instance writes a record
to indicate that the instance is "alive."

You can use this counter to indicate if there is network latency
between the Business Central Server and the database.

Preferred connection total requests Count of the total number of requests to the preferred
connection cache. The preferred connection cache contains
requests from the SQL connection pool that was last used by
a Business Central user.

% Preferred connection cache hit rate Percentage of hits in the preferred connection cache,
compared to the total number of requests.

COUNTER DESCRIPTION

Data and caching counters
These counters pertain to the data caching on the server instance.

COUNTER DESCRIPTION

Calculated fields cache total requests Count of the total number of requests to the calculated fields
cache. The calculated fields cache contains the results of
CALCFIELDS method (Record) calls.

% Calculated fields cache hit rate Percentage of hits in the calculated fields cache, compared to
the total requests to the calculated fields cache.

Command cache total requests Count of the total number of requests to the command cache.
The command cache contains the results of all SQL
commands.

% Command cache hit rate Percentage of hits in the command cache, compared to the
total requests to the command cache.

Primary key cache total requests Count of the total number of requests to the primary key
cache. The primary key cache contains the results of requests
to get a record by using its primary key.

% Primary key cache hit rate Percentage of hits in the primary key cache, compared to the
total requests to the primary key cache.

Result set cache total requests Count of the total number of requests to the result set cache.
The result set cache contains result sets that are returned from
SQL Server.

% Result set cache hit rate Percentage of hits in the result set cache, compared to the
total requests to the result set cache.

The value also depends on the usage pattern and which parts
of the application are is used. For example, the
SELECTLATESTVERSION method will clear the cache, which
results in a lower hit rate.

In general, reading frequently updated values will lower the hit
rate because the cache synchronization across Business
Central Server instances will remove stale values, which causes
re-reads.

Rows in all temporary tables Count of number of rows in all temporary tables.

Scheduled task counters

COUNTER DESCRIPTION

Available tasks Remaining number of tasks that can potentially run
simultaneously before the maximum number of tasks is
reached. The value of this counter is the value the Maximum
of tasks counter minus the value of the # Running tasks
counter.

These pertain to tasks that are run by Task Scheduler.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-calcfields-method-record
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-selectlatestversion-method-database

of task errors/sec Number of errors per second that are caused by running
tasks. The task are causing errors in AL or exceptions on the
server instance. If the value is greater than zero for an
extended period of time, this typically indicates a failing task
that keeps getting rescheduled.

Running tasks Number of tasks that are currently running on the server
instance. The value is limited to the value of the Maximum #
of tasks counter.

Average task execution time The average time (in ticks) that tasks have taken to complete.
Task execution time is counted regardless of whether the task
completed successfully or raised an error.

There is no general rule for what the normal operations level
is. To analyze this counter, look for large spikes to identify
long-running tasks.

Note: A tick is the smallest unit that the your system uses for
time measurements, and it is typically determined by the
operating system. For example, in Windows, a single tick
represents one hundred nanoseconds, which means that there
are 10,000 ticks in a millisecond. Tick durations can differ
bewteen systems, so be aware of this fact when comparing
absolute values across systems.

Maximum # of tasks The maximum number of tasks that can run simultaneously.
This value is defined by the Maximum Concurrent Running
Tasks (TaskSchedulerMaxConcurrentRunningTasks) setting in
the server instance configuration. Therefore, this value is
constant until the server instance setting is changed and the
instance is restarted.

Total # Pending tasks The total number of tasks in the shared task list that are
waiting to be picked up by server instances connected to this
application database. The tasks counted are those that are
ready and have been scheduled to run now or earlier and that
are not currently running.

Total # Running tasks Total number of tasks in the shared task list that are currently
running by any server instance connected to this application
database.

Time (ms) since the list of running tasks last had capacity for
new tasks

The time (ms) since the list of running tasks last had capacity
for new tasks.

COUNTER DESCRIPTION

See Also

For more information about task scheduler, see Task Scheduler.

Set up Performance Counters in Windows Performance Monitor
Create a Data Collector Set From Template
Optimizing SQL Server Performance with Business Central

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/set-up-performance-counters-performance-monitor
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/monitor-create-data-collector-set-from-template

Monitoring Business Central Server Events
3/31/2019 • 2 minutes to read

Event Logging Overview

Monitoring Business Central Server Event Traces

Event Trace Monitoring Tools

Get Started

You can monitor events on Business Central Server to diagnose conditions and troubleshoot problems that affect
operation and performance.

Business Central uses Event Tracing for Windows (ETW), which is a subsystem of Windows operating systems.
ETW provides a tracing mechanism for events that are raised by an application or service. ETW enables you to
use industry standard tools such as Windows Performance Monitor, PerfView, Event Viewer, and Windows
PowerShell to dynamically collect data on trace events that occur on the Business Central Server.

Events that occur on Business Central Server instances are recorded in Windows Event logs on the Business
Central Server computer. Dynamics 365 Business Central uses channels on all events. Event channels provide a
way to collect and view events from a specific provider, which in this case is Business Central Server, and group
the events according to predefined types, such as admin, operational, and debug. For example, in Event Viewer,
Business Central Server instance events are collected in the Admin, Operational, and Debug channel logs for
Business Central in the Applications and Services Logs.

For more general information about ETW and event channels, see Event Tracing for Windows and Event Logs
and Channels in Windows Event Log.

Event tracing provides detailed information about what is occurring on the Business Central Server and
application when users work with Business Central. This can help you identify and analyze problems or
conditions that affect performance. Event tracing enables you to dynamically monitor Business Central Server
without having to restart the server or Business Central clients. By using industry-standard tools for event
tracing, you can start and stop event tracing sessions, and then view the trace event data from a stored log file.

You can use event tracing to track the following operations on Business Central Server instances:

Running Business Central reports, queries, and XMLports.

Execution of SQL statements by Business Central Server.

Execution of AL functions.

Telemetry.

Windows event log events.

There are various industry-standard tools that you can use to collect event trace data. The procedures in this
section use Windows Performance Monitor, PerfView, Event Viewer, and Windows PowerShell to illustrate how
you can collect and view event trace data. For details about how to use these tools and others, refer to the
documentation available with the tool. For an overview of some of the tools, see Tools for Monitoring
Performance Counters and Events.

http://go.microsoft.com/fwlink/?LinkID=313939
http://go.microsoft.com/fwlink/?LinkID=517298
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/tools-monitor-performance-counters-and-events

TASK FOR MORE INFORMATION, SEE

Review the list of trace events that are available for
monitoring Business Central Server instances.

Business Central Trace Events List

Collect event trace data in an event trace log (.etl) file. Use
the event trace monitoring tool to start an event trace
session.

Use Performance Monitor to Collect Event Trace Data

Use PerfView to Collect Event Trace Data

Use Logman to Collect Event Trace Data

View event trace data that is contained in an .etl file. Use PerfView to View Event Trace Data

Use Event Viewer to collect and view events Monitoring Business Central Server Events by Using Event
Viewer

Use Windows PowerShell to view event trace data Monitoring Business Central Server Events by Using Windows
PowerShell

Turn off or limit the amount of telemetry trace events
emitted based on the severity level.

Turn Off or Limit Telemetry Trace Events

See Also
Business Central Server Trace Events
Business Central Server Admin and Operational Events

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/monitor-use-perfview-view-event-trace-data

Business Central Server Trace Events
3/31/2019 • 8 minutes to read

Overview

Windows Event Viewer Trace Events

EVENT TRACE PROVIDER KEYWORD DECIMAL VALUE HEXADECIMAL VALUE

Microsoft-
Dynamics365BusinessCentr
al-Server

EventViewer 1 0x1

SQL Trace Events

This article provides an overview of the trace events that are generated by Business Central server instance.

There are two event trace providers that publish different trace events to the event log: Microsoft-
Dynamics365BusinessCentral-Server and Microsoft-Dynamics365BusinessCentral-Common. The
Microsoft-Dynamics365BusinessCentral-Common provider is strictly for telemetry trace events. All
other events use Microsoft-Dynamics365BusinessCentral-Server. You typically need to specify the
event trace provider in the monitoring tool that you are using.

There are several types of trace events for each event trace provider, including: Windows event viewer, SQL
traces, service calls, AL function calls, and telemetry. Trace event types are identified by a keyword with a
corresponding decimal and hexadecimal value. The keywords and values enable you to collect data on
specific trace events. Some tools support the hexadecimal values only and other tools support both
hexadecimal and decimal.

For some trace events, there is separate event for when an operation starts and when it stops. This enables
you to determine the duration of the operation. Some monitoring tools, such as PerfView, will
automatically return the duration in the stop event.

Some monitoring tools might interpret and display the collected event trace differently than others. For
more information, see Event Trace Data.

Windows Event Viewer trace events track errors, warnings, and information messages that provide information
about the condition or state of Business Central Server instances. These events can be viewed in the
Dynamics365BusinessCentral channel logs and Application log of Event Viewer on the computer that is
running Business Central Server. For more information, see Monitoring Business Central Server Events Using
Event Viewer.

For a list and description of EventViewer trace events, see Business Central Server Admin and Operational
Events.

SQL trace events track a specific set of SQL statements that are executed from the Business Central Server
instance against the Business Central database on SQL Server.

EVENT TRACE PROVIDER KEYWORD DECIMAL VALUE HEXADECIMAL VALUE

Microsoft-
Dynamics365BusinessCentr
al-Server

SQLTracing 2 0x2

ID EVENT (TASK/OPCODE) WHAT IS TRACED

1 ExecuteScalar/Start SQL statements that query a database
table and return a single field from a
row in the query result.

2 ExecuteScalar/Stop SQL statements that query a database
table and return a single field from a
row in the query result.

3 ExecuteNonQuery/Start SQL statements that return a number
of rows from a database table

4 ExecuteNonQuery/Stop SQL statements that return a number
of rows from a database table

5 ExecuteReader/Start SQL statements that return a set of
rows from a database table.

6 ExecuteReader/Stop SQL statements that return a set of
rows from a database table.

7 ReadNextResult/Start SQL statements that return the next
result from a database query.

8 ReadNextResult/Stop SQL statements that return the next
result from a database query.

9 ReadNextRow/Start SQL statements that return the next
row in database table.

10 ReadNextRow/Stop SQL statements that return the next
row in database table.

11 BeginTransaction/Start SQL statements that start a database
transaction.

12 BeginTransaction/Stop SQL statements that start a database
transaction.

13 Prepare/Start SQL statements that create a prepared
version of the command on an instance
of SQL Server.

The event data that is collected includes: session ID, tenant ID, the Business Central user, and the SQL statement.
For more information, see Event Trace Data.

The following table lists the SQL trace events.

14 Prepare/Stop SQL statements that create a prepared
version of the command on an instance
of SQL Server.

15 OpenConnection/Start SQL statements that open connection
to the database from the connection
pool.

16 OpenConnection/Stop SQL statements that open connection
to the database from the connection
pool.

17 Commit/Start SQL statements that commit a
database transaction.

18 Commit/Stop SQL statements that commit a
database transaction.

19 Rollback/Start SQL statements that cancel the
changes in a pending database
transaction.

20 Rollback/Stop SQL statements that cancel the
changes in a pending database
transaction.

ID EVENT (TASK/OPCODE) WHAT IS TRACED

Service Call Trace Events

EVENT TRACE PROVIDER KEYWORD DECIMAL VALUE HEXADECIMAL VALUE

Microsoft-
Dynamics365BusinessCentr
al-Server

ServiceCall 4 0x4

ID EVENT (TASK/OPCODE) WHAT IS TRACED

300 RunQuery/Start Business Central Query objects that are
opened and closed.

301 RunQuery/Stop Business Central Query objects that are
opened and closed.

302 RunReport/Start Business Central Report objects that
are opened and closed.

Service call trace events track when Business Central clients run the Business Central objects: Queries, Reports,
and XMLports.

The event data that is collected includes: session ID, tenant ID, Business Central user, and the Business Central
object ID. For more information, see Event Trace Data.

The following table lists the service call trace events.

303 RunReport/Stop Business Central Report objects that
are opened and closed.

310 RunXmlPort/Start Business Central XMLport objects that
are opened and closed.

311 RunXmlPort/Stop Business Central XMLport objects that
are opened and closed.

500 OpenSession Dynamics NAV Client connected to
Business Centrals and Business Central
Web clients establish a connection to
the Business Central Server instance.

501 CloseSession Dynamics NAV Client connected to
Business Centrals and Business Central
Web clients establish a connection to
the Business Central Server instance.

ID EVENT (TASK/OPCODE) WHAT IS TRACED

AL Methods Trace Events

EVENT TRACE PROVIDER KEYWORD DECIMAL VALUE HEXADECIMAL VALUE

Microsoft-
Dynamics365BusinessCentr
al-Server

ALTracing 8 0x8

IMPORTANT

ID

EVENT
(TASK/OPCODE
)

WHAT IS
TRACED

400 ExecuteALFun
ction/Start

AL functions
that are
called.

401 ExecuteALFun
ction/Stop

AL functions
that are called.

AL function tracing events track the execution of AL functions and statements on the Business Central Server
instance.

The event data that is collected includes: session ID, tenant ID, Business Central user, ALAL function, AL
statements, and line number. For more information, see Event Trace Data.

If the Business Central Server instance is not configured for full AL function tracing, then only root-level AL function will be
traced. Statements and AL functions that are called from functions will not be traced. By default, the Business Central Server
instance is not configured for full AL function tracing. For information about how to specify full AL function tracing, see
Configuring Business Central Server.

The following table lists the AL function tracing events.

402 ExecuteALFun
ctionFailed

Errors that
occur when
executing AL
functions. The
errors can be
caused by
exceptions or
ERROR
Function
(Dialog) calls.

403 ExecuteALFun
ction

AL statements
that are
executed.

Important:
This trace
event is only
traced when
the Business
Central Server
is configured
to full AL
function
tracing.

ID

EVENT
(TASK/OPCODE
)

WHAT IS
TRACED

Telemetry Trace Events

EVENT TRACE PROVIDER KEYWORD DECIMAL VALUE HEXADECIMAL VALUE

Microsoft-
Dynamics365BusinessCentr
al-Common

TelemetryTracing 32 0x20

DATA CLASSIFICATION VERBOSITY ID

All except CustomerContent and
EndUserIdentifiableInformation

Critical 700

Error 701

Telemetry trace events can provide data about operations in the application and how it is being used in
production. These events include both system telemetry trace events and user-defined, custom telemetry trace
events.

Custom telemetry trace events are emitted from the application. These are events that are sent by
SENDTRACETAG method calls from inside the application. For more information about custom telemetry trace
events, see Instrumenting an Application for Telemetry.

Some of the important event data that is collected for both system and custom telemetry trace events includes:
tag, category, message, dataclassification. For more information about this data, see Event Trace Data.

Telemetry events can have one of the following event IDs, based on the data classification and verbosity (or
seveity level):

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-error-method-dialog
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-sendtracetag-method

Informational 702

Informational 703

Verbose 704

Warning 705

Informational 706

CustomerContent or
EndUserIdentifiableInformation

Critical 707

Error 708

Informational 709

Informational 710

Verbose 711

Warning 712

DATA CLASSIFICATION VERBOSITY ID

NOTE

Event Trace Data

ARGUMENT DESCRIPTION
TRACE EVENT
TYPE

category Specifies the
category of
the telemetry
trace event.

Telemetry
(TelemetryDat
a)

Event IDs 703, 706, and 710 are used only for system telemetry trace events. All other IDs are used for both system and
custom events.

The following table lists the arguments that make up the data collected for trace events. When viewing event trace
data, the way that the arguments are interpreted and displayed can vary depending on the tool that you use.

connectionTy
pe

Specifies the
RoleTailored
client that has
established
the
connection to
the Business
Central server
instance.
Values include
Dynamics
NAV Client
connected to
Business
Central and
Business
Central Web
client.

Service calls
(ServiceCall)

dataclassificati
on

Specifies the
RoleTailored
client that has
established
the
connection to
the Business
Central server
instance.
Values include
Dynamics
NAV Client
connected to
Business
Central and
Business
Central Web
client.

Service calls
(ServiceCall)

failureMessag
e

Includes the
error message
that is
returned
when a AL
function fails.

AL function
trace events
(ALTracing)

functionName Specifies the
AL function
that was
executed.

AL function
trace events
(ALTracing)

ARGUMENT DESCRIPTION
TRACE EVENT
TYPE

lineNumber Specifies the
line number
of the
statement in
the AL code
of the
Business
Central object
that was
executed.

AL function
trace events

message Specifies the
error, warning,
or information
message text
that was
issued for a
trace event

Windows
event log
trace events
(EventViewer)

Telemetry
(TelemetryDat
a)

objectId Specifies the
ID of the
Business
Central object
that was
executed in
the session.

Service calls
trace events
(ServiceCall)

AL function
trace events
(ALTracing)

objectType Specifies the
Business
Central object
type that
executed by a
AL function or
statement.
Values include
the following:
CodeUnit,
Page, Query,
Report, Table,
and XMLport.

AL function
trace events
(ALTracing)

ARGUMENT DESCRIPTION
TRACE EVENT
TYPE

sessionId Specifies the
ID that is
assigned to
the session
that is used
by the
operation.
Each
operation
establishes a
session with
the Business
Central Server
instance from
a connection
in the
Business
Central
Server's
connection
pool.

All

sqlStatement Specifies the
SQL
statement
that was
executed on
the session.

SQL trace
events
(SQLTracing)

statement Specifies the
AL statement
that was
executed on
the session.

AL function
trace events

tag Specifies the
ID of the
telemetry
trace event.
For system
telemetry
trace events,
this ID is
autogenerate
d. For custom
telemetry
trace events,
it is user-
defined.

Telemetry
(TelemetryDat
a)

ARGUMENT DESCRIPTION
TRACE EVENT
TYPE

tenantId Specifies the
ID of the
tenant
database that
is mounted
on the
Business
Central Server
instance. If
the Business
Central Server
instance is not
configured for
multitenancy,
then the value
is empty. For
more
information
about
multinenancy,
see
Multitenant
Deployment
Architecture.

All

userName Specifies the
Business
Central user
account that
is logged on
to the session.

All

ARGUMENT DESCRIPTION
TRACE EVENT
TYPE

See Also
Monitoring Business Central Server Events
Classifying Data

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/deployment/Multitenant-Deployment-Architecture

Business Central Server Admin and Operational
Events (EventViewer) List
3/31/2019 • 11 minutes to read

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

112 Error 12 Operati
onal

Messa
ge:
Fatal
Sql
error.
The
connec
tion
can no
longer
be
used.

Remark
s:
An
error
occurre
d on
the
connec
tion
from
the
Busines
s
Central
Server
instanc
e to
the
SQL
databa
se and
the
connec
tion
could
not
been
establis
hed.

This

Events have the source BusinessCentralServer$[ServerInstance] . Each event has a unique ID and is assigned to a
task category. The source, IDs, and task categories enable you to filter the events that display in Event Viewer. For
a description of the task categories, see Task Categories.

The following table lists the events that are generated by the Business Central Server.

error
could
be
caused
by one
of the
followi
ng
reason
s:

- The
Busines
s
Central
Server
has
been
stoppe
d.
- The
SQL
server
connec
tion
setting
s are
incorre
ct
- A
networ
k
failure
has
occurre
d.
- A
hardwa
re
failure
has
occurre
d on
the
server
or on
your
compu
ter.

To
resolve
this
issue,
try to
restart
the
Busines
s
Central
Server
or see
Trouble
shootin
g: A
fatal

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

fatal
error
occurre
d. The
connec
tion to
SQL
server
cannot
be
establis
hed.

113 Inform
ation

12 Operati
onal

Messa
ge:
Object
Chang
e
Listene
r is
listenin
g on
SQL
Server
'{0}'in
Databa
se'{1}'.

Remark
s:
Occurs
when
the
Busines
s
Central
Server
instanc
e has
establis
hed a
connec
tion to
the
SQL
databa
se. The
Chang
e
Listene
r object
listens
for
change
s to
applica
tion
objects
in the
Busines
s
Central
databa
se.

200 Error 12 Admin Remark
s:
This
event
ID is
used
for
various
errors
that
occur
on
Busines
s
Central
Server
instanc
es.

These
events
indicate
that
the
Busines
s
Central
Server
instanc
e is not
operati
ng.
View
the
details
of each
messag
e to
determi
ne the
cause
of the
proble
m.

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

https://docs.microsoft.com/dynamics-nav/Troubleshooting--A-fatal-error-occurred.-The-connection-to-SQL-server-cannot-be-established

201 Inform
ation

12 Operati
onal

Remark
s:
This
event
ID is
used
for
various
inform
ation
messag
es that
occur
on
Busines
s
Central
Server
instanc
es.

These
events
are
typical
conditi
ons
and are
for
inform
ation
only.

202 Warnin
g

12 Admin Remark
s:
This
event
ID is
used
for
various
warnin
g
messag
es that
occur
on
Busines
s
Central
Server
instanc
es.

These
events
indicat
e that
an
unexpe

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

cted
conditi
on
occurre
d on
the
Busines
s
Central
Server
instanc
e. In
most
cases,
the
Busines
s
Central
Server
instanc
e will
still be
operati
onal.

View
the
details
of each
messag
e to
determ
ine the
cause
of the
proble
m.

205 Inform
ation

8 Operati
onal

Messa
ge:
'Micros
oft
Dynam
ics
NAV
Data
Service'
is
listenin
g to
request
s at
net.tcp:
//[Serv
er]:
[Port]/[
ServerI
nstanc
e]/ODa
ta

Remark
s:
Indicat
es that

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

the
listenin
g port
for
OData
web
service
s has
been
opened
on the
Busines
s
Central
Server
instanc
e and it
is
ready
to
handle
OData
request
s.

Typicall
y, this
conditi
on
occurs
when
the
Busines
s
Central
Server
instanc
e
starts.

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

206 Inform
ation

11 Operati
onal

Messa
ge:
'Micros
oft
Dynam
ics
NAV
Data
Service'
at
net.tcp:
//[Serv
er]:
[Port]/[
ServerI
nstanc
e]/ODa
ta has
stoppe
d.

Remark
s:
Indicat
es that
the
listenin
g port
for
OData
web
service
s on
the
Busines
s
Central
Server
instanc
e has
been
closed.

Typicall
y, this
conditi
on
occurs
when
the
Busines
s
Central
Server
instanc
e is
stoppe
d.

207 Inform
ation

8 Operati
onal

Messa

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

ation onal ge:
'Micros
oft
Dynam
ics
NAV
Busines
s Web
Service
s' is
listenin
g to
request
s at
net.tcp:
//[Serv
er]:
[Port]/[
ServerI
nstanc
e]/WS/
Service

Remark
s:
Indicat
es that
the
listenin
g port
for
SOAP
web
service
s has
been
opened
on the
Busines
s
Central
Server
instanc
e and it
is
ready
to
handle
SOAP
request
s.

Typicall
y, this
conditi
on
occurs
when
the
Busines
s
Central
Server
instanc
e
starts.

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

starts.

208 Inform
ation

11 Operati
onal

Messa
ge:
'Micros
oft
Dynam
ics
NAV
Busines
s Web
Service
s' at
net.tcp:
//[Serv
er]:
[Port]/[
ServerI
nstanc
e]/WS/
Service
s has
stoppe
d.

Remark
s:
Indicat
es that
the
listenin
g port
for
SOAP
web
service
s has
been
closed.

Typicall
y, this
conditi
on
occurs
when
the
Busines
s
Central
Server
instanc
e is
stoppe
d.

209 Inform
ation

8 Operati
onal

Messa
ge:
'Micros
oft
Dynam
ics
NAV
Service'
is

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

listenin
g to
request
s at
net.tcp:
//[Serv
er]:
[Port]/[
ServerI
nstanc
e]/Servi
ce

Remark
s:
Indicat
es that
the
listenin
g port
for
Dynam
ics
NAV
Client
connec
ted to
Busines
s
Central
has
opened
and it
is
ready
for
Dynam
ics
NAV
Client
connec
ted to
Busines
s
Central
connec
tions.

Typicall
y, this
conditi
on
occurs
when
the
Busines
s
Central
Server
instanc
e
starts.

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

210 Inform
ation

11 Operati
onal

Messa
ge:
'Micros
oft
Dynam
ics
NAV
Service'
at
net.tcp:
//[Serv
er]:
[Port]/[
ServerI
nstanc
e]/Servi
ce has
stoppe
d.

Remark
s:
The
listenin
g port
for
Dynam
ics
NAV
Client
connec
ted to
Busines
s
Central
has
closed.

Typicall
y, this
conditi
on
occurs
when
the
Busines
s
Central
Server
instanc
e is
stoppe
d.

211 Inform
ation

12 Operati
onal

Remark
s:
This
event
ID is
used
for
various
informa
tion
messag
es that
are
generat
ed by
Micros
oft
Dynami
cs NAV
Applica
tion
Server
(NAS)
and
backgr
ound
session
s.

Becaus
e NAS
does
not
have a
user
interfac
e,
events
are
used to
provide
operati
onal
informa
tion to
adminis
trators
or
develo
pers.

214 Inform
ation

8 Operati
onal

Messa
ge:
'Micros
oft
Dynam
ics

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

NAV
Service'
is
listenin
g to
request
s at
net.tcp:
//[Serv
er]:
[Port]/[
ServerI
nstanc
e]/Man
ageme
ntServi
ce.

Remark
s:
Indicat
es that
the
listenin
g port
for
Busines
s
Central
Server
Admini
stratio
n tool
has
been
opened
on the
Busines
s
Central
Server
instanc
e.

Typicall
y, this
conditi
on
occurs
when
the
Busines
s
Central
Server
instanc
e
starts.

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

215 Inform
ation

11 Operati
onal

Messa
ge:
'Micros
oft
Dynam
ics
NAV
Service'
at
net.tcp:
//[Serv
er]:
[Port]/[
ServerI
nstanc
e]/Man
ageme
ntServi
ce has
stoppe
d.

Remark
s:
Indicat
es that
the
listenin
g port
for the
Busines
s
Central
Server
Admini
stratio
n tool
has
closed.

Typicall
y, this
conditi
on
occurs
when
the
Busines
s
Central
Server
instanc
e is
stoppe
d.

216 Error 13 Admin Remark
s:
This
event

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

ID is
used
for
various
errors
that
occur
when
the
Busines
s
Central
Server
cannot
start or
establis
h a
connec
tion to
the
Busines
s
Central
databa
se on
SQL
Server.

These
events
are
caused
by
unhan
dled
excepti
ons
that
are
thrown
the
Busines
s
Central
Server
instanc
es and
indicat
e that
an
unreco
verable
conditi
on has
occurre
d.

The
errors
can be
caused
by an
incorre
ct
configu

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

ration
of the
Busines
s
Central
Server
or the
Micros
oft SQL
Server
connec
tion.

To
resolve
errors,
verify
the
Busines
s
Central
Server
and
SQL
Server
configu
ration.
For
more
inform
ation,
see
Config
uring
Busines
s
Central
Server
and
Trouble
shootin
g: SQL
Server
Connec
tion
Proble
ms.

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/troubleshooting-sql-server-connection-problems

217 Inform
ation

13 Operati
onal

Remark
s:
This
event
ID is
used
for
various
inform
ation
messag
es that
occur
when
the
Busines
s
Central
Server
starts
and
establis
hes a
connec
tion to
the
Busines
s
Central
databa
se on
SQL
Server.

These
events
are
caused
by
excepti
ons
that
are
thrown
by the
Busines
s
Central
Server
instanc
es.
These
events
are
typical
conditi
ons
and are
for
inform
ation

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

ation
only.

218 Warnin
g

13 Admin Remark
s:
This
event
ID is
used
for
various
warnin
gs that
occur
when
the
Busines
s
Central
Server
starts
and
establis
hes a
connec
tion to
the
Busines
s
Central
databa
se on
SQL
Server.

These
events
are
caused
by
handle
d
excepti
ons
that
are
thrown
by the
Busines
s
Central
Server
instanc
es.

Typicall
y, the
Busines
s
Central
Server
will
continu
e to
operat
e, but

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

e, but
you
should
addres
s the
proble
m that
is
describ
ed in
the
event
messag
e.

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

219 Inform
ation

12 Operati
onal

Messa
ge:
Micros
oft
Dynam
ics
NAV
Applica
tion
Server
for
tenant
'[Tenan
tID]' is
schedul
ed to
start
with
the
followi
ng
configu
ration:
Compa
ny:
[Comp
anyNa
me],
Codeu
nit:
[Startu
pCode
unitID],
Metho
d:
[Startu
pMeth
od],
Argum
ents:
[Startu
pArgu
ments]

Remark
s:
Refers
to NAS
service
only.
Indicat
es that
the
NAS
service
is
schedul
ed to
start.

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

220 Inform
ation

12 Operati
onal

Messa
ge:
Micros
oft
Dynam
ics
NAV
Applica
tion
Server
for
tenant
'[Tenan
tID]'
has
comple
ted.

Remark
s:
Refers
to NAS
service
only.
Indicat
es that
the
NAS
service
has
started
success
fully.

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

221 Error 12 Admin Messa
ge:
The
Micros
oft
Dynam
ics
NAV
Applica
tion
Server
session
for
tenant
'[Tenan
tID]'
has
failed
and will
be
restart
ed.
Reason
:
[Messa
ge]

Remark
s:
Refers
to NAS
service
only.
Indicat
es that
an
excepti
on has
occurre
d and
NAS
service
did not
start.
NAS
service
will
attemp
t to
start
again.

222 Error 12 Admin Messa
ge:
The
Micros
oft
Dynam
ics
NAV

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

Applica
tion
Server
session
for
tenant
'[Tenan
tID]'
has
perma
nently
failed
and will
not be
restart
ed.
Reason
:
[Messa
ge]

Remark
s:
Refers
to NAS
service
only.
Indicat
es that
an
excepti
on has
occurre
d and
NAS
service
did not
start.
The
NAS
service
will not
be
restart
ed
becaus
e the
maxim
um
numbe
r of
times
that
service
can
attemp
t to
restart
has
been
met.
This
value is
specifie
d by

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

the
NASSer
vicesRe
tryAtte
mptsPe
rDay in
the
Custo
mSetti
ng.xml
file for
the
Busines
s
Central
Server
instanc
e. For
more
inform
ation,
see
Config
uring
NAS
Service
s.

223 Inform
ation

12 Operati
onal

Messa
ge:
The
service
is
initializi
ng its
configu
ration.

Remark
s:
Occurs
when
the
Busines
s
Central
Server
instanc
e has
been
started
but is
not
ready
for use.

The
Busines
s
Central
Server
instanc
e is
loading
the

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

https://docs.microsoft.com/dynamics-nav/configuring-nas-services

configu
ration
setting
s that
are
specifie
d in
the
Custo
mSetti
ngs.xml
file. For
more
inform
ation
about
the
Custo
mSetti
ngs.xml
file, see
Config
uring
Busines
s
Central
Server.

224 Inform
ation

12 Operati
onal

Messa
ge:
The
service
has
comple
ted
configu
ration
and is
ready.

Remark
s:
Occurs
when
the
Busines
s
Central
Server
is
started
and is
ready
for use.

225 Inform
ation

12 Operati
onal

Messag
e:
The
service
is
shuttin
g
down.

Remark
s:
Occurs
when
Busines
s
Central
Server
is
stoppe
d.

226 Inform
ation

12 Operati
onal

Messa
ge:
The
NAV
applica
tion
was
mount
ed
from

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

databa
se
'[Datab
aseNa
me]' on
databa
se
server
'[SQLSe
rverIns
tance]'.

Remark
s:
Refers
to
Busines
s
Central
Server
instanc
es that
are
used in
a
multite
nant
environ
ment.

Indicat
es that
the
Busines
s
Central
Server
instanc
e is
connec
ted to
the
Busines
s
Central
applica
tion in
the
specifie
d
applica
tion
databa
se.

Typicall
y, this
conditi
on
occurs
when
the
Busines
s
Central

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

Server
instanc
e starts
or the
Mount
-
NAVAp
plicatio
n
cmdlet
is run.

227 Error 12 Admin Messa
ge:
The
NAV
applica
tion
could
not be
mount
ed for
databa
se
'[Datab
aseNa
me]' on
databa
se
server
'[SQLSe
rverIns
tance]'
due to
the
followi
ng
error:
[Messa
ge].

Remark
s:
Refers
to
Busines
s
Central
Server
instanc
es that
are
configu
red for
multite
nancy.

Indicat
es that
the
Busines
s
Central
Server
instanc

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

e
cannot
connec
t the
Busines
s
Central
applica
tion in
the
specifie
d
applica
tion
databa
se.

Verify
that
Busines
s
Central
Server
is
configu
red to
use the
correct
applica
tion
databa
se. For
more
inform
ation,
see
Migrati
ng to
Multite
nancy.

228 Inform
ation

12 Operati
onal

Messa
ge:
Tenant
'[Tenan
t]' was
mount
ed
from
databa
se
'[Datab
aseNa
me]' on
databa
se
server
'[SQLSe
rverIns
tance]'.

Remark
s:
Refers
to the

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

file:///T:/q4ru/deployment/Migrating-to-Multitenancy.html

Busines
s
Central
Server
instanc
es that
are
configu
red for
multite
nancy.

Indicat
es that
the
Busines
s
Central
Server
is
connec
ted to
the
tenant
that is
in the
specifie
d
tenant
databa
se.

Typicall
y, this
conditi
on
occurs
when
the
Busines
s
Central
Server
instanc
e starts
or
when
the
Mount
-
NAVTe
nantcm
dlet is
run.

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

229 Error 12 Admin Messa
ge:
Tenant
'[Tenan
tID]'
could
not be
mount
ed due
to the
followi
ng
error:
[Messa
ge]

Remark
s:
Refers
to
Busines
s
Central
Server
instanc
es that
are
configu
red for
multite
nancy.

Occurs
when
the
Busines
s
Central
Server
instanc
e
cannot
connec
t to the
tenant
databa
se.

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

230 Inform
ation

12 Operati
onal

Messa
ge:
Tenant
'[Tenan
t]' was
dismou
nted.

Remark
s:
Refers
only to
Busines
s
Central
Server
instanc
es that
are
used in
a
multite
nant
environ
ment.

Typicall
y, this
conditi
on
occurs
when
the
[Dismo
unt-
NAVTe
nant
cmdlet
is run.

231 Error 12 Admin Remark
s:
This
event
ID is
used
for
various
errors
that
occur
when
authen
ticating
a
Busines
s
Central
user
who is

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

trying
to log
on to
the
Busines
s
Central
Server
from a
RoleTail
ored
client.

This
event
is
caused
by an
error in
the
authen
tication
system.

This
event
is only
relevan
t when
the
Busines
s
Central
Server
instanc
e is
configu
red for
NavUs
erPass
word
or
Access
Control
Service
credent
ial
types.

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

232 Inform
ation

12 Operati
onal

Messa
ge:
A user
success
fully
authen
ticated
against
the
server.

Remark
s:
This
event
occurs
when a
user
success
fully
logs on
to the
Busines
s
Central
Server
instanc
e from
a
RoleTail
ored
client.

This
event
is only
relevan
t when
the
Busines
s
Central
Server
instanc
e is
configu
red for
NavUs
erPass
word
or
Access
Control
Service
credent
ial
types.

232 Inform
ation

12 Operati
onal

Messa
ge:

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

A user
provide
d
invalid
credent
ials.
Authen
tication
was
not
success
ful.

Remark
s:
This
event
occurs
when a
user
provide
s an
invalid
user
name
or
passwo
rd
when
the
user
logs on
to the
Busines
s
Central
Server
instanc
e from
a
RoleTail
ored
client.

This
event
is only
relevan
t when
the
Busines
s
Central
Server
instanc
e is
configu
red for
NavUs
erPass
word
or
Access
Control
Service

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

credent
ial
types.

233 Inform
ation

12 Admin Messa
ge:
The
session
attemp
ted to
write
to
table
'[Table
Name]',
but the
write
operati
on was
rejecte
d
becaus
e it
exceed
s the
option
al table
limit of
the
license.
The
license
only
permits
writing
to
[Numb
er]
option
al
tables
per
session
. The
session
has
already
written
to the
followi
ng
tables:
'[Table
Name]',
'[Table
Name]',
'and
[Table
Name]'.

Remark
s:
This
event
pertain

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

s to
the
limited
user
license
that is
used
on the
Busines
s
Central
solutio
n. A
limited
user
license
specifie
s how
many
option
al
tables
a
session
can
write
to. For
more
inform
ation
about
licensin
g for
Busines
s
Central
, see
Micros
oft
Dynam
ics ERP
Licensi
ng
Guide.

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

http://go.microsoft.com/fwlink/?LinkID=318024

700-
706

Critical,
Error,
Warnin
g,
Inform
ation

33 Admin Teleme
try
events.
You
can
configu
re the
lowest
level of
telemet
ry
events
to be
recorde
d in
the
event
log by
changi
ng the
Diagno
stic
Trace
Level
setting
in the
Busines
s
Central
Server
instanc
e
configu
ration.
For
more
inform
ation,
see
Config
uring
Busines
s
Central
Server.

1000 Error 12 Operati
onal

Certific
ate
monito
ring
has
perma
nently
failed
and will
not be
restart
ed.
Reason
:

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

[Messa
ge]

Remark
s:
An
unhan
dled
excepti
on
occurre
d that
preven
ts the
certifica
te from
being
monito
red.
Note:
Event
IDs
1000
throug
h 1006
refer to
the
securit
y
certifica
te that
is used
by the
Busines
s
Central
Server
instanc
e to
protect
commu
nicatio
ns with
client
or web
service
s. For
more
inform
ation,
see
Using
Securit
y
Certific
ates.

1001 Inform
ation

12 Operati
onal

Messa
ge:
Config
uration
setting
'ClientS
ervices
Certific

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

ateThu
mbprin
t' has
been
update
d. It
will not
take
effect
until
the
service
is
restart
ed.

Remark
s:
Occurs
when
the
securit
y
certifica
te that
is used
by
Busines
s
Central
Server
has
been
replace
d. The
thumb
print is
set by
the
ClientS
ervices
Certific
ateThu
mbprin
t
parame
ter in
the
Custo
mSetti
ng.xml
file for
the
Busines
s
Central
Server.

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

1002 Error 12 Operati
onal

Messa
ge:
The
service
certifica
te is
valid
from
[Date]
to
[Date]
only.

Remark
s:
Occurs
when
the
securit
y
certifica
te that
is used
by the
Busines
s
Central
Server
is not
valid
for use
on the
current
date.

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

1003 Warnin
g

12 Operati
onal

Messa
ge:
The
service
certifica
te is
close
to its
expirati
on
date.

Remark
s:
Occurs
for the
first
time
30
days
before
the
expirati
on
date of
the
securit
y
certifica
te that
is used
on the
Busines
s
Central
Server,
and
then
one
time
each
day
until
the
certifica
te is
replace
d or
renewe
d.

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

1006 Inform
ation

12 Operati
onal

Messa
ge:
Config
uration
setting
'ClientS
ervices
Certific
ateThu
mbprin
t' has
been
update
d. It
will not
take
effect
until
the
service
is
restart
ed.

Remark
s:
Occurs
when a
new
securit
y
certifica
te is
applied
on
Busines
s
Central
Server.
The
thumb
print is
set by
the
ClientS
ervices
Certific
ateThu
mbprin
t
parame
ter in
the
Custo
mSetti
ng.xml
file for
the
Busines
s

EVENT
ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

Central
Server.EVENT

ID LEVEL

TASK
CATEGO
RY

CHANN
EL

MESSA
GE/REM
ARKS

Task Categories

TASK CATEGORY DESCRIPTION

8 Service connects to the Business Central Server instance.

11 Service disconnects from the Business Central Server instance.

12 Information, warning, or error message from the Business
Central Server instance.

13 Exception thrown by Business Central Server.

See Also

Task categories logically classify events according to the operations that they perform. In Event Viewer, you can
sort, include, or exclude events in the Windows Application log based on the task categories. A task category is
defined by a decimal number. The following table lists the task categories that are associated with Business Central
Server events.

Monitoring Business Central Server Events Using Event Viewer
Monitoring Business Central Server Events

Monitoring Business Central Server Events Using
Event Viewer
3/31/2019 • 5 minutes to read

About Business Central Server Events in Event Viewer

Business Central channel logs

Server folder

LOG DESCRIPTION

Admin Includes events that target end users and IT administrators.
These events typically indicate a problem that requires action
to resolve the problem. An example of an admin event is a
tenant database failing to mount on the Business Central
Server instance.

For a list and description of these events, see Business Central
Server Admin and Operational Events.

Operational Includes events that provide information about an operation
that occurred on Business Central Server instances. These
events are typically ordinary operating events that do not
require any action but can be used to analyze and diagnose a
problem. An example of an operational event is the shutting
down of the Business Central Server instance.

For a list and description of these events, see Business Central
Server Admin and Operational Events.

Debug Includes the trace event types: SQL (SQLTracing), service calls
(ServiceCalls), and AL function calls (ALTracing). For more
information about the different trace events and others ways
to monitor them, see Business Central Server Trace Events
and Monitoring Business Central Server Events .

Note: In Event Viewer, this log is hidden and disabled by
default. For information about how to show and enable this
log, see Enable Business Central Debug Logs in Event Viewer.

Events that occur on the Business Central Server instances can be recorded in event logs on the computer that is
running Business Central Server. You can view the events by using Event Viewer.

Events that occur on Business Central Server instances are recorded in the event channels specific to Business
Central and also in the general Windows Application log. Event channels provide a way to collect and view events
from a specific event trace provider. This differs from the Windows Application log which contains system-wide
events from multiple publishers (applications and components).

In the Event Viewer console tree, open Applications and Services Logs > Microsoft >
Dynamics365BusinessCentral.

The Server folder contains events from the event trace provider called Microsoft-
Dynamics365BusinessCentral-Server. The events are recorded in the following logs:

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/use-event-viewer-collect-view-trace-events

Common folder

LOG DESCRIPTION

Admin Includes custom telemetry trace events that are emitted from
the application. These are events that are sent by
SENDTRACETAG method calls from inside the application.

For more information, see Instrumenting an Application for
Telemetry.

Note The Dynamics NAV Server instance includes a
configuration setting called Diagnostic Trace Level (
TraceLevel in the customsettings.config file) that enables

you to specify the lowest severity level of telemetry events to
be recorded in the event log, or even turn off telemetry event
logging altogether. If you do not see the expected events,
then verify the Dynamics NAV Server instance configuration
with an administrator. For information, see Configuring
Business Central Server.

Operational Not applicable.

Debug Includes system telemetry trace events that occur.

Note: In Event Viewer, this log is hidden and disabled by
default. For information about how to show and enable this
log, see Enable Business Central Debug Logs in Event Viewer.

Application log

NOTE

Filtering Dynamics Server Events in Event Viewer

The Common folder contains telemetry events from the event trace provider called Microsoft-
Dynamics365BusinessCentral-Common. This folder contains strictly telemetry events, which have IDs 700-
707. The telemetry events are recorded in the following logs:

The Application log includes admin and operational type events (errors, warnings, and information messages)
that occur on the Business Central Server instance.

To view the Application log, in the console tree, choose Windows Logs, Applications.

The events in this log are the same events that are recorded in the Admin and Operation logs in the
Dynamics365BusinessCentral > Server channel. Therefore, you can consider the Application log to be a
secondary log for these events. Unless you are using System Center Operations Manager to monitor Business
Central Server events, you can disable logging Business Central Server events to the Windows Application log
and rely on Applications and Services Logs instead. For more information, see Disable Logging Events to the
Windows Application Log.

Trace events are not included in this log.

By default, the Business Central Server logs contain events of all levels (error, warning, and information) for all
Business Central Server instances. You can use the filtering functionality that is available in Event Viewer to
display only Business Central Server instance events that meet specific criteria. For example, if you have several
Business Central Server instances, you can filter logs to show only events from a specific Business Central Server

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-sendtracetag-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/use-event-viewer-collect-view-trace-events
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/disable-logging-events-windows-application-log

To filter the event log

instance. For more information, see the following example.

Example

Your Business Central Server is running several instances that are configured with multiple tenants. In Event
Viewer, you want to view only errors that occurred in the last 24 hours on the tenant MyTenant1 of the Business
Central Server instance MyNavServerInstance1.

<QueryList>
 <Query Id="0" Path="Microsoft-Dynamics365BusinessCentral-Server/Admin">
 <Select Path="Microsoft-Dynamics365BusinessCentral-Server/Admin">
 *[System[(Level=2) and TimeCreated[timediff(@SystemTime) <= 604800000]]]
 </Query>
</QueryList>

and
*[EventData[Data[@Name='tenantId'] and Data = 'MyTenant1']]
and
*[EventData[Data[@Name='serverInstanceName'] and Data='MyNavServerInstance1']]

<QueryList>
 <Query Id="0" Path="Microsoft-Dynamics365BusinessCentral-Server/Admin">
 <Select Path="Microsoft-Dynamics365BusinessCentral-Server/Admin">
 *[System[(Level=2) and TimeCreated[timediff(@SystemTime) <= 604800000]]]
 and
 *[EventData[Data[@Name='tenantId'] and Data = 'MyTenant1']]
 and
 *[EventData[Data[@Name='serverInstanceName'] and Data='MyNavServerInstance1']]
 </Select>
 </Query>
</QueryList>

1. For example, in the console tree of Event Viewer, choose Applications and Services Logs > Microsoft >
Dynamics365BusinessCentral > Server.

2. Select the Admin log.

3. In the Action pane, choose Filter Current Log.

The Filter Current Log window opens.

4. On the Filter tab, set the Logged drop-down list to Last 24 hours.

5. In the Error Level section, select the Error check box.

6. Choose the XML tab.

XML similar to the following is displayed:

Microsoft-Dynamics365BusinessCentral-Server indicates that Business Central Server is the provider of the
events in the log.

7. Select the Edit query manually check box, and then choose the Yes button.

8. In the <Select Path="Microsoft-Dynamics365BusinessCentral-Server/Admin"> element, after
*[System[(Level=2) and TimeCreated[timediff(@SystemTime) <= 86400000]]] , add the following lines:

The complete XML should look similar to the following XML:

See Also

9. Choose the OK button.

The Admin log displays only errors that occurred in the last 24 hours on tenant Tenant1 and Business Central
Server instance MyNavServerInstance1. The applied filter can be removed. Alternatively, you can save it as a
custom view. For more information about filtering in Event Viewer, see Filter Displayed Events and Advanced
XML filtering in the Windows Event Viewer.

Monitoring Business Central Server Events
Business Central Server Trace Events
Monitoring Business Central Server
Monitoring Business Central Server Using Performance Counters
Windows Event Viewer

http://go.microsoft.com/fwlink/?LinkID=516925
http://go.microsoft.com/fwlink/?LinkID=516924
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/monitor-server
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/monitor-server-using-performance-counters
http://go.microsoft.com/fwlink/?LinkID=314067

How to: Use Performance Monitor to Collect Event
Trace Data
3/31/2019 • 3 minutes to read

Create a Data Collector Set for collecting Business Central trace event
data

This topic describes how to use Windows Performance Monitor to collect event trace data for Business Central
Server. To collect trace event data, you create a Data Collector Set, and then start the Data Collector Set.

1. Start Windows Performance Monitor.

Choose Start, in the Search box, type perfmon, and then choose the related link.
2. In the navigation tree, expand Data Collector Sets, right-click User-defined, choose New, and then

choose Data Collector Set.

3. On the Create new Data Collector Set Wizard page, enter a name for the new data collector set, select
Create manually (Advanced), and then choose the Next button.

4. On the What type of data do you want to include page, select the Event trace data check box, and then
choose the Next button.

5. On the Which event trace providers would you like to enable page, choose the Add button to add a
provider.

6. In the Event Trace Providers list, select Microsoft-Dynamics365BusinessCentral-Server, and then
choose the OK button.

7. If you want to collect data for all trace events, choose the Next button. If you want to collect data on specific
trace events, do the following:

NOTE

a. In the Properties list, select Keywords (Any), and then choose the Edit button.

b. On the Property page, in the Manual box, type the keyword decimal value for the trace event. For a
list of keyword values for trace events, see Business Central Server Trace Events.

For example, if you want to collect data on service call trace events, then type 4. If you want to collect
data on more than one trace event, add the keyword values for each trace event and then use the
sum in the Manual box. For example, if you want to collect data on service calls (keyword decimal
value = 4) and AL functions (keyword decimal value = 8), then use the value 12.

Performance Monitor will automatically convert the value to hexadecimal, such as 0x4 or 0xC. You can also
enter the keyword hexadecimal values directly.

c. Choose the OK button, and then Next button.

8. On the Where would you like the data to be stored page, set the Root directory box to the folder
where you want to save the event trace log file that is generated when you run the Data Collector Set.

9. Choose the Finish button to complete the wizard

Change the Data Collector Set trace buffers

To start and stop a Data Collector Set

See Also

The new Data Collector Set appears under User Defined in the navigation pane.

Complete the next procedure to increase trace buffer settings to make sure that events are not dropped when
collecting trace event data.

PROPERTY RECOMMENDED MINIMUM VALUES

Buffer size 128

Minimum buffers 50

Maximum buffers 50

1. In the navigation pane, select the new Data Collector Set.

2. In the main pane, right-click the DataCollector01 item, and then choose Properties.

3. In the Properties dialog box, choose the Trace Buffers tab.

4. Set the following properties.

You might have to adjust these properties based on the monitoring sessions and expected number of events
that will be collected. If a large number of events are collected, then the trace buffer size and count might
have to be increased.

5. Choose the OK button to save and close the Properties dialog box.

To start to collect data, right-click the Data Collector Set, and then choose Start.

To stop collecting data, right-click the Data Collector Set, and then choose Stop.

For information about how to schedule a time to start and stop collecting data, see Schedule Data Collection in
Windows Performance Monitor.

The collected event trace data is stored in an event trace log (.etl) file in the location that you specified. You can
view the data in the log file by using various industry-standard tools, such as PerfView. For information about how
to use PerfView to view the event trace data, see Use PerfView to View Event Trace Data.

Monitoring Business Central Server Events
Use PerfView to View Event Trace Data
Instrumenting an Application for Telemetry

http://technet.microsoft.com/en-us/library/cc722312.aspx
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/monitor-use-perfview-view-event-trace-data
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/monitor-use-perfview-view-event-trace-data

How to: Use PerfView to Collect Event Trace Data
3/31/2019 • 2 minutes to read

To install PerfView

To collect event trace data

To view event trace data from an event trace log file

This topic describes how to use PerfView to collect event trace data for Business Central Server. When you collect
event trace data, the data is stored in an event trace log (.etl) file in a location that you choose.

Go to http://go.microsoft.com/fwlink/?LinkID=313428, and then follow the instructions to download and install
PerfView.

1. Open PerfView.exe.

2. On the Collect menu, choose Collect.

The Collecting data over a user specified interval dialog box appears.

3. Set the Data file field to the path and name of the log file in which to store the trace event data. The file
name must have the .etl file name extension.

4. Choose Advanced options.

The upper part of the Advanced optionsarea includes check boxes and fields that specify the providers
from which to collect event trace data.

5. In the Additional providers field, type Microsoft-Dynamics365BusinessCentral-Server.

If you want to filter on a specific trace event, include a colon after Microsoft-
Dynamics365BusinessCentral-Server, followed by the hexadecimal keyword value for the trace
event. For example, to collect trace events data on service call trace events only, then type Microsoft-
Dynamics365BusinessCentral-Server:0x4.

If you want to collect data on more than one trace event, add the keyword values for each trace event
and then use the sum in the field. For example, if you want to collect data on service calls (keyword
value = 0x4) and AL function traces (keyword value = 0x8), then type Microsoft-
Dynamics365BusinessCentral-Server:0xC in the field. In hexadecimal, the sum of 0x4 and 0x8 is
0xC.

6. Clear the check boxes above the Additional providers field for any providers that you do not want to
collect data for.

7. To start recording data, choose the Start Collection button.

8. To stop recording data, choose the Stop Collection button.

The collected event trace data is stored in an event trace log (.etl) file in the location that you specified. You can
view the data in the log file by using various industry-standard tools, such as PerfView. For information about how
to use PerfView to view the event trace data, see Use PerfView to View Event Trace Data.

1. Open PerfView.exe.

2. In PerfView, use the left pane to locate the .etl file that you want to view.

http://go.microsoft.com/fwlink/?LinkID=313428
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/monitor-use-perfview-view-event-trace-data

See Also

The left pane displays the current directory and the files that PerfView is set up to browse. To change a
directory, choose a subdirectory from the list or type the directory (for example, c:\PerfLogs) in the text box
at the top of the pane.

3. Double-click the .etl file that you want to view.

Several items appear in the left pane under the .etl file that you selected.

4. To view the event traces, double-click Events.

The Events window opens to display the contents of the .etl file. Trace events are listed in the left pane.

5. To view details about a trace event, double-click the trace event.

Monitoring Business Central Server Events
Business Central Server Trace Events
Instrumenting an Application for Telemetry

How to: Use LogMan to Collect Event Trace Data
3/31/2019 • 2 minutes to read

Collect event trace data

This article describes how to use logman to collect event trace data for Business Central Server. Logman
(logman.exe) comes with the Windows Operating System. You can use it to create and manage event trace session
and performance logs from the command prompt.

This article provides a brief introduction to using logman to collect trace event data for Business Central Server
and telemetry events. For more detailed information about logman, see Logman.

You can collect Business Central Server trace event data from two different trace event providers: Microsoft-
Dynamics365BusinessCentral-Server and Microsoft-Dynamics365BusinessCentral-Common. Microsoft-
Dynamics365BusinessCentral-Server is used for trace events like SQL traces, AL function traces, and session
calls. Microsoft-Dynamics365BusinessCentral-Common is used for telemetry events.

Data that is collected with logman is stored in an event trace log (.etl) file.

The following steps give you an example of how to use logman.

logman create trace MyTelemetryTraceData -p Microsoft-Dynamics365BusinessCentral-Common -o
c:\perflogs\MyTelemetryTraceData.etl

logman create trace MyServerTraceData -p Microsoft-Dynamics365BusinessCentral-Server -o
c:\perflogs\MyServerTraceData.etl

logman start MyTelemetryTraceData

logman start MyServerTraceData

1. Open the command prompt, and change to the directory that contains the logman.exe file.

This is typically C:\Windows\System32

2. At the command prompt, run one of the following commands to create a trace data collector.

For telemetry trace events:

For server trace events:

These commands will create event log files named MyTelemetryTraceData.etl and MyServerTraceData.etl in
the c:\perflogs folder of your computer.

3. To start the trace session, run one of the following commands.

For telemetry trace events:

For server trace events:

4. To stop the trace session, run one of the following commands.

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/cc753820(v=ws.11)

View trace event data

tracerpt c:\perflogs\MyTelemetryTraceData_000001.etl -o c:\perflogs\MyTelemetry-dmp.xml -of XML -summary
c:\perflogs\MyTelemetry-summary.txt -report c:\perflogs\MyTelemetry-rpt.xml

See Also

logman stop MyTelemetryTraceData

logman stop MyServerTraceData

For telemetry trace events:

For server trace events:

The data is now stored in an .elt file.

There are various industry tools available for viewing data in .etl files.

For example, from the command line, you can use the tracerpt command to create dump files, summary, and
report files. The following code creates files for the MyTelemetryTraceData_000001.etl file:

You can also use PerView. For more information, see Use PerfView to View Event Trace Data.

Monitoring Business Central Server Events
Business Central Server Trace Events
Instrumenting an Application for Telemetry

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/cc732700(v=ws.11)
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/monitor-use-perfview-view-event-trace-data

Monitoring Business Central Server Events with
PowerShell
3/31/2019 • 3 minutes to read

PowerShell Get-WinEvent Cmdlet

To use the Get-WinEvent Cmdlet to view events

Events that occur on the Business Central Server instances are recorded in event logs on the computer that is
running Business Central Server. You can view the events by using Windows PowerShell as described in this
article.

You can use the Get-WinEvent cmdlet of Windows PowerShell to view Business Central Server instance events
and trace events in the event logs and event tracing log files on the Business Central Server computer. The Get-
WinEvent cmdlet retrieves the same events that can be viewed in Event Viewer under Applications and Services
Logs > Microsoft > Dynamics365BusinessCentral (see Monitoring Business Central Server Events Using
Event Viewer).

The Get-WinEvent cmdlet includes several parameters that enable you to filter the events that you view and
specify how the events are displayed. Windows PowerShell enables you can create scripts that perform complex
operations for extracting and displaying specific event data. For more information about the Get-WinEvent cmdlet,
see Get-WinEvent.

For more information about installing and getting started with Windows PowerShell, see Getting Started with
Windows PowerShell.

TO VIEW COMMAND

Events in the all Dynamics365BusinessCentral > Server
logs

Get-WinEvent -ProviderName Microsoft-
Dynamics365BusinessCentral-Server

Events in the all Dynamics365BusinessCentral >
Common logs

Get-WinEvent -ProviderName Microsoft-DynamicsNav-
Common

Events in the Dynamics365BusinessCentral > Server >
Admin log

Get-WinEvent -LogName Microsoft-
Dynamics365BusinessCentral-Server/Admin

Events in the Dynamics365BusinessCentral > Common
> Admin log

Get-WinEvent -LogName Microsoft-DynamicsNav-
Common/Admin

1. If you want to view events in a Debug log, ensure that the log is enabled. The Admin and Operational
logs are enabled by default.

For information, see To enable the Business Central Server Debug Log from Windows PowerShell.

2. On the computer that is running Business Central Server, start Window PowerShell.

For more information, see Starting Windows PowerShell.

3. At the command prompt, enter the Get-WinEvent command. The following table provides some simple
example commands.

http://go.microsoft.com/fwlink/?LinkID=513535
http://go.microsoft.com/fwlink/?LinkID=254637
http://go.microsoft.com/fwlink/?LinkID=513794

 To enable the Debug Logs from Windows PowerShell

TIP

Filtering Business Central Server Events

Example 1

Get-WinEvent -LogName 'Microsoft-Dynamics365BusinessCentral-Server/Admin' -FilterXPath "*[System[(Level=2)]]
and *[EventData[Data[@Name='tenantId'] and (Data = 'MyTenant1')]] and *
[EventData[Data[@Name='serverInstanceName'] and Data='MyNavServerInstance1']]" | Format-List -Property
Message-

Example 2

Events in the Business Central Server Operational log Get-WinEvent -LogName Microsoft-
Dynamics365BusinessCentral-Server/Operational

Trace events in the Business Central Server Debug log Get-WinEvent -LogName Microsoft-
Dynamics365BusinessCentral-Server/Debug -Oldest

TO VIEW COMMAND

There are two debug logs for Business Central: Microsoft-Dynamics365BusinessCentral-Server/Debug and
Microsoft-DynamicsNav-Common/Debug.

wevtutil.exe set-log "Microsoft-Dynamics365BusinessCentral-Server/<Debug>" /q:true /e:true

wevtutil.exe set-log "Microsoft-DynamicsNav-Common/<Debug>" /q:true /e:true

1. On the computer that is running Business Central Server, start Window PowerShell as an administrator.

2. At the command prompt, run the following commands:

You can also enable the Debug log from Event Viewer. For more information, see Enable Analytic and Debug Logs.

You can filter the events that you view in a Business Central Server log by setting the FilterXpath parameter of the
Get-WinEvent cmdlet. The following examples illustrate how you can use the FilterXpath parameter to filter the
Business Central Server events.

The following example uses the Get-WinEvent cmdlet to view errors in the Business Central Server Admin log for
the tenant MyTenant1 on the server instance MyNavServerInstance1.

The following is an example of a Windows PowerShell script that you can create and run to view trace events in the
Business Central Server Debug log. The script returns the start and stop AL function trace events that take more
than four seconds to execute on the tenant MyTenant1 of the server instance MyNavServerInstance1.

http://technet.microsoft.com/en-us/library/cc749492.aspx

$maxAllowedSeconds = 4

$xPath = "*[System[(EventID = 400 or EventID = 401)]] and " +
 "*[EventData[Data[@Name='tenantId'] and (Data = 'MyTenant1')]] and " +
 "*[EventData[Data[@Name='serverInstanceName'] and Data='MyNavServerInstance1']]"

$events = Get-WinEvent -LogName 'Microsoft-Dynamics365BusinessCentral-Server/Debug' -FilterXPath $xPath -
Oldest -MaxEvents 10000

Write-Host "List of AL functions that took more than $maxAllowedSeconds seconds to execute :" -
ForegroundColor DarkYellow

for($i = 0; $i -lt $events.Length; $i+=2)
{
 $seconds = ($events[$i + 1].TimeCreated - $events[$i].TimeCreated).Seconds

 if ($seconds -ge $maxAllowedSeconds)
 {
 Write-Host $events[$i].Message `r`n -ForegroundColor Magenta
 }
}

See Also

You can create the script by using, for example, Notepad or Windows PowerShell Integrated Scripting
Environment (ISE). You save the script as .ps1 file type, and then run it from the Windows PowerShell.

Monitoring Business Central Server Events
Business Central Server Trace Events
Monitoring Business Central Server
Monitoring Business Central Server Using Performance Counters
Event Viewer

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/monitor-server
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/monitor-server-using-performance-counters
http://go.microsoft.com/fwlink/?LinkID=314067

Turn Off or Limit Telemetry Trace Events
6/25/2019 • 2 minutes to read

TIP

Use the Business Central Server Administration tool

Modify the CustomSettings.config file

The application and platform can emit many telemetry trace events, which can be collected using various event
trace tools. For example, telemetry trace events are recorded in the Business Central Server channel logs, which
you can see in Event Viewer, under Applications and Services Logs > Microsoft >
Dynamics365BusinessCentral > Common > Admin.

The number of events can place a large demand on the logging resources on the computer running the Business
Central Server instance. To help alleviate this demand, the Business Central Server instance includes a
configuration setting called Diagnostic Trace Level (TraceLevel in the customsettings.config file) that enables
you to specify the lowest severity level of customer telemetry trace events that are emitted from the application, or
even turn off telemetry events altogether. Custom telemetry trace events have IDs from 700-712.

To configure the Diagnostic Trace Level setting, you can use the Business Central Server Administration tool,
modify the Business Central Server instance configuration file (CustomSettings.config) directly, or use the Set-
NAVServerConfiguration cmdlet of the Business Central Administration Shell.

Custom telemetry events are generated by calls to the SENDTRACETAG method in code. For more information, see
Instrumenting an Application for Telemetry.

1. To start the Business Central Server Administration tool, select Start, and in the Search programs and
files box, type Microsoft Dynamics365 Business Central Administration, and then choose the related
link.

2. In the left pane, under Console root, select the Business Central Server instance.

3. In the center pane, select the Edit button.

4. Under General, set the Diagnostic Trace Level:

You use this setting to filter out lower-level events from being emitted. For example, if you set this setting to
Error, only Error and Critical events will be emitted.

Set to Off if you do not want to emit telemetry trace events.

5. Select the Save button, and then select the OK button.

You must restart the Business Central Server instance for the changes to take effect.

6. To restart, the Business Central Server instance, in the left pane, select the Business Central computer.

Unless you are administering a remote computer, this is Business Central (local).

7. In the center pane, right-click an instance, and then select Restart.

1. Open the CustomSettings.config file for the Business Central Server instance in a text editor, such as
Notepad.

https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.management/Set-NAVServerConfiguration

Use the Business Central Administration Shell

See Also

By default, the file is located in the C:\Program Files\Microsoft Dynamics 365 Business Central\140\Service
folder or C:\Program Files\Microsoft Dynamics 365 Business Central\140\Service\Instances\
<instancename> folder (for multitenant installations).

2. Set the TraceLevel setting to Critical, Error, Warning, Normal (this corresponds to the Information
level), Verbose, or Off.

3. Save the file, and then restart the Business Central Server instance.

Set-NAVServerConfiguration -ServerInstance MyServerInstance -KeyName TraceLevel -KeyValue level -ApplyTo
All

1. Start the Business Central Administration Shell.

2. At the command prompt, run the following command:

Substitute MyServerInstance with the name of the Business Central Server instance and level with either
Critical , Error , Warning , Normal , Verbose , or Off .

For more information about how to use the Business Central Administration Shell, see Business Central
PowerShell Cmdlets and Set-NAVServerConfiguration Cmdlet.

Monitoring Business Central Server Events Using Event Viewer
Monitoring Business Central Server Events
Configuring Business Central Server

https://docs.microsoft.com/en-us/powershell/business-central/overview
https://go.microsoft.com/fwlink/?linkid=401394

Monitoring Long Running SQL Queries using the
Event Log
3/31/2019 • 2 minutes to read

Defining Long Running SQL Queries

Changing Configuration Values

Set-NAVServerConfiguration -ServerInstance <ServerInstanceName> -KeyName SqlLongRunningThreshold -KeyValue
2000 -ApplyTo Memory

See Also

Microsoft Dynamics NAV 2017 is the first version that allows long running SQL queries to be logged to the
Windows Event Log. The queries are logged when the application communicates with the database and the call to
the database takes too long.

The time logged in long running SQL queries is the time spent on the called database as seen from the server.
There are multiple reasons that can cause this delay, such as the database waiting for a lock to be released, or the
database executing an operation that performs badly due to missing indexes.

The threshold of when a query is logged is controlled in the configuration value of the SqlLongRunningThreshold
key. The default value is 1000 milliseconds (ms). For more information about SqlLongRunningThreshold, see
Configuring Business Central Server, database settings section.

With Business Central, some of the configuration values for the server can be changed in the memory of the
server, without doing a server restart. To change the threshold dynamically to 2000 ms, run the Business Central
Administration Shell as Administrator and then type the following PowerShell cmdlet:

Troubleshooting: Using the Event Log to Monitor Long Running SQL Queries
Troubleshooting: Analyzing Long Running SQL Queries Involving FlowFields by Disabling SmartSQL
Set-NAVServerConfiguration
Tools for Monitoring Performance Counters and Events
Monitoring Business Central Server Using Performance Counters
Monitoring Business Central Server Events

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/Troubleshooting-Queries-Involving-FlowFields-By-Disabling-SmartSQL
https://go.microsoft.com/fwlink/?linkid=401394
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/tools-monitor-performance-counters-and-events
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/monitor-server-using-performance-counters

Optimizing SQL Server Performance with Business
Central
3/31/2019 • 2 minutes to read

See Also

The following articles describe how to optimize performance in Dynamics 365 Business Central when accessing
data from the SQL Server database.

Setting SQL Compatibility Level to Optimize Database Performance

Data Access

Table Keys and Performance

Bulk Inserts

AL Database Methods and Performance on SQL Server

Query Objects and Performance

Configuring Query Hints for Optimizing SQL Server Performance with Business Central

Troubleshooting: Analyzing Long Running SQL Queries Involving FlowFields by Disabling SmartSQL

Troubleshooting: Using Query Store to Monitor Query Performance in Business Central

Troubleshooting: Using the Event Log to Monitor Long Running SQL Queries in Business Central

Installation Considerations for Microsoft SQL Server
Microsoft SQL Server documentation

file:///T:/q4ru/administration/optimize-sql-al-Database-methods-and-performance-on-server.html
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/sql-server-query-hints
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/Troubleshooting-Queries-Involving-FlowFields-By-Disabling-SmartSQL
http://go.microsoft.com/fwlink/?LinkId=253107

Setting SQL Compatibility Level to Optimize
Database Performance
3/31/2019 • 2 minutes to read

To change the compatibility level

NOTE

See Also

If your Business Central database is running on Azure SQL Database or SQL Server 2016 or later, set the
database's compatibility level to match the database server. This will equip the database with the latest optimization
features of Azure SQL Database or SQL Server. This is particularly relevant for demonstration databases that are
installed by using the Business Central Setup because the default compatibility level matches SQL Server 2014.

You change the compatibility level of the database by using SQL Server Management Studio. There are two ways
to do this:

ALTER DATABASE <database name> SET COMPATIBILITY_LEVEL = { 140 | 130 }

Open the database properties, select the Options page, and then set the Compatibility Level:.

For more information, see View or Change the Compatibility Level of a Database.

Run the following query:

where:

<database name> is the name of the database to be modified.
140 sets the database to be compatible with SQL Server 2017
130 sets the database to be compatible with SQL Server 2016 and Azure SQL Database

For more information, see ALTER DATABASE (Transact-SQL) Compatibility Level.

The compatibility level for Azure SQL Database is subject to change. Refer to Azure SQL Database documentation for latest
compatibility level.

Optimizing SQL Server Performance
Microsoft SQL Server documentation

https://docs.microsoft.com/en-us/sql/relational-databases/databases/view-or-change-the-compatibility-level-of-a-database
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql-compatibility-level
http://go.microsoft.com/fwlink/?LinkId=253107

Data Access
3/31/2019 • 9 minutes to read

Business Central Server data caching

Data that is needed in the client goes through the following path from the Business Central Server to the SQL
Server database:

1. If the data is cached in the Business Central Server data cache, it is returned.
2. If the data is not cached in the Business Central Server data cache, it is fetched from SQL Server over the

network as follows:
a. If the data resides in SQL Servers data cache, it is returned.
b. If the data does not reside in SQL Servers data cache, it is fetched from storage and returned.

In Business Central, the data cache is shared by all users who are connected to the same Business Central Server
instance. This means that after one user has read a record, a second user who reads the same record gets it from
the cache. In earlier versions of Business Central, the data cache was isolated for each user.

The following AL functions utilize the cache system:

GET
FIND
FINDFIRST
FINDLAST
FINDSET
COUNT
ISEMPTY
CALCFIELDS

There are two types of caches, global and private:

Global cache is for all users connected to a Business Central Server instance.
Private cache is per user, per company, in a transactional scope. Data in a private cache for a given table and
company is flushed when a transaction ends.

The cache that is used is determined by the lock state of a table. If a table is not locked, then the global cache is
queried for data; otherwise, the private cache is queried.

Results from query objects are not cached.

For a call to any of the FIND functions, 1024 rows are cached. You can set the size of the cache by using the Data
Cache Size setting in the Business Central Server configuration file. The default size is 9, which approximates a
cache size of 500 MB. If you increase this number by one, then the cache size doubles.

You can bypass the cache by using the SELECTLATESTVERSION method (Database).

Business Central synchronizes caching between Business Central Server instances that are connected to the same
database. By default, the synchronization occurs every 30 seconds.

You can set the cache synchronization interval by using the CacheSynchronizationPeriod parameter in the
CustomSettings.config file. This parameter is not included in the CustomSetting.config file by default, so you must
add it manually using the following format:

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/database/database-selectlatestversion-method

<add key="CacheSynchronizationPeriod" value="hh:mm:ss" />

Business Central Server connections to SQL Server

Data read/write performance

For example, to set the interval to 50 seconds, set the value to "00:00:50" . For more information about the
CustomSettings.config file, see Configuring Business Central Server.

Starting from Microsoft Dynamics NAV 2013, the Business Central Server uses ADO.NET to connect to the SQL
Server database. Installations of Microsoft Dynamics NAV 2009 and earlier uses ODBC to connect to the SQL
Server database.

The ADO.NET interface is a managed data access layer that supports SQL Server connection pooling, which can
dramatically decrease memory consumption by Business Central Server. SQL Server connection pooling also
simplifies deployment of the Business Central three-tier architecture for deployments where the three tiers are
installed on separate computers. Specifically, administrators are no longer required to manually create SPNs or to
set up delegation when the client, Business Central Server, and SQL Server are on separate computers.

There is no longer a one-to-one correlation between the number of client connections and the number of SQL
Server connections. In earlier versions of Business Central, each SQL Server connection could consume up to 40
MB of memory. Additionally, memory allocation is now in managed memory, which is generally more efficient
than unmanaged memory.

Records are retrieved using Multiple Active Result Sets (MARS). methods such as NEXT, FIND('-'), FIND('+'),
FIND('>'), and FIND('<') are generally faster with MARS than the server cursors that earlier versions of Business
Central used.

AL functions COUNT and AVERAGE formulas can use SIFT indexes. For more information, see CALCSUMS
method (Record) and CALCFIELDS method (Record). MIN and MAX formulas use SQL Server MIN and MAX
functions exclusively.

RecordIds and SQL Variant columns in a table do not prevent the use of BULK inserts. For more information, see
Bulk Inserts.

In most cases, filtering on FlowFields issues a single SQL statement. In earlier versions of Business Central,
filtering on FlowFields issued an SQL statement for each filtered FlowField and for each record in the table in
order to calculate the filtered FlowFields. The exceptions in Business Central in which filtering on FlowFields does
not issue a single SQL statement are as follows:

You use the ValueIsFilter option on a field and the field has a value.

A second predicate is specified on a source field and the field that is used for the second predicate has a
value. For example, when you specify the CalcFormula Property for a FlowField, you can specify table filters
in the Calculation Formula window. If you specify two or more filters on the same source field, then
filtering does not issue a single SQL statement.

You specify Validated for the SecurityFiltering Property on a record. This value for the SecurityFiltering
property means that each record that is part of the calculation must be verified for inclusion in the security
filter.

In most cases, calling the FIND or NEXT functions after you have set the view to include only marked records
issues a single SQL statement. In earlier versions of Business Central, calling FIND or NEXT functions that have
marked records issued an SQL statement for each mark. There are some exceptions if many records are marked.
For more information, see MARKEDONLY method (Record).

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-calcsums-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-calcfields-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-calcformula-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-securityfiltering-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-markedonly-method

Using SQL Server table partitioning

How Business Central supports partitioning

NOTE

Table Partioning Example

As of Microsoft Dynamics NAV 2018, the use of SQL Server table and index partitioning is a supported
configuration. The data of partitioned tables and indexes is divided into units that can be spread across more than
one filegroup in a SQL Server database. All partitions of a single index or table must reside in the same database.
The table or index is treated as a single logical entity when queries or updates are performed on the data. Prior to
SQL Server 2016 SP1, partitioned tables and indexes were not available in every edition of SQL Server.
Partitioning large tables or indexes can have the following manageability and performance benefits:

You can perform maintenance operations on one or more partitions more quickly. The operations are more
efficient because they target only these data subsets, instead of the whole table. For example, you can choose to
rebuild one or more partitions of an index.
You might be able to improve query performance, based on the types of queries you frequently run and on
your hardware configuration. When SQL Server performs data sorting for I/O operations, it sorts the data first
by partition. SQL Server accesses one drive at a time, and this might reduce performance. To improve data
sorting performance, stripe the data files of your partitions across more than one disk by setting up a RAID
(redundant array of independent disks). In this way, although SQL Server still sorts data by partition, it can
access all the drives of each partition at the same time.
You can use partitioning to distribute parts of tables to different IO sub systems. For example, you could
archive data for old transactions on slow and inexpensive disks and keep current data on solid-state drives
(SSD). You can improve performance by enabling lock escalation at the partition level instead of a whole table.
This can reduce lock contention on the table.

For more general information about partitioned tables and indexes in SQL Server, see Partitioned Tables and
Indexes.

If you have altered tables in a Business Central database to make them partitioned tables, the synchronization
engine, which is responsible for mapping the logical metamodel to physical tables, will respect this configuration
during upgrades. After a schema upgrade, even if tables have been dropped and recreated, the partitioning
strategy applied to the original tables will be added to the upgraded tables. You can create a partitioned table or
index in SQL Server by using SQL Server Management Studio or Transact-SQL.

For partitioning to work, the partition column must be part of the clustering key on the table.

This example uses Transact-SQL to change table G_L Entry to be partitioned on the Posting Date field, with data
partitioned on the year, and where all partitions are aligned to the PRIMARY file group.

CREATE PARTITION FUNCTION [DataHistoryPartitionmethod] (datetime)
AS RANGE LEFT FOR VALUES (
'20151231 23:59:59.997',
'20161231 23:59:59.997',
'20171231 23:59:59.997',
'20181231 23:59:59.997')
GO

1. In SQL query editor, create a partition function that creates partitions that divide on year (this can be used
for partitioning multiple tables):

2. Create a partition scheme that maps partitions to file groups. In this example, all partitions are mapped to
the PRIMARY file group (this can be used for partitioning multiple tables):

https://docs.microsoft.com/en-us/sql/relational-databases/partitions/partitioned-tables-and-indexes

TIP

Using SQL Server data compression

CREATE PARTITION SCHEME DataHistoryPartitionScheme
AS PARTITION DataHistoryPartitionmethod ALL TO ([PRIMARY])
GO

ALTER TABLE [dbo].[G_L Entry]
DROP CONSTRAINT [G_L Entry$0]
GO

ALTER TABLE [dbo].[G_L Entry]
ADD CONSTRAINT [G_L Entry$0] PRIMARY KEY CLUSTERED
(
[$companyId], [Entry No_], [Posting Date]
)
ON DataHistoryPartitionScheme([Posting Date])
GO

3. In the Dynamics NAV Development Environment, add the Posting Date field to the primary key.

For more information, see Table Keys.

4. In the Transact-SQL Editor, partition table G_L Entry by using the previously defined partition scheme:

SQL Server Management Studio includes the Create Partition Wizard to help you create partitioning functions,
partitioning schemes, as well as changing a table to be partitioned. For more information, see Create Partitioned Tables and
Indexes.

As of Business Central April 2019, it is possible to configure data compression directly in table metadata by using
the CompressionType property in AL or CSIDE. Previously, compression could only be configured in SQL Server.
You use data compression to help reduce the size of selected tables in the database. In addition to saving space,
data compression can help improve performance of I/O-intensive workloads because the data is stored in fewer
pages and queries will read fewer pages from disk. This is especially useful if your storage system is based on
disks and not SSD.

However, extra CPU resources are required on the database server to compress and decompress the data while
data is exchanged with the Business Central Server.

With the CompressionType property, you can configure row or page type compression or configure the table not
to use compression. With these compression settings, Business Central table synchronization process will make
changes to the SQL Server table, overwriting the current compression type, if any. You can choose to control data
compression directly on SQL Server by setting the CompressionType property to Unspecified, in which case
table synchronization process will not control the data compression.

To evaluate whether a table is a good candidate to compress, you can use the stored procedure
sp_estimate_data_compression_savings in SQL Server. For more information, see

sp_estimate_data_compression_savings (Transact-SQL).

Because SQL Server supports data compression on the partition level, you can combine SQL Server data
compression with table partitioning (see the previous section) to achieve flexible data archiving on historical parts
of a large table, without having the CPU overhead on the active part of the table.

https://docs.microsoft.com/en-us/sql/relational-databases/partitions/create-partitioned-tables-and-indexes
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-compressiontype-property
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-estimate-data-compression-savings-transact-sql

NOTE

See Also

Prior to SQL Server 2016 SP1, compression was not available in every edition of SQL Server.

For more general information about table compression in SQL Server, see Data Compression. For guidance on
strategy, capacity planning, and best practices for data compression, see Data Compression: Strategy, Capacity
Planning and Best Practices.

Query Objects and Performance

https://docs.microsoft.com/en-us/sql/relational-databases/data-compression/data-compression
https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008/dd894051(v=sql.100)

Table Keys and Performance in Business Central
3/31/2019 • 2 minutes to read

Defining Keys to Improve Performance

SETRANGE("Customer No.",'1000');
IF FIND('-') THEN
REPEAT
UNTIL NEXT = 0;

SETCURRENTKEY("LowSelectivityColumn");
SETFILTER("LowSelectivityColumn",'1');
SETFILTER("HighSelectivityColumn",'777');
FIND('-')

See Also

When you write AL code that searches through a subset of the records in a table, you must consider what keys are
defined for the table and write code that optimizes for the keys. For example, the entries for a specific customer are
usually a small subset of a table containing entries for all the customers.

The time that it takes to complete a loop through a subset of records depends on the size of the subset. If a subset
cannot be located and read efficiently, then performance deteriorates.

To maximize performance, you must define the keys in the table that support the code that you run. You must then
specify these keys correctly in your code.

For example, to retrieve the entries for a specific customer, you apply a filter to the Customer No. field in the Cust.
Ledger Entry table. To run the code efficiently on Microsoft SQL Server, you must define a key in the table that has
Customer No. as the first field.

The table could have the following keys:

Entry No.

Customer No.,Posting Date

The following is an example of code that finds a subset of records.

SQL Server automatically chooses which index to use in order to retrieve data in the most efficient way. SQL
Server calculates the cost of retrieving data using different indexes and then chooses the path that has the smallest
cost. For Business Central, that calculation is based only on the statistical distribution of values in a column.

For example, if a table contains 1000 rows and a column in the table contains either the value 0 or the value 1,
then that column is said to have a low selectivity. If instead a column contained the values ranging from 1 to 500
then the column is said to have a high selectivity. In the following code example, SQL Server chooses an index that
contains the HighSelectivityColumn and then sorts the rows by the LowSelectivityColumn.

Data Access
Bulk Inserts
AL Database Methods and Performance on SQL Server

file:///T:/q4ru/administration/optimize-sql-al-Database-methods-and-performance-on-server.html

Query Objects and Performance

Bulk Inserts
3/31/2019 • 2 minutes to read

Bulk Insert Constraints

IF (JnlLine.FIND('-')) THEN BEGIN
 GLEntry.LOCKTABLE;
 REPEAT
 IF (GLEntry.FINDLAST) THEN
 GLEntry.NEXT := GLEntry."Entry No." + 1
 ELSE
 GLEntry.NEXT := 1;
 // The FIND call will flush the buffered records.
 GLEntry."Entry No." := GLEntry.NEXT ;
 GLEntry.INSERT;
 UNTIL (JnlLine.FIND('>') = 0)
END;
COMMIT;

By default, Business Central automatically buffers inserts in order to send them to Microsoft SQL Server at one
time.

By using bulk inserts, the number of server calls is reduced, thereby improving performance.

Bulk inserts also improve scalability by delaying the actual insert until the last possible moment in the transaction.
This reduces the amount of time that tables are locked; especially tables that contain S IFT indexes.

Application developers who want to write high performance code that utilizes this feature should understand the
following bulk insert constraints.

If you want to write code that uses the bulk insert functionality, you must be aware of the following constraints.

Records are sent to SQL Server when the following occurs:

You call COMMIT to commit the transaction.

You call MODIFY or DELETE on the table.

You call any FIND or CALC methods on the table.

Records are not buffered if any of the following conditions are met:

The application is using the return value from an INSERT call; for example, " IF (GLEntry.INSERT) THEN ".

The table that you are going to insert the records into contains any of the following:

BLOB fields

Fields with the AutoIncrement property set to Yes

The following code example cannot use buffered inserts because it contains a FIND call on the GL/Entry table
within the loop.

If you rewrite the code, as shown in the following example, you can use buffered inserts.

IF (JnlLine.FIND('-')) THEN BEGIN
 GLEntry.LOCKTABLE;
 IF (GLEntry.FINDLAST) THEN
 GLEntry.Next := GLEntry."Entry No." + 1
 ELSE
 GLEntry.Next := 1;
 REPEAT
 GLEntry."Entry No.":= GLEntry.Next;
 GLEntry.Next := GLEntry."Entry No." + 1;
 GLEntry.INSERT;
 UNTIL (JnlLine.FIND('>') = 0)
END;
COMMIT;
// The inserts are performed here.

Disabling Bulk Inserts

See Also

Disabling bulk inserts can be helpful when you are troubleshooting failures that occur when inserting records. To
disable bulk inserts, you set the BufferedInsertEnabled parameter in the CustomSettings.config file of the
Business Central Server to FALSE . For more information, see Configuring Business Central Server.

Data Access
Table Keys and Performance
AL Database Methods and Performance on SQL Server
Query Objects and Performance

file:///T:/q4ru/administration/optimize-sql-al-Database-methods-and-performance-on-server.html

AL Database Methods and Performance on SQL
Server
3/31/2019 • 5 minutes to read

AL and SQL Statements
GET, FIND, and NEXT

Dynamic Result Sets

This topic describes the relationship between basic database functions in AL and SQL statements.

The AL language offers several methods to retrieve record data. In Dynamics 365 Business Central, records are
retrieved using multiple active result sets (MARS). Generally, retrieving records with MARS is faster than with
server-side cursors. Additionally, each function is optimized for a specific purpose. To achieve optimal performance
you must use the method that is best suited for a given purpose.

Record.GET is optimized for getting a single record based on primary key values.

Record.FIND is optimized for getting a single record based on the primary keys in the record and any filter
or range that has been set.

Record.FIND('-') and Record.FIND('+') are optimized for reading primarily from a single table when the
application might not read all records. FIND('-') is implemented by issuing a self-tuning TOP X call, where X
can change over time, based on statistics of the number of rows read.

The following are examples of scenarios in which you should use the FIND('-') function to achieve optimal
performance:

Before you post a general journal batch, you must check all journal lines for validity and verify that all
lines balance. After the first line when an error is found, you do not have to retrieve the rest of the
rows.

If you want to fulfill multiple outstanding orders from a recent purchase but you do not know how
many orders are covered by the purchase.

Record.FINDSET(ForUpdate, UpdateKey) is optimized for reading the complete set of records in the
specified filter and range. The UpdateKey parameter does not influence the efficiency of this method in
Dynamics 365 Business Central, such as it did in Microsoft Dynamics NAV 2009.

FINDSET is not implemented by issuing a TOP X call.

Record.FINDFIRST and Record.FINDLAST are optimized for finding the single first or last record in the
specified filter and range.

Record.NEXT can be called at any time. However, if Record.NEXT is not called as part of retrieving a
continuous result set, then Business Central calls a separate SQL statement in order to find the next record.

Any result set that is returned from a call to the find methods discussed in the previous section is dynamic. That
means that the result set is guaranteed to contain any changes that you make further ahead in the result set.
However this feature comes at a cost. If any modifications are made to a table which is being traversed, then
Business Central might have to issue an extra SQL statement to guarantee that the result set is dynamic.

The following code shows how records are most efficiently retrieved. FINDSET is the most efficient method to use
because this example reads all records.

IF FINDSET THEN
 REPEAT
 // Insert statements to repeat.
 UNTIL NEXT = 0;

CALCFIELDS, CALCSUMS, and COUNT

SETAUTOCALCFIELDS

IF Customer.FINDSET() THEN REPEAT
 Customer.CALCFIELDS(Customer.Balance)
 IF (Customer.Balance > MaxCreditLimit) THEN BEGIN
 Customer.Blocked = True;
 Customer.MODIFY();
 END
 ELSE IF (Customer.Balance > LargeCredit) THEN BEGIN
 Customer.Caution = True;
 Customer.MODIFY();
 END;
UNTIL Customer.NEXT = 0;

Customer.SETFILTER(Customer.Balance,’>%1’, LargeCredit);
IF Customer.FINDSET() THEN REPEAT
 Customer.CALCFIELDS(Customer.Balance)
 IF (Customer.Balance > MaxCreditLimit) THEN BEGIN
 Customer.Blocked = True;
 Customer.MODIFY();
 END
 ELSE IF (Customer.Balance > LargeCredit) THEN BEGIN
 Customer.Caution = True;
 Customer.MODIFY();
 END;
UNTIL Customer.NEXT = 0;

Each call to CALCFIELDS, CALCFIELD , CALCSUMS, or CALCSUM functions that calculates a sum requires a
separate SQL statement unless the client has calculated the same sum or another sum that uses the same
SumIndexFields or filters in a recent operation, and therefore, the result is cached.

Each CALCFIELDS or CALCSUMS request should be confined to use only one SIFT index. The SIFT index can
only be used if:

All requested sum-fields are contained in the same SIFT index.

The filtered fields are part of the key fields specified in the SIFT index containing all the sum fields.

If neither of these requirements is fulfilled, then the sum will be calculated directly from the base table.

In Dynamics 365 Business Central, S IFT indexes can be used to count records in a filter provided that a S IFT index
exists that contains all filtered fields in the key fields that are defined for the SIFT index.

It is a common task to retrieve data and request calculation of associated FlowFields. The following example
traverses customer records, calculates the balance, and marks the customer as blocked if the customer exceeds the
maximum credit limit. Note the Customer record and associated fields are imaginary.

In Dynamics 365 Business Central, you can do this much faster. First, we set a filter on the customer. This could also
be done in Business Central 2009, but behind the scenes the same code as mentioned earlier would be executed. In
Dynamics 365 Business Central, setting a filter on a record is translated into a single SQL statement.

In the previous example, an extra call to CALCFIELDS still must be issued for the code to be able to check the value

Customer.SETFILTER(Customer.Balance,’>%1’, LargeCredit);
Customer.SETAUTOCALCFIELDS(Customer.Balance)
IF Customer.FINDSET() THEN REPEAT
 IF (Customer.Balance > MaxCreditLimit) THEN BEGIN
 Customer.Blocked = True;
 Customer.MODIFY();
 END
 ELSE IF (Customer.Balance > LargeCredit) THEN BEGIN
 Customer.Caution = True;
 Customer.MODIFY();
 END;
UNTIL Customer.NEXT = 0;

INSERT, MODIFY, DELETE, and LOCKTABLE

See Also

of Customer.Balance. In Dynamics 365 Business Central, you can optimize this further by using the new
SETAUTOCALCFIELDS method.

Each call to INSERT, MODIFY , or DELETE functions requires a separate SQL statement. If the table that you
modify contains SumIndexes, then the operations will be much slower. As a test, select a table that contains
SumIndexes and execute one hundred INSERT, MODIFY , or DELETE operations to measure how long it takes to
maintain the table and all its SumIndexes.

The LOCKTABLE function does not require any separate SQL statements. It only causes any subsequent reading
from the table to lock the table or parts of it.

Table Keys and Performance
Bulk Inserts
GET Method (Record)
FIND Method (Record)
NEXT Method (Record)
FINDSET Method (Record)
FINDFIRST Method (Record)
FINDLAST Method (Record)
CALCFIELDS Method (Record)
CALCFIELD Method (FieldRef)
CALCSUMS Method (Record)
CALCSUM Method (FieldRef)
SETAUTOCALCFIELDS Method (Record)
INSERT Method (Record)
MODIFY Method (Record)
DELETE Method (Record)
LOCKTABLE Method (Record)

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-get-method-record
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-find-method-record
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-next-method-record
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-findset-method-record
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-findfirst-method-record
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-findlast-method-record
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-calcfields-method-record
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-calcfield-method-fieldref
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-calcsums-method-record
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-calcsum-method-fieldref
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-setautocalcfields-method-record
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-insert-method-record
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-modify-method-record
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-delete-method-record
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-locktable-method-record

Query Objects and Performance
3/31/2019 • 3 minutes to read

FlowFields in Queries

IMPORTANT

Covering Indexes

Covering SIFT Indexes

A query is an object in Dynamics 365 Business Central that you use to specify a set of data that you want to read
from the Business Central database. You can query the database to retrieve one or more fields from a single table
or multiple tables. You can specify how to join the tables in the query. You can specify totaling methods on fields,
such as sums and averages. This topic describes how to design queries and table keys in the most efficient way.

A sub-query is automatically added to the SQL statement to retrieve each FlowField in a query. This allows
Business Central to retrieve all the data in one request.

You cannot use a FlowField on a virtual table in a query because this cannot be converted automatically into a SQL
statement.

When you use a query to select a subset of fields in a table, you should consider taking advantage of the covering
index strategy. A covering index is the index that contains all output fields required by the operation performed on
that index. A covering index data access strategy can greatly improve performance because the database must
retrieve only data from the index instead of finding data by using the index and then retrieving the data in the
clustered index. A covering index data access strategy can be used when the following conditions are true:

All columns in a given data item are part of a single Business Central key.

All columns that are used in the DataItem table filters are part of the same Business Central key.

If two DataItems are linked, then the field on the parent DataItem that links the two DataItems (the
Reference Field on the DataItemLink property), must be part of the same Business Central key as the
columns in the child DataItem.

The SQL Server optimizer automatically chooses a covering index strategy whenever possible.

For more information about SQL Server covering indexes, see SQL Server Optimization.

For more information about SQL Server clustered and non-clustered indexes, see Types of Indexes.

Similar to how indexes can be used to retrieve data for a query, S IFT indexes can be used to retrieve data for a
query that contains totals. S IFT totals are maintained after each insert, modify, or delete call, and so some or all of
the totals are already calculated. A SIFT index can be used when the following conditions are true:

The query contains at least one aggregated column with Method Type set to Totals and with Method set
to either Sum, Count, or Average.

If a DataItem contains an aggregated column, then all columns under that DataItem must be aggregated
columns, must use either the Sum, Count, or Average method, and must be part of a SumIndexField
defined on a single Business Central key.

http://go.microsoft.com/fwlink/?LinkId=257836
http://go.microsoft.com/fwlink/?LinkID=257835

Differences Between Query and Record Result Sets

Enabling and Disabling Selected Query Hints

See Also

In a query in which you have aggregations but not on all DataItems, then for the DataItems without
aggregations, the columns are part of a SumIndexField.

All non-aggregated columns under the DataItem that have aggregation are part of the key fields defined
for the same SIFT index.

All columns that are used in the DataItem table filters are part of the same Business Central key.

If two DataItems are linked, then the field on the parent DataItem that links the two DataItems (the
Reference Field in the DataItemLink property) must be part of the same Business Central key as the
columns in the child DataItem.

Business Central Server automatically use a S IFT index for query objects whenever possible.

Business Central does not do any caching for query result sets. When you run a query, Business Central always
gets the data directly from SQL Server.

Query result sets are not guaranteed to be dynamic, whereas record result sets are always dynamic. This means
that if you insert or modify data in result set row that you have not yet looped through, then it is not guaranteed
that the query result set includes those changes.

SQL Server query optimizer will try to select the best execution plan for SELECT, INSERT, UPDATE, and DELETE
statements. Most of the time, query optimizer makes the right choice. Query hints are strategies that can be
enforced by the SQL Server query processor to override any execution plan that the query optimizer might select
for a query. The Business Central Server instance includes configuration settings that let you enable or disable the
use of the selected query hints on the database.

For more information, see Configuring Query Hints for Optimizing SQL Server Performance with Business
Central.

Query Object
Optimizing SQL Server Performance with Business Central

https://docs.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-query?view=sql-server-2017
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/sql-server-query-hints

Troubleshooting: Using Query Store to Monitor
Query Performance in Business Central
3/31/2019 • 2 minutes to read

What is SQL Server Query Store?

Where is SQL Server Query Store available?

What are the common scenarios for using the Query Store feature?

Do you want to read more?

See Also

The SQL Server Query Store feature provides you with insight on database query plan choice and performance. It
simplifies database performance troubleshooting by helping you quickly find performance differences caused by
query plan changes. Query Store automatically captures a history of queries, plans, and runtime statistics, and
retains these for your review.

SQL Server Query Store is available in SQL Server (starting with SQL Server 2016) and in Azure SQL Database.

Query Store keeps a history of compilation and runtime metrics throughout query execution. With this
information, you can get some answers on questions about your workload, such as:

What was the last n queries executed on the database?
What were the number of executions for each query?
Which queries had the longest average execution time within last hour?
Which queries had the biggest average physical IO reads in last 24 hours, with corresponding average row
count and execution count?

Please visit the SQL Server documentation for more information on setup, configuration and usage of Query
Store:

Monitoring Performance By Using the Query Store

Operating the Query Store in Azure SQL Database

Installation Considerations for Microsoft SQL Server

https://docs.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-operate-query-store

Troubleshooting: Using the Event Viewer to Monitor
Long Running SQL Queries in Business Central
3/31/2019 • 2 minutes to read

Resolution

NOTE

This topic shows how you can use the Event Viewer to monitor long running SQL queries and decide which ones
can be candidates for optimization.

Identifying long running SQL queries can be a good starting point when doing a performance analysis. To find
which SQL queries performed slower than expected, open the Event Viewer and go to the Windows Logs
Application.

The SQL queries that exceed the set threshold will be displayed in the Application window of the Event Viewer as Warning.

If the value of the SqlLongRunningThreshold key was set to the default value of 1000 milliseconds, you will see
the message: "Action completed successfully, but it took longer than the given threshold." for actions that took
longer than that. To meet your performance expections in production, you can set the threshold to a different value
without doing a server restart. For more information on how you can do this, see Monitoring Long Running SQL
Queries using the Event Log.

In some cases, you can see what caused the delay by looking at the SQL statement that was generated by the code
listed in the AL CallStack column. The code below shows which AL method generated a slow performing query.

Server instance: Navision_NAV
Category: Sql
ClientSessionId: 00000000-0000-0000-0000-000000000000
ClientActivityId: 828c9342-891a-4631-8eb3-a1da7304fdc9
ServerSessionUniqueId: 24b32889-9be9-439f-b86c-9615d5e51319
ServerActivityId: 19bf285d-a8f2-42b6-a4c0-4afe9fb5b4b4
EventTime: 06/08/2018 08:10:15
Message Action completed successfully, but it took longer than the given threshold.
 Execution time: 33 ms
 Threshold: 10 ms
 Message: Long running SQL statement
 Task ID: 3
 Connection ID: 2
 Database Name: Navision_NAV
 Statement: SELECT "2161"."timestamp","2161"."User","2161"."Default Execute Time","2161"."Current Job Queue
Entry" FROM "SQLDATABASE".dbo."CRONUS International Ltd_$Calendar Event User Config_" "2161" WITH(UPDLOCK)
WHERE ("2161"."User"=@0) OPTION(OPTIMIZE FOR UNKNOWN)
 AppObjectType: CodeUnit
 AppObjectId: 2160
 AL CallStack: "Calendar Event Mangement"(CodeUnit 2160).GetCalendarEventUserConfiguration line 2
"Calendar Event Mangement"(CodeUnit 2160).FindJobQueue line 1
"Calendar Event Mangement"(CodeUnit 2160).FindOrCreateJobQueue line 1
"Calendar Event Mangement"(CodeUnit 2160).CreateOrUpdateJobQueueEntry line 1
"Calendar Event"(Table 2160).Schedule line 12
"Calendar Event"(Table 2160).OnInsert(Trigger) line 1
"Calendar Event Mangement"(CodeUnit 2160).CreateCalendarEventForCodeunit line 6
"Create Telemetry Cal. Events"(CodeUnit 1352).OnRun(Trigger) line 5

ProcessId: 15280
Tag: 000007L
ThreadId: 10
CounterInformation:

See Also
Troubleshooting: Analyzing Long Running SQL Queries Involving FlowFields by Disabling SmartSQL
Monitoring Long Running SQL Queries using the Event Log
Tools for Monitoring Performance Counters and Events
Business Central Server Administration Tool
Troubleshooting: Using Query Store to Monitor Query Performance in Business Central
SQL Trace

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/Troubleshooting-Queries-Involving-FlowFields-By-Disabling-SmartSQL
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/tools-monitor-performance-counters-and-events
https://docs.microsoft.com/en-us/sql/relational-databases/sql-trace/sql-trace

Session Timeout Settings and Configuration
3/31/2019 • 8 minutes to read

Session timeout settings overview

Business Central Server timeout settings

SETTING DESCRIPTION REMARKS

ClientServicesReconnectPeriod The amount of time during which a
client can reconnect to an existing
session on Business Central Server
before a session closes.

For more information, see Configuring
How Long a Session Remains Open
after the Client Connection is Lost.

ClientServicesIdleClientTimeout The interval of time that a Business
Central client connection can remain
inactive before the session is closed.

For more information, see Configuring
How Long a Session Remains Open
When the Client Connection is Inactive.

ClientServicesKeepAliveInterval Specifies the interval (in seconds)
between keep-alive messages that are
sent from the Dynamics NAV Client
connected to Business Central to
Business Central Server.

This setting is also used, in part, to
define the reconnect period when a
connection is lost. For more
information, see Keeping inactive
sessions alive.

Business Central Web client timeout settings

SETTING DESCRIPTION REMARKS

SessionTimeout Specifies the amount of time that
session remains open when there is no
activity over the connection from the
Business Central Web client to Business
Central Server.

For more information, see Configuring
Business Central Server.

When you start a client, like the Business Central Web client or Dynamics NAV Client connected to Business
Central, a connection is established with the Business Central Server instance and a corresponding session is
added on Business Central Server.

Business Central Server includes several timeout settings that determine when a session closes as a result of
inactivity over the client connection, lost client connection, or closing of the client. To help you configure the
timeout settings, this document provides an overview of how the session timeouts work and answers some basic
questions about session behavior.

This section provides an overview of the settings that are available in Business Central to control when a Business
Central Server session for a Business Central client connection times out and closes. Some of the settings are set
on Business Central Server and others are set for the Dynamics NAV Client connected to Business Central or for
the Business Central Web client. For more details about using these settings, see the other sections in this topic.

The following table describes the session timeout settings that are used by Business Central Server.

These settings are available in the CustomSettings.config file of Business Central Server. For more information
about this file, see Configuring Business Central Server.

The following table describes the session timeout settings that are used by the Business Central Web client.

Configuring How Long a Session Remains Open When the Client
Connection is Inactive

Configuring the inactive session timeout for the Dynamics NAV Client connected to Business Central

Configuring the inactive session timeout for the Business Central Web client

Keeping inactive sessions alive

This setting is available in the navsettings.json configuration file of the Business Central Web Server. For more
information about this file, see Configuring Web Server.

Inactivity on a connection is when the Business Central client is not sending messages to Business Central Server.
Controlling when a session will timeout and close because of inactivity is different for the Dynamics NAV Client
connected to Business Central and the Business Central Web client.

When the Dynamics NAV Client connected to Business Central is inactive, the session will remain open until the
time period that is specified by the ClientServicesIdleClientTimeout setting has passed, provided that the client has
not been stopped or the connection to Business Central Server has not been lost. The default value of the
ClientServicesIdleClientTimeout setting is MaxValue, which means that there is no time limit so the session will
remain active indefinitely.

There are two settings that control when a Web client session closes because of inactivity on a connection:

ClientServicesIdleClientTimeout setting on Business Central Server.

SessionTimeout setting on the Business Central Web Server.

The session closes according to the setting that has the shortest time period. By default, the
ClientServicesIdleClientTimeout setting is set to MaxValue, which means no time limit, and the SessionTimout
setting is 00:20:00 (20 minutes). This means that when client connection is inactive, a session will close after 20
minutes. The following figure illustrates the timeout behavior:

The SessionTimeout setting enables you to set the Business Central Web client inactive session timeout different
than for the Dynamics NAV Client connected to Business Central, which is only controlled by the
ClientServicesIdleClientTimeout setting. Typically, you will set the inactive session timeout period on Business
Central Web client connections shorter than for the Dynamics NAV Client connected to Business Central.

To keep an inactive session alive, the Dynamics NAV Client connected to Business Central uses the Windows
Communication Framework (WCF) reliable sessions feature. When the Dynamics NAV Client connected to
Business Central is inactive, reliable sessions automatically sends messages from the Dynamics NAV Client
connected to Business Central to Business Central Server. You control the interval of the keep-alive messages by
setting the ClientServicesKeepAliveInterval setting on the Business Central Server. The default value of the
ClientServicesKeepAliveInterval setting is 120 seconds (2 minutes).

For most installations, the ClientServicesKeepAliveInterval setting default value sufficient for keeping sessions
open until the ClientServicesIdleClientTimeout setting period elapses. However, when Business Central Server is
installed behind a load balancer, which is the case on Microsoft Azure, you might have to adjust the value the
ClientServicesKeepAliveInterval setting to prevent sessions from closing before the expected session timeout. A
load balancer typically has an idle timeout setting that it uses to determine whether to redirect connections.

NOTE

Configuring How Long a Session Remains Open after the Client
Connection is Lost

FAQ

How long does Business Central Server wait when the Dynamics NAV Client connected to Business Central is
inactive before closing a session??

However, you want a stable connection between the Dynamics NAV Client connected to Business Central and
Business Central Server. If there is no activity on the client connection for duration of the load balancer's idle
timeout setting, then the load balancer might redirect the client connection to another server. To avoid this
condition, we recommend that you set the ClientServicesKeepAliveInterval to half the value of the load balancer ’s
idle timeout setting.

The idle timeout on Azure is around 4 minutes, so the default setting of ClientServicesKeepAliveInterval (2 minutes) should
be sufficient.

Occasionally, a Business Central client can lose the network connection to Business Central Server. You can use
ClientServicesReconnectPeriod setting on Business Central Server to control how long a session remains open
after the connection is lost to allow time for the client to reconnect to the session.

The time a session remains open actually depends two settings: ClientServiceKeepAliveInterval and
ClientServicesReconnectPeriod. The ClientServiceKeepAliveInterval setting is used to specify an initial inactivity
period. The initial inactivity period is equal to two times the ClientServiceKeepAliveInterval setting value. After this
initial inactivity period, the session remains open for the time period that is specified
ClientServicesReconnectPeriod setting. By default, the ClientServiceKeepAliveInterval setting is 120 seconds (2
minutes) and the ClientServicesReconnectPeriod setting is 10 minutes. This means that Business Central Server
waits approximately 14 minutes for the client to reconnect before closing the session.

The following figure illustrates the reconnect session timeout behavior.

The process that occurs when a client does not reconnect to the session is explained as follows:

1. The connection is lost and the initial inactivity period starts (default is 4 minutes).

2. After the initial inactivity period, the service channel enters a faulted state.

When the service channel is in the faulted state, Business Central Server considers the session with the
client as orphaned and waits for it to reconnect.

3. If the client does not reconnect within the time period that is specified by the ClientServicesReconnectPeriod
setting (default is 10 minutes), then Business Central Server closes the session.

4. The session is then removed from the Active Session table in the Business Central.

This section answers some typical questions about session timeout.

With Dynamics NAV Client connected to Business Central, by default, Business Central Server will wait indefinitely

What happens to the session if I end the Dynamics NAV Client connected to Business Central by using Task
Manager?

What happens to the session if the client loses the connection to Business Central Server?

What happens if the session is still active when Business Central Server tries to close it?

as long as the client has not been stopped or the connection to Business Central Server has not been lost. With the
Business Central Web client, the session will remain active for 20 minutes. The Dynamics NAV Client connected to
Business Central and Business Central Web client include configuration settings that you can use to change the
inactivity timeout period. For more information, see Configuring How Long a Session Remains Open When the
Client Connection is Inactive.

If the Dynamics NAV Client connected to Business Centralis waiting for a response from Business Central Server,
as is the case with a modal dialog, then the session remains open until the time period that is specified by the
ClientServicesReconnectPeriod setting expires. When the Window Client process is ended, the service channel will
enter a faulted state. Business Central Server considers the session with the Microsoft Dynamics NAV client as
orphaned and waits for it to reconnect.

By default, it will take approximately 14 minutes for the Business Central Server to close the current session. The
time it takes to close the session is in part determined by the ClientServicesReconnectPeriod setting on Business
Central Server plus an initial 10 minute inactivity period. For more information, see Configuring How Long a
Session Remains Open after the Client Connection is Lost.

1. The server stops any executing threads when the next statement is to be executed and the current call stack
is aborted so any uncommitted transactions will be rolled back.

2. The server cancels any callbacks to the client (similar to waiting for the response to a Confirm dialog).

3. The session is closed, and then removed from the Active Session table.

Preparing Dynamics 365 for Sales for Integration
3/31/2019 • 3 minutes to read

IMPORTANT

Create a Dynamics 365 for Sales User for Connecting to Business
Central

IMPORTANT

Create the connection user

Install the Business Central Integration Solution

This article describes how to set up and configure Dynamics 365 for Sales for integrating with Business Central.
You must complete the following tasks:

1. Create a user for connecting to and synchronizing data from Business Central.

2. Install the Business Central integration solution for Dynamics 365 for Sales.

This task is optional. You only need to complete this task if you want the functionality that is provided by the
Business Central integration solution.

To perform the tasks in this topic, you must have the System Administrator security role or equivalent privileges in Dynamics
365 for Sales.

As a minimum, this must be a non-interactive user account that has the required privileges to write, read, modify,
and delete data in the entities that will be integrated with Business Central.

You will use this user account to set up the connection to Dynamics 365 for Sales from Business Central.

You should not use this account to sign in to Dynamics 365 for Sales to modify entities records that are integrated with
Business Central because the changes will be ignored by integration synchronization jobs in Business Central.

For more information about how to create users in Dynamics 365 for Sales, see
http://go.microsoft.com/fwlink/?LinkID=616518.

Business Central includes a solution that enables users to access coupled records in Business Central, such as
customers and items, from records in Dynamics 365 for Sales, such as accounts and products. The solution adds a
link on the Dynamics 365 for Sales record pages that opens the coupled Business Central record. The solution is
also used to display information from Business Central in a part on certain entity records in Dynamics 365 for
Sales, such as accounts. Installing this solution is optional.

1. From Business Central installation media (DVD), copy either the DynamicsNAVIntegrationSolution_v8.zip
or DynamicsNAVIntegrationSolution_v9.zip file to your computer.

These files are located in the CrmCustomization folder. This file is the solution package.

Use the zip version that matches the Dynamics 365 for Sales SDK version. Use
DynamicsNAVIntegrationSolution_v8.zip for legacy services running CRM or Dynamics 365 for Sales
version 8.x and earlier. Use DynamicsNAVIntegrationSolution_v9.zip for Dynamics 365 for Sales versions

http://go.microsoft.com/fwlink/?LinkID=616518

9.0 and later.

2. In Dynamics 365 for Sales, import the DynamicsNAVIntegrationSolution.zip as a solution.

This step adds the Business Central Connection entity and Business Central Account Statistics entity
in the system and additional items such as Business Central integration security roles.

For more information about how to manage solutions in Dynamics 365 for Sales,
http://go.microsoft.com/fwlink/?LinkID=616519.

3. (Optional) Set up the Business Central Connection entity to display in the Settings area of Dynamics 365
for Sales.

This enables Dynamics 365 for Sales users who are assigned the Business Central Admin role to modify
the entity in Dynamics 365 for Sales. For more information about how to modify entities in Dynamics 365
for Sales, see http://go.microsoft.com/fwlink/?LinkID=616521.

4. Assign the Business Central Integration Administrator role to the Business Central connection user.

5. Assign the Business Central Integration User role to all users who require the use of the features
provided by the Business Central integration solution.

If you install the Business Central integration solution after you have set up the connection to Dynamics 365 for
Sales from in Business Central, you must modify the connection setup to point to the URL of the Business Central
Web client.

http://go.microsoft.com/fwlink/?LinkID=616519
http://go.microsoft.com/fwlink/?LinkID=616521

Development in AL
4/4/2019 • 3 minutes to read

TIP

Understanding objects in the development environment

NOTE

NOTE

Extensions are a programming model where functionality is defined as an addition to existing
objects and defines how they are different or modify the behavior of the solution. This section
explains how you can develop extensions using the development environment for Dynamics
365 Business Central.

If you are new to building extensions, we recommend that you read this document to get an
understanding of the basics and terms you will encounter while working. Next, follow the
Getting Started with AL to set up the tools.

If you are looking for the C/SIDE documentation, visit our Dynamics NAV library.

All functionality in Dynamics 365 Business Central is coded in objects. The extension model is
object-based; you create new objects, and extend existing objects depending on what you
want your extension to do. Table objects define the table schema that holds data, page objects
represent the pages seen in the user interface and codeunits contain code for logical
calculations and for the application behavior. These objects are stored as code, known as AL
code, and are saved in files with the .al file extension. The AL Language extension also
supports the multi-root functionality which allows you to work with multiple AL folders
within one workspace. For more information on how to group a set of disparate project
folders into one workspace, see Working with multiple AL project folders within one
workspace.

A single .al file may contain multiple objects.

There are two other special objects which are specifically used for building extensions. Table
extension objects and page extension objects are used for defining additive or overriding
changes to table or page objects. For example, an extension for managing a business that
sells organic food may define a table extension object for the Item table that contains two
additional fields, Organic and Produced Locally . The Organic and Produced Locally fields
are not usually present in the Item table, but through the table extension these data fields will
now be available to store data in and to access from code. You can then use the page
extension object to display the fields that you added to the table object.

Extension objects can have a name with a maximum length of 30 characters.

You have several options for creating new objects with the AL Language extension for Visual
Studio Code. For more information about the objects that you can create for your extension,

https://docs.microsoft.com/dynamics-nav/development

Developing extensions in Visual Studio Code

TIP

Designer

Compiling and deploying

Submitting your app

See Also

see AL Development Environment.

Using the AL Language extension for Visual Studio Code, you will get the benefits of a
modern development environment along with seamless publishing and execution integration
with your Dynamics 365 Business Central tenant. For more information on getting up and
running, see Getting Started with AL.

Visual Studio Code and the AL Language extension lets you do the following tasks:

Create new files for your solution
Get assistance with creating the appropriate configuration and setting files
Use code snippets that provide templates for coding application objects
Get compiler validation while coding
Press Ctrl+F5 to publish your changes and see your code running

For more information, see Visual Studio Code Docs.

If you have previous experience working with the C/SIDE development environment and need an
overview of some of the changes between the two development environments, see Differences in
the Development Environments.

The Designer works in the client itself allowing design of pages using a drag-and-drop
interface. The Designer allows building extensions in the client itself by rearranging fields,
adding fields, and previewing the page design. For more information, see Using Designer.

Extensions are compiled as .app package files. The .app package file can be deployed to the
Dynamics 365 Business Central server. An .app package contains the various artifacts that
deliver the new functionality to the Dynamics 365 Business Central deployment as well as a
manifest that specifies the name, publisher, version, and other attributes of the extension. For
information about the manifest, see JSON Files.

When all development and testing is done, you can submit your extension package to
AppSource. Before you submit the extension package, we encourage you to read the checklist
to help facilitating the validation. For more information, see Checklist for Submitting Your
App.

Getting Started with AL
Getting Started Developing Connect Apps for Dynamics 365 Business Central
Keyboard Shortcuts
AL Development Environment
FAQ for Developing in AL

https://code.visualstudio.com/docs
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-differences

Getting Started with AL
5/24/2019 • 3 minutes to read

Steps to set up a sandbox environment and Visual Studio
Code

NOTE

Tips and tricks

To get started writing extensions for Dynamics 365 Business Central you will need a Dynamics
365 Business Central tenant, Visual Studio Code, and the AL Language extension. Visual
Studio Code is a cross platform editor that you will use for coding and debugging.

Go through the following steps to set up a sandbox environment. With this you get sample
code that compiles and runs with just a few commands.

If you want to create a container-based sandbox, see Get started with the Container Sandbox
Development Environment. For information about which sandboxes you can choose, see Choosing
Your Dynamics 365 Business Central Development Sandbox Environment.

1. Sign up for a Dynamics 365 Business Central sandbox.
2. Download Visual Studio Code.
3. Download the AL Language extension.
4. Press Ctrl+, to open the user settings window; here you can modify the telemetry settings.
5. Press Alt+A, Alt+L to trigger the AL Go! command, and then choose Microsoft cloud

sandbox.

NOTE

6. Enter the credentials you provided for the signup, and then symbols will automatically start
downloading. To manually download the symbols, press Ctrl+Shift+P and select AL:
Download symbols.

7. Press F5 to deploy and run the extension on your online sandbox tenant.

If you want to change your configuration at a later point in time, choose Add Configuration
on the right side, and then choose one of the available options.

You now have a HelloWorld sample that compiles and runs. The JSON files in the project are
automatically updated with the settings that allows you to press F5 to build and deploy the
solution.

Use Ctrl+Space to activate IntelliSense.
Always use the .al extension on new files.
Use the built-in snippets for code by starting typing t and pick from the list.
Create objects within the right object ranges, see Object Ranges in Dynamics 365 Business
Central.
Build and get inspired by our sample library on GitHub.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-get-started-container-sandbox
https://signup.microsoft.com/signup?sku=6a4a1628-9b9a-424d-bed5-4118f0ede3fd&ru=https%3A%2F%2Fbusinesscentral.dynamics.com%2FSandbox%2F%3FredirectedFromSignup%3D1
https://code.visualstudio.com/Download
https://marketplace.visualstudio.com/items?itemName=ms-dynamics-smb.al
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-syntax
https://github.com/Microsoft/al

JSON file settings

Telemetry settings

"telemetry.enableTelemetry": false,

TIP

The symbol file

Installing and publishing an extension

Controlling user access to publishing extensions

NOTE

Use Ctrl+Shift+P to clear the credentials cache if you want to deploy against a different
environment.

There are two JSON files in the project; the app.json file and the launch.json file. The files
are automatically generated for your project. For more information, see JSON files.

By default, Visual Studio Code is set up with a telemetry system to enable that data and errors
are sent to Microsoft. If you do not want to send telemetry data, you can change the
telemetry.enableTelemetry setting from true to false .

To modify the telemetry setting, press Ctrl+, in Visual Studio Code and choose the user
settings window, which opens the settings.json file, and then add
telemetry.enableTelemetry and set it to false .

The settings.json file contains user and workspace settings, these options can be modified to suit
your preference. If you want to modify Visual Studio Code editor options and functional behavior
settings, see User and Workspace Settings.

The symbol file contains metadata of the application. This is what your extension is being built
on, and therefore the symbol file must be present. If it is not present, you will be prompted to
download it. For more information about the platform symbol file, see Symbols.

To make your extension available to users, the package must be published to a specific
Microsoft Dynamics 365 Business Central Server instance. The extension can be installed for
one or more tenants. For more information about how to install and publish an extension, see
How to: Publish and Install an Extension.

The access to publishing extensions is controlled on a user or user group basis by the D365
EXTENSION MGT permission set.

If you add new permission sets and want to control the access to developing and publishing
extensions, you must include indirect read and write permissions to the NavApp table (read – for
downloading symbols, write – for publishing the app) in the permission set.

To prohibit a user from publishing, just remove the user from the D365 EXTENSION MGT
permission set.

https://code.visualstudio.com/docs/getstarted/settings
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-symbols

Next steps

See Also

Now that you have the tools and the HelloWorld example up and running, you might want to
try to create a small sample app in AL. This walkthrough guides you through how to create a
simple app adding objects, code, and publishing the app to your tenant. For more information,
see Building Your First Sample Extension With Extension Objects, Install Code, and Upgrade
Code.

AL Development Environment
FAQ for Developing in AL
Syntax
Building Your First Sample Extension With Extension Objects, Install Code, and Upgrade Code

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-syntax

Choosing Your Dynamics 365 Business Central
Development Sandbox Environment
3/31/2019 • 2 minutes to read

NOTE

Sandbox Overview

CAPABILITY ONLINE SANDBOX CONTAINER SANDBOX

Deployment Dynamics 365 Cloud Service managed
by Microsoft

Azure VM or on-premises managed by
ISV/VAR

Production data Manually uploaded using Rapid Start
packages. Or, available through the
Business Central Admin Center.

Manually uploaded using Rapid Start
packages

Production services Manually configured Not available

Cost Part of the Business Central
subscription

Locally hosted - free, Azure-hosted -
cost incurred

Development Full capabilities of the development
environment.
Designer functionality, such as:
Add/Remove components,
Move components,
Set/clear Freeze pane,
Edit captions

Full capabilities of the development
environment.
Designer functionality, such as:
Add/Remove components,
Move components,
Set/clear Freeze pane,
Edit captions

Tools Visual Studio Code, Designer Visual Studio Code, Designer, on-
premise tools such as SQL Server
Management Studio, and C/SIDE.

To get started developing for Dynamics 365 Business Central it is important to understand the different options
you have at hand. You can either choose to run a sandbox environment deployed as a Dynamics 365 Business
Central service, or you can run a container-based image either hosted as an Azure VM or locally. Both options
provide the AL development tools; the container-based sandbox additionally provides access to the C/SIDE
development tools. You can also choose to run a sandbox environment with production data using the Business
Central Admin Center. For more information, see Business Central Admin Center.

When you publish an app to the online sandbox for testing, it is published within the scope of the service node that is
hosting the sandbox. Upgrading the sandbox to a new version means that the sandbox is moved to another node that is
running the new version. All apps are removed before the sandbox is moved because they will not be available on the new
node. However, the data of the app is not removed, so you only have to re-publish and install the app to make it available.
Apps that are published to the production environment are published within a global scope and downloaded to the service
node and installed during the upgrade, which means that they will not disappear.

The following topic outlines the most important capabilities on the offered development sandbox environments
for Dynamics 365 Business Central.

Debugging Enabled Enabled

Database access No Yes

Extensions Must be manually installed. Must be manually installed.

From AppSource Available. Not available.

From File Not available. Available.

From Visual Studio Code Available. Available.

CAPABILITY ONLINE SANDBOX CONTAINER SANDBOX

Getting Started

See Also

Based on the overview above and the requirements for your development environment, you can get started with
a sandbox by following the links below:

Online Sandbox with Demo Data
Online Sandbox with Production Data
Container Sandbox

Getting Started with AL
Keyboard Shortcuts
AL Development Environment

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-get-started-container-sandbox

Building Your First Sample Extension With Extension
Objects, Install Code, and Upgrade Code
5/3/2019 • 16 minutes to read

About this walkthrough

Prerequisites

Rewards extension overview

Reward table object

This walkthrough will guide you through all the steps that you must follow to create a sample extension in AL.
New objects and extension objects will be added to the base application for a simple reward feature for customers.
Every section of this exercise includes code that serves for installing, customizing, or upgrading this sample
extension. The final result can be published and installed on your tenants.

This walkthrough illustrates the following tasks:

Developing a sample extension with a table, a card page, and a list page.

Deploying the sample extension to your development sandbox environment.

Using the Dynamics 365 Business Central Designer to modify visual aspects of the extension.

Creating extension objects that can be used to modify page and table objects.

Initializing the database during the installation of the extension.

Upgrading and preserving data during the upgrade of the extension.

To complete this walkthrough, you will need:

The Dynamics 365 Business Central tenant.

Visual Studio Code.

The AL Language extension for Visual Studio Code.

For more information on how to get started with your first extension for Dynamics 365 Business Central, see
Getting Started.

The extension enables the ability to assign one of three reward levels to customers: GOLD, S ILVER, and BRONZE.
Each reward level can be assigned a discount percentage. Different types of objects available within the AL
development environment will build the foundation of the user interface, allowing the user to edit the information.
If you look for another option to update the layout of a page, you can use the Designer drag-and-drop interface.
Additionally, this exercise contains the install code that will create the base for the reward levels. The upgrade code
is run to upgrade the extension to a newer version and it will change the BRONZE level to ALUMINUM.
Following all the steps of this walkthrough allows you to publish the extension on your tenant and create a
possible new feature for your customers.

The following code adds a new table 50100 Reward for storing the reward levels for customers. The table
consists of three fields: Reward ID , Description, and Discount Percentage. For example, the Description field

TIP

table 50100 Reward
{
 DataClassification = ToBeClassified;

 fields
 {
 // The "Reward ID" field represents the unique identifier
 // of the reward and can contain up to 30 Code characters.
 field(1;"Reward ID";Code[30])
 {
 DataClassification = ToBeClassified;
 }

 // The "Description" field can contain a string
 // with up to 250 characters.
 field(2;Description;Text[250])
 {
 // This property specified that
 // this field cannot be left empty.
 NotBlank = true;
 }

 // The "Discount Percentage" field is a Decimal numeric value
 // that represents the discount that will
 // be applied for this reward.
 field(3;"Discount Percentage";Decimal)
 {
 // The "MinValue" property sets the minimum value for the "Discount Percentage"
 // field.
 MinValue = 0;

 // The "MaxValue" property sets the maximum value for the "Discount Percentage"
 // field.
 MaxValue = 100;

 // The "DecimalPlaces" property is set to 2 to display discount values with
 // exactly 2 decimals.
 DecimalPlaces = 2;
 }
 }

 keys
 {
 // The field "Reward ID" is used as the primary key of this table.
 key(PK;"Reward ID")
 {
 // Create a clustered index from this key.
 Clustered = true;
 }
 }
}

must contain a value of type text and it cannot exceed the limit of 250 characters. The second field contains three
properties that are used to set the range of the discount percentage assigned to every customer. Properties can be
created for every field, depending on the scope.

Type ttable followed by the Tab key. This snippet will create a basic layout for a table object.

For more information about table properties, see Table Properties.

Reward card page object

TIP

page 50101 "Reward Card"
{
 // The page will be of type "Card" and will render as a card.
 PageType = Card;

 // The page will be part of the "Tasks" group of search results.
 UsageCategory = Tasks;

 // The source table shows data from the "Reward" table.
 SourceTable = Reward;

 // The layout describes the visual parts on the page.
 layout
 {
 area(content)
 {
 group(Reward)
 {
 field("Reward Id";"Reward ID")
 {
 // ApplicationArea sets the application area that
 // applies to the page field and action controls.
 // Setting the property to All means that the control
 // will always appear in the user interface.
 ApplicationArea = All;
 }

 field(Description;Description)
 {
 ApplicationArea = All;
 }

 field("Discount Percentage";"Discount Percentage")
 {
 ApplicationArea = All;
 }
 }
 }
 }
}

Reward list page object

The following code adds a new page 50101 Reward Card for viewing and editing the different reward levels that
are stored in the new Reward table. Pages are the primary object that a user will interact with and have a different
behavior based on the type of page that you choose. The Reward Card page is of type Card and it is used to view
and edit one record or entity from the Reward table.

Use the snippet tpage, Page of type card to create the basic structure for the page object.

For more information about the types of pages in AL, see Pages Overview.

The following code adds the 50102 Reward List page that enables users to view the contents of the Reward table
and edit specific records by selecting them and viewing them in the Reward Card page.

TIP

page 50102 "Reward List"
{
 // Specify that this page will be a list page.
 PageType = List;

 // The page will be part of the "Lists" group of search results.
 UsageCategory = Lists;

 // The data of this page is taken from the "Reward" table.
 SourceTable = Reward;

 // The "CardPageId" is set to the Reward Card previously created.
 // This will allow users to open records from the list in the "Reward Card" page.
 CardPageId = "Reward Card";

 layout
 {
 area(content)
 {
 repeater(Rewards)
 {
 field("Reward ID";"Reward ID")
 {
 ApplicationArea = All;
 ToolTip = 'Specifies the level of reward that the customer has at this point.';
 }

 field(Description;Description)
 {
 ApplicationArea = All;
 }

 field("Discount Percentage";"Discount Percentage")
 {
 ApplicationArea = All;
 }
 }
 }
 }
}

TIP

Designer

Use the snippet tpage, Page of type list to create the basic structure for the page object.

After you have created the objects, update the startupObjectId in the launch.json file to 50102, the ID of the
Reward List page and select the Ctrl+F5 shortcut to see the new page in your sandbox environment. You will be
asked to sign in to your Business Central.

Information about your sandbox environment and other environments is stored as configurations in the launch.json file. For
more information, see JSON Files.

Dynamics 365 Business Central Designer works in the browser and allows modifying the current page. It enables
users to add existing table fields, move fields around, or remove fields from the page. Users can make changes to
display the information they need, where they need it by using drag-and-drop components.
To show how the Designer changes the design of a page, you begin by adding two new fields to the Reward table.

field(4;"Minimum Purchase";Decimal)
{
 MinValue = 0;
 DecimalPlaces = 2;
}

field(5;"Last Modified Date";Date)
{
 // The "Editable" property sets a value that indicates whether the field can be edited
 // through the UI.
 Editable = false;
}

 // "OnInsert" trigger executes when a new record is inserted into the table.
 trigger OnInsert();
 begin
 SetLastModifiedDate();
 end;

 // "OnModify" trigger executes when a record in the table is modified.
 trigger OnModify();
 begin
 SetLastModifiedDate();
 end;

 // "OnDelete" trigger executes when a record in the table is deleted.
 trigger OnDelete();
 begin
 end;

 // "OnRename" trigger executes when a record in a primary key field is modified.
 trigger OnRename();
 begin
 SetLastModifiedDate();
 end;

 // On the current record, the value of the "Last Modified Date" field to the current
 // date.
 local procedure SetLastModifiedDate();
 begin
 Rec."Last Modified Date" := Today();
 end;

These fields will be used later on to exemplify the Designer's properties.

The Last Modified Date field requires constant changes to remain accurate. To keep it updated, triggers will be
used. Triggers are predefined methods that are executed when certain actions happen. They are added by default
when you use the ttable template, and now you can add code to the triggers.

From this point, changes to the Reward Card page can be done either manually by adding the code below in
Visual Studio Code or by using the Designer's functions. Both ways lead to the same results, but the Designer
speeds up the process.

field("Minimum Purchase";"Minimum Purchase")
{
 ApplicationArea = All;
}

field("Last Modified Date";"Last Modified Date")
{
 ApplicationArea = All;
}

NOTE

Customer table extension object

TIP

Using the F6 key shortcut in Visual Studio Code launches the browser and enters the Designer.

Every time you start designing, you create a new extension and the changes you make in the Designer will apply to all users.

To add the same fields and customize the Reward Card page, follow the next steps:

Choose the purple box to the right of the Last Modified Date field and select Remove.
Navigate to the Reward Card page by choosing + new.
Select More from the Designer bar.
Select Field from the Designer bar to show the list of available fields.
Drag the Minimum Purchase and Last Modified Date fields from the list onto the page in the General
group.
Choose the General in the group caption to enable the value to be edited. Change the caption to Info and
press Enter.

After making these adjustments, finish up your design by choosing Stop Designing, which allows you to name
the extension with an option to download code, and save the extension for the tenant. If you choose not to
download the code at the end, you can still pull the changes via the F7 key shortcut from Visual Studio Code. You
can also uninstall the extension by opening the Extension Management page.
For more information about Designer, see Designer.

The Customer table, like many other tables, is part of the Dynamics 365 Business Central service and it cannot be
modified directly by developers. To add additional fields or to change properties on this table, developers must
create a new type of object, a table extension. The following code creates a table extension for the Customer table
and adds the Reward ID field.

Use the snippet ttableext to create a basic structure for the table extension object.

tableextension 50103 "Customer Ext" extends Customer
{
 fields
 {
 field(50100;"Reward ID";Code[30])
 {
 // Set links to the "Reward ID" from the Reward table.
 TableRelation = Reward."Reward ID";

 // Set whether to validate a table relationship.
 ValidateTableRelation = true;

 // "OnValidate" trigger executes when data is entered in a field.
 trigger OnValidate();
 begin

 // If the "Reward ID" changed and the new record is blocked, an error is thrown.
 if (Rec."Reward ID" <> xRec."Reward ID") and
 (Rec.Blocked <> Blocked::" ") then
 begin
 Error('Cannot update the rewards status of a blocked customer.')
 end;
 end;
 }
 }
}

Customer card page extension object

TIP

A page extension object can be used to add new functionality to pages that are part of the Dynamics 365 Business
Central service. The following page extension object extends the Customer Card page object by adding a field
control, Reward ID , to the General group on the page. The field is added in the layout section, while in the
actions section the code adds an action to open the Reward List page.

Use the shortcuts tpageext to create the basic structure for the page extension object.

pageextension 50104 "Customer Card Ext" extends "Customer Card"
{
 layout
 {
 // The "addlast" construct adds the field control as the last control in the General
 // group.
 addlast(General)
 {
 field("Reward ID";"Reward ID")
 {
 ApplicationArea = All;

 // Lookup property is used to provide a lookup window for
 // a text box. It is set to true, because a lookup for
 // the field is needed.
 Lookup = true;
 }
 }
 }

 actions
 {
 // The "addfirst" construct will add the action as the first action
 // in the Navigation group.
 addfirst(Navigation)
 {
 action("Rewards")
 {
 ApplicationArea = All;

 // "RunObject" sets the "Reward List" page as the object
 // that will run when the action is activated.
 RunObject = page "Reward List";
 }
 }
 }
}

Help links

Configure context-sensitive links to Help

"contextSensitiveHelpUrl": "https://mysite.com/documentation",

At this point, reward levels can be created and assigned to customers. To do that, update the startupObjectId value
in launch.json to 21 and select the Ctrl+F5 key to open the page.

This app is relatively straightforward, but we want users of your app to be able to get unblocked and learn more
just like all other users of Business Central. First, configure your app to get context-sensitive links to Help, and
then apply tooltips to the fields in your pages.

At an app level, you can specify where the Help for your functionality is published in the app.json file. Then, for
each page in your app, you specify which Help file on that website is relevant for that particular page. For more
information, see Configure Context-Sensitive Help.

Open the app.json file, and then change the value of the contextSensitiveHelpUrl property to point at the right
location on your website. In this example, you publish Help for your app at https://mysite.com/documentation.

Next, you set the ContextSensitiveHelpPage property for the Reward Card and Reward List pages:

https://mysite.com/documentation

 // The target Help topic is hosted on the website that is specified in the app.json file.
 ContextSensitiveHelpPage = 'sales-rewards';

page 50102 "Reward List"
{
 // Specify that this page will be a list page.
 PageType = List;

 // The page will be part of the "Lists" group of search results.
 UsageCategory = Lists;

 // The target Help topic is hosted on the website that is specified in the app.json file.
 ContextSensitiveHelpPage = 'sales-rewards';

 // The data of this page is taken from the "Reward" table.
 SourceTable = Reward;

 // The "CardPageId" is set to the Reward Card previously created.
 // This will allow users to open records from the list in the "Reward Card" page.
 CardPageId = "Reward Card";

...

Add tooltips

ToolTip = 'Specifies the level of reward that the customer has at this point.';

field("Reward ID";"Reward ID")
{
ApplicationArea = All;
ToolTip = 'Specifies the level of reward that the customer has at this point.';
}

The following example illustrates the properties for the Reward List page after you have specified the context-
sensitive Help page.

You can specify the same relative link for Reward Card, Reward List, and the customization of the Customer
page, or you can specify different targets. For more information, see Page-level configuration.

Even the best designed user interface can still be confusing to some. It can be difficult to predict specifically what
users will find confusing, and that is why the base application includes tooltips for all controls and actions. For
more information, see Help users get unblocked.

For the purposes of this walkthrough, add the following tooltip to the properties of the Reward ID field on all
three pages:

The following example illustrates the tooltip:

If you now deploy the app, you will be able to read the tooltip text for the Reward ID field, and if you choose the
Learn more link or press Ctrl+F1, a new browser tab opens the equivalent of
https://mysite.com/documentation/sales-rewards .

Install code

TIP

After installing the extension, the Reward List page is empty. This is the result of the fact that the Reward table is
also empty. Data can be entered manually into the Reward table by creating new records from the Reward List
page. However, this task slows down the process, especially because the Reward table should be initialized with a
standard number of reward levels when the extension is installed. To solve this, install codeunits can be used. A
codeunit is an object that can be used to encapsulate a set of related functionality represented by procedures and
variables. An install codeunit is a codeunit with the Subtype property set to Install. This codeunit provides a set of
triggers that are executed when the extension is installed for the first time and when the same version is re-
installed.

In this example, the following install codeunit initializes the Reward table with three records representing the
'GOLD', 'S ILVER', and 'BRONZE' reward levels.

Use the shortcuts tcodeunit and ttrigger to create the basic structure for the codeunit and trigger.

codeunit 50105 RewardsInstallCode
{
 // Set the codeunit to be an install codeunit.
 Subtype = Install;

 // This trigger includes code for company-related operations.
 trigger OnInstallAppPerCompany();
 var
 Reward : Record Reward;
 begin
 // If the "Reward" table is empty, insert the default rewards.
 if Reward.IsEmpty() then begin
 InsertDefaultRewards();
 end;
 end;

 // Insert the GOLD, SILVER, BRONZE reward levels
 procedure InsertDefaultRewards();
 begin
 InsertRewardLevel('GOLD', 'Gold Level', 20);
 InsertRewardLevel('SILVER', 'Silver Level', 10);
 InsertRewardLevel('BRONZE', 'Bronze Level', 5);
 end;

 // Create and insert a reward level in the "Reward" table.
 procedure InsertRewardLevel(ID : Code[30]; Description : Text[250]; Discount : Decimal);
 var
 Reward : Record Reward;
 begin
 Reward.Init();
 Reward."Reward ID" := ID;
 Reward.Description := Description;
 Reward."Discount Percentage" := Discount;
 Reward.Insert();
 end;

}

Upgrade code

IMPORTANT

For more information about install code, see Writing Extension Install Code.

When you upgrade an extension to a newer version, if any modifications to the existing data are required to
support the upgrade, you must write upgrade code in an upgrade codeunit. In this example, the following upgrade
codeunit contains code that changes the BRONZE reward level to customer records to ALUMINUM. The upgrade
codeunit will run when you run the Upgrade-NAVApp cmdlet.

Remember to increase the version number of the extension in the app.json file.

codeunit 50106 RewardsUpgradeCode
{
 // An upgrade codeunit includes AL methods for synchronizing changes to a table definition
 // in an application with the business data table in SQL Server and migrating existing
 // data.
 Subtype = Upgrade;

 // "OnUpgradePerCompany" trigger is used to perform the actual upgrade.
 trigger OnUpgradePerCompany();
 var
 InstallCode : Codeunit RewardsInstallCode;
 Reward : Record Reward;

 // "ModuleInfo" is the current executing module.
 Module : ModuleInfo;
 begin
 // Get information about the current module.
 NavApp.GetCurrentModuleInfo(Module);

 // If the code needs to be upgraded, the BRONZE reward level will be changed into the
 // ALUMINUM reward level.
 if Module.DataVersion.Major = 1 then begin
 Reward.Get('BRONZE');
 Reward.Rename('ALUMINUM');
 Reward.Description := 'Aluminum Level';
 Reward.Modify();
 end;
 end;
}

Conclusion

TIP

See Also

For more information about writing and running upgrade code, see Upgrading Extension.

This walkthrough demonstrated how an extension can be developed. The main AL objects and extension objects
were used to store the reward levels, to view, and to edit them. The Designer was introduced as an alternative to
modify visual aspects of page objects and to customize them from the web client instead of using code. Up to this
point, the table and the page objects were empty, but the install codeunits were added and allowed to initialize the
Reward table with a standard number of reward levels when the extension was installed. An upgrade code section
was also included in this exercise to create a full picture of all processes involved when an extension is built. As a
result, a user is enabled to assign one of the three reward levels to a customer and to change this scenario by
upgrading the version of the extension.

To try building a more advanced Customer Rewards sample extension, see Building an Advanced Sample Extension.

Developing Extensions
Getting Started with AL
How to: Publish and Install an Extension
Converting Extensions V1 to Extensions V2
Configure Context-Sensitive Help

Using Designer
5/21/2019 • 7 minutes to read

FEATURES APPLIES TO

Add components fields and columns

Move components fields, columns, cues, parts, actions and action groups

Remove components fields, columns, cues, parts, actions and action groups

Change field importance, like showing in collapsed FastTab
header or under Show More

fields

Exclude field from Quick Entry fields, columns

Set freeze pane and clear freeze pane columns

Adjust column width columns

Edit caption FastTab, cards, FactBox

Save extension/download code general

Preview design general

Important points to note

Start and stop designing

When developing extensions in the AL development environment, you have a wide range of possibilities.
Designer in Dynamics 365 Business Central complements the development experience in Visual Studio Code, as
it provides an easy and convenient way of making immediate adjustments to your design by simply dragging
and dropping the components on the page.
Here is a quick overview of capabilities in Designer:

Every time you start designing, you are effectively creating a new extension. Your changes are
immediately visible to other users.

The changes you make in Designer will apply to all users.

You cannot remove specific fields that are bound to a page and a field must belong to an underlying table.

You can only add fields, columns, or tiles to its applicable view from list, tall tiles, and wide tiles views.
Some components cannot be moved using drag-and-drop and are restricted to the view that they are in.

You can only add fields/columns, from a predefined list, which is based on the source table. You cannot
create new ones.

In the client, users can change the many of these settings for their workspace only by using
personalization (see Personalizing Your Workspace).

https://docs.microsoft.com/en-us/dynamics365/business-central/ui-personalization-user

Drag-and-drop components

Working with fields

Setting the freeze pane

In the Business Central client, you start Designer by choosing Designer in the top right corner of any page
that you want to make modifications to, and start designing using drag-and-drop components. In Visual Studio
Code, you can start Designer by using the F6 shortcut, which launches a browser that opens the Business
Central client in Designer.

After you are done with the adjustments, finish up your design by choosing Stop Designing, which allows you
to name the extension with an option to download code, and save the extension for the tenant. If you choose not
to download the code at the end, you can still pull the code using the F7 shortcut. You can also uninstall the
extension from the Extension Management page or even download the source from there.

In Designer, you design and modify the current page; you can add existing table fields, move fields around,
remove fields from the page, hide and move actions, and more. You can make changes to display the
information by using drag-and-drop components.

To add a field or column to a page, in the banner, choose More, and then choose Field. A pane to the right
appears that lets you add fields. Here you can see all of the table fields that are available for the specific page.
The table fields displayed are based on the underlying table or tables. The field can have a status of Placed,
which means that the field already exists on the page. A status of Ready means that the field does not already
exist on the page. To add a field, drag and drop it to the desired location.

If you want to remove a field or column, select the arrowhead indicator or on the component, and then
choose Remove.

You can edit the caption of a FastTab for a group of fields by selecting the caption and start writing. Simple, clear,
and plain.

Set freeze pane and clear freeze pane locks one or more columns to the left, even when you scroll

horizontally. You can set the freeze pane, by selecting the arrowhead indicator or of the column that you
want as the last column of the freeze pane, and then choose Set Freeze Pane. If you want to set the freeze pane

back to its original designed location, select the arrowhead indicator or for the current freeze pane

Setting the Importance on Field

OPTION DESCRIPTION IMPORTANCE PROPERTY VALUE

Show under "Show more" Sets the field so that appears only
when the user selects Show more.

Additional

Show always Sets the field to always display on the
page (regardless of whether the user
selects Show more or Show less) but
not in the FastTab heading if it is
collapsed.

Standard

Show when collapsed Sets the field to always display on the
page (regardless of whether the user
selects Show more or Show less) and
also in the header of the FastTab when
the FastTab is collapsed.

Promoted

Setting the Quick Entry on Fields

Working with Actions

Remove, hide, and show actions and groups

column, and then choose Clear Freeze Pane.

Fields on non-list type pages, such as card and document type pages, include Designer options for setting the
importance. The following table describes the options for setting the importance in Designer and how it
corresponds to the Importance property in the page code.

You can use Designer to set the QuickEntry property on a field. The QuickEntry property determines whether
the field is given input focus or skipped when users navigate through fields on a page by pressing the ENTER
(return) key. You use Quick Entry to help accelerate keyboard data entry by focusing only those fields a user
typically needs to fill-in.

To set the QuickEntry property from Designer, select the field or column heading, and then choose either
Include in Quick Entry (sets the QuickEntry property to true) or Exclude from Quick Entry (sets the
QuickEntry property to false).

For more information about Quick Entry, from a user perspective, see Accelerating Data Entry Using Quick
Entry in the Business Central Application Help.

Designer lets you make adjustments to the actions that are defined in the action bar of a page. You can move,
remove, hide, and show individual actions or action groups.

Actions and actions groups that are already hidden appear dimmed. To change the state of an action or action
group, select it, and then choose one of the following options:

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-importance-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-quickentry-property
https://docs.microsoft.com/en-us/dynamics365/business-central/ui-enter-data?branch=master#QuickEntry

OPTION WHAT IT DOES

Remove This option is available for the actions that are shown in a
only a promoted category alone or actions that are shown in
both a promoted category and another action menu.

Choosing Remove deletes the action from the selected
location so that it no longer appears.

If the action is only shown in the promoted category, it will
automatically be shown in the action menu where it is
originally defined.

Hide This option is available for actions or action groups that
currently are shown only in an action menu (not in a
promoted category). Like Remove, choosing Hide will make
the action or action group disappear from the action bar in
the client. However, in Designer, the action or action group
appears dimmed.

Show This option appears if the action or action group has been
previously hidden (dimmed). Choosing this option will make
the action or action group appear in the action bar.

Move actions and action groups

Preview design on different display targets

Controlling User Access to Designer

See Also

Designer lets you move actions within the action bar. For example, you can move an action from an action menu
to a promoted category or from one promoted category to another, move an action within an action group or to
a different action group.

To move an action or action group, drag and drop it to the desired location, just like with fields and columns.

You can move individual actions into the promoted categories, but you cannot change the order of the
actions in the category.
You cannot move an action group into a promoted category.
To move an action or action group into an empty action group, drag the action or action group to the target
group and drop it in the Drop an action here box.

The display type icons let you preview the changes you made on desktop, tablet, and phone clients. This way you
can make sure that your design will work on the intended display target(s). You can flip to display tablet and
phone designs in portrait and landscape orientation.

Accessing Designer is controlled on a user or user group basis by the D365 EXTENSION MGT permission set.
If a user is assigned this permission set, then Designer is available for the user in the client. To prohibit a user
from using Designer, just remove the user from the D365 EXTENSION MGT permission set.

Developing Extensions
Getting Started with AL
AL Development Environment

Keyboard Shortcuts
3/31/2019 • 2 minutes to read

General in Visual Studio Code
KEYBOARD SHORTCUT ACTION

Ctrl+Shift+P Show All Commands

F7 Download source code

Alt+A Alt+L Go! Generates a HelloWorld project

Ctrl+Shift+B Package

F5 Publish

Ctrl+F5 Publish without debugging

F6 Publish and open the designer

Ctrl+F2 Update the compiler used by the service tier(s)

Editing in Visual Studio Code
KEYBOARD SHORTCUT ACTION

Ctrl+Space Look up suggestions for the current object

Ctrl+X Cut

Ctrl+C Copy

Ctrl+V Paste

Ctrl+F2 Select all occurrences

F12 Go to definition

Alt+F12 Peek definition

Shift+F12 Show References

Ctrl+Shift+Space Look up parameter hints

The following table provides an overview of some of the shortcut key combinations that you can use when you
are working in Visual Studio Code. For a complete overview, see Key Bindings for Visual Studio Code.

https://code.visualstudio.com/docs/customization/keybindings

Ctrl+K Ctrl+C Add line comment

Ctrl+K Ctrl+U Remove line comment

Ctrl+Shift+P Show All Commands

KEYBOARD SHORTCUT ACTION

Errors in Visual Studio Code
KEYBOARD SHORTCUT ACTION

F8 Move to the next error or warning

Shift+F8 Move to the previous error or warning

Compile in Visual Studio Code
KEYBOARD SHORTCUT ACTION

Ctrl+Shift+B Compile and build the solution

Ctrl+F5 Build and deploy

Debugging in Visual Studio Code
KEYBOARD SHORTCUT ACTION

F5 Start debugging session

See Also
Developing Extensions
Getting Started with AL
AL Development Environment

The AL Formatter
3/31/2019 • 2 minutes to read

Invoking the AL formatter

The AL Language extension offers users the option to automatically format their source code. This capability
increases the usability of the editor by allowing developers to instantly fix the indentation and formatting of their
code. The auto-formatter analyzes the syntax tree of the AL code that you are formatting and, using rules
developed based on the coding and style guidelines for AL, inserts and removes whitespace from key points in the
document to make it more readable. The rules used by the auto-formatter cannot be configured by the user. This
limitation is present to allow for a uniform style to be used throughout the community of AL developers.

The auto-formatter can be invoked to format an entire AL document or a pre-selected range. In an existing project,
open the document that you want to format, right-click inside the document, and select Format Document. In the
default configuration for Visual Studio Code, the command can be run using the shortcut Alt+Shift+F.

To format a range, in an already opened project, open the document that you want to modify, select the specific
range to format, right-click, and select Format Selection. In the default configuration for Visual Studio Code, the
command can be run using the shortcut Ctrl+K, Ctrl+F.

See Also
AL Development Environment
AL Outline View
AL Code Actions

AL Outline View
3/31/2019 • 2 minutes to read

See Also

Working with the AL Language extension you have access to the Outline view. The Outline view is a separate
section in the lower left corner, right under the Explorer view.

The Outline view is enabled by default and shows the symbol tree of the currently active cursor, it also allows you
to filter as you type. Double-clicking on any node makes your cursor jump to the selected definition or keyword.
The Outline view will also display any errors in your project for easy inspection.

You manage the look and feel of the Outline view by defining a number of settings, that are all enabled by default:

outline.icons - Outline elements displayed with icons.
outline.problems.enabled - Show errors and warnings on outline elements.
outline.problems.badges - Badges displayed for errors and warnings.
outline.problems.colors - Colors used for errors and warnings.

AL Development Environment
AL Formatter

AL Code Navigation
5/24/2019 • 2 minutes to read

Go To Definition

See Also

When you develop an AL extension, you may want to navigate around the source code frequently. To jump around
the code or to access the reference code, you use the Go To Definition feature in Visual Studio Code.

The Go To Definition feature navigates to the source of a type and opens the result in a new tab. You can use the
F12 shortcut key or right-click and select the Go To Definition feature from the right-click menu. The Go To

Definition opens the source in the .dal format which contains the base application code. For example, the base
application code may contain table metadata and application methods. In the following illustration, the Address
type and the HasAddress type opens the Customer.dal file and locates the reference code of those types by using
the Go To Definition feature.

With Go To Definition, you can step into the referenced code and set breakpoints on the external code and base
application code. For more information, see Debugging in AL.

You can always use Go To Definition on Dynamics 365 Business Central code. However, if you want to use it on
other extensions, the extension package which is now referenced, when originally published, must have the
showMyCode property set to true . For example, if A is referencing B you can only use the Go To Definition on

types of B, if B, when it was published, had the showMyCode flag set to true . For more information, see Security
Setting and IP Protection.

For more information about code navigation in Visual Studio Code, see Code Navigation.

Developing Extensions
JSON Files
Debugging in AL
AL Code Actions

https://code.visualstudio.com/docs/editor/editingevolved

AL Code Actions
3/31/2019 • 2 minutes to read

To enable AL Code Actions

See Also

The AL Language extension offers users the option to help fix issues in code. Code Actions is a Visual Studio Code
feature providing the user with possible corrective actions right next to an error or warning. If actions are available,
a light bulb appears next to the error or warning. When the user clicks the light bulb (or presses Ctrl+.), a list of
available Code Actions is presented.

In AL Language extension two code actions are available in the current version:

Multiple IF to CASE converting code action.
Spell check code action.

1. Open the Command Palette Ctrl+Shift+P and choose either User Settings or Workspace Settings
depending on which scope you want the code actions to apply to.

2. Enter the setting al.enableCodeActions to the settings file and set it to true : "al.enableCodeActions": true

3. Save the settings file. You have now enabled code actions on your project.

AL Development Environment
AL Outline View
AL Formatter

Object Ranges in Dynamics 365 Business Central
4/10/2019 • 2 minutes to read

0-49.999

50.000-99.999

100.000-999.999

1.000.000-69.999.999

70.000.000-74.999.999

See Also

In Dynamics 365 Business Central running in the cloud, there are three different object ranges in terms of
licensing. Developing for Dynamics 365 Business Central is done using Visual Studio Code with the AL Language
extension. All tenants in Dynamics 365 Business Central are able to freely use objects in the following ranges:

50.000-99.999
1.000.000-69.999.999
70.000.000-74.999.999

In the following each individual range is explained.

This range is assigned to Dynamics 365 Business Central base app functionality and must not be used.

This range is for customizations. A partner can develop an extension tailored to the individual tenant to fit the
needs. The partner will develop this either by using a sandbox tenant or by obtaining a Docker image of the
current release of Dynamics 365 Business Central that matches the version of the tenant. Once the development is
done, the extension can be deployed to the individual tenant.

The objects in this range are mainly designed when the Microsoft team localizes Dynamics 365 Business Central
for a specific country or region. These objects cannot be used by partners.

This is the Registered Solution Program (RSP) range which partners that have an ISV solution for on-premise
have access to. The partner can choose to use this range for developing extensions that can be used either in
Dynamics NAV on-premise or in Dynamics 365 Business Central in the cloud. When used in Dynamics 365
Business Central these extensions are obtained as apps from appsource.microsoft.com.

Partners can obtain ranges for extension development that runs in Dynamics 365 Business Central in the cloud.
This range is only available for extension development and only in Dynamics 365 Business Central. These
extensions are obtained as apps from appsource.microsoft.com.

For more information, please see the Ready To Go program.

Ready To Go
Blog Post

http://appsource.microsoft.com
http://appsource.microsoft.com
https://aka.ms/readytogo
https://aka.ms/readytogo
https://community.dynamics.com/business/b/businesscentraldevitpro/archive/2018/10/17/which-object-ranges-can-we-use-with-microsoft-dynamics-365-business-central

Adding Help Links from Pages, Reports, and
XMLports
4/29/2019 • 2 minutes to read

Examples

page 50100 MyPageWithHelp
{
 ContextSensitiveHelpPage = 'sales-rewards';
}

report 50100 MyReportWithHelp
{
 requestpage
 {
 ContextSensitiveHelpPage = 'sales-rewards';
 }
}

xmlport 50100 XmlPortWithHelp
{
 requestpage
 {
 ContextSensitiveHelpPage = 'sales-rewards';
 }
}

See Also

When creating new pages, you can specify which Help file to open if the user selects the Learn more links in the
UI of Business Central.

The context-sensitive Help link is generated based on a configuration setting in the app.json file and the name of
the relevant Help file that you specify as part of the metadata for the page object. For more information, see
Configure Context-Sensitive Help.

The following examples show how you can specify the ContextSensitiveHelpPage property from new pages,
reports, and XMLports:

In all three examples, the ContextSensitiveHelpPage property is set to point at the same Help files. This is because
all three example objects support the same feature that is explained in the sales-rewards Help topic. In your app,
you can choose to structure the Help differently.

Configure Context-Sensitive Help
Translating Base App Help
JSON Files
Page Object
Report Object
XMLport Object
Table Object

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-translate-base-app-help

ContextSensitiveHelpPage Property

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-contextsensitivehelppage-property

Working with Translation Files
5/21/2019 • 3 minutes to read

NOTE

IMPORTANT

Translation and Localization apps

Generating the XLIFF file

 "features": ["TranslationFile"]

IMPORTANT

Label syntax

Dynamics 365 Business Central is multilanguage enabled, which means that you can display the user interface (UI)
in different languages. To add a new language to the extension you have built, you must first enable the generation
of XLIFF files. The XLIFF file extension is .xlf. The generated XLIFF file contains the strings that are specified in
properties such as Caption and Tooltip.

To submit an app to AppSource, you must use .xliff translation files.

You can use the .xlf translation files approach only for objects from your extension. For translating the base application you
still need to use the .txt files approach. For more information, see the Translation and Localization apps section below.

The .xlf files approach cannot be used for translating the base application. If you are working on a translation or
localization app (for example for a country/region localization), you must take the .txt file containing the base
application translation, and place the file in the root folder of your extension. When the extension is compiled, the
.txt file is then packaged with the extension.

We recommend that you use only one .txt file per language. There is no enforced naming on the .txt files, but a
suggested good practice is to name it <extensionname>.<language>.txt .

For more information about importing and exporting .txt files, see How to: Add Translated Strings By Importing
and Exporting Multilanguage Files in Dynamics NAV.

To enable generation of the translation file, you must add a setting in the manifest. In the app.json file of your
extension, add the following line:

Now, when you run the build command (Ctrl+Shift+B) in Visual Studio Code, a \Translations folder will be
generated and populated with the .xlf file that contains all the labels, label properties, and report labels that you are
using in the extension. The generated .xlf file can now be translated.

Make sure to rename the translated file to avoid that the file is overwritten next time the extension is built.

The label syntax is shown in the example below for the Caption property:

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-develop-localization
https://docs.microsoft.com/en-us/dynamics-nav/how-to--add-translated-strings-by-importing-and-exporting-multilanguage-files

Caption = 'Developer translation for %1', Comment = '%1 is extension name', locked = false, MaxLength=999;

NOTE

labels
{
 LabelName='LabelText',Comment='Foo',MaxLength=999,Locked=true;
}

var
a:Label'LabelText',Comment='Foo',MaxLength=999,Locked=true;

The XLIFF file

<ding="utf-8"?>
<xliff version="1.2" xmlns="urn:oasis:names:tc:xliff:document:1.2" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation="urn:oasis:names:tc:xliff:document:1.2 xliff-core-1.2-transitional.xsd">
 <file datatype="xml" source-language="en-US" target-language=”da-DK” original="ALProject16">
 <body>
 <group id="body">
 <trans-unit id="PageExtension 1255613137 - Property 2879900210" maxWidth="999" size-unit="char"
translate="yes" xml:space="preserve">
 <source>Developer translation for %1</source>
 <target>Udvikleroversættelse for %1</target>
 <note from="Developer" annotates="general" priority="2">%1 is extension name</note>
 <note from="Xliff Generator" annotates="general" priority="3">PageExtension - PageExtension</note>
 </trans-unit>
 </group>
 </body>
 </file>
</xliff>

The comment , locked , and maxLength attributes are optional and the order is not enforced. For more information, see
Label Data Type.

Use the same syntax for report labels:

And the following is the syntax for Label data types:

The ML versions of properties are not included in the .xlf file:

CaptionML
ConstValueML
InstructionalTextML
OptionCaptionML
PromotedActionCategoriesML
ReqFilterHeadingML
RequestFilterHeadingML
ToolTipML

The TextConst Data Type is not included in the .xlf file either.

In the generated .xlf file, you can see a <source> element for each label. For the translation, you will now have to
add the target-language and a <target> element per label. This is illustrated in the example below.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-captionml-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-constvalueml-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-instructionaltextml-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-optioncaptionml-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-promotedactioncategoriesml-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-reqfilterheadingml-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-requestfilterheadingml-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-tooltipml-property

NOTE

See Also

You can have only one .xlf file per language. If you translate your extension to multiple languages, you must have a
translation file per language. There is no enforced naming on the file, but a suggested good practice is to name it
<extensionname>.<language>.xlf .

When the extension is built and published, you change the language of Dynamics 365 Business Central to view the
UI in the translated language.

How to: Add Translated Strings By Importing and Exporting Multilanguage Files in Dynamics NAV

https://docs.microsoft.com/dynamics-nav/how-to--add-translated-strings-by-importing-and-exporting-multilanguage-files

The “Ready to Go” Program
6/25/2019 • 3 minutes to read

TIP

Dynamics 365 Business Central is a business management solution that helps companies connect their financials,
sales, service, and operations to streamline business processes, improve customer interactions, and make better
decisions.

Business Central creates multiple opportunities for partners to provide apps or consulting services on Microsoft
AppSource.

The “Ready to Go” program is designed to support you in the journey of bringing offerings to market. The
program contains learning, coaching, and tooling. Use the tabs below to read more about the elements of the
"Ready to Go" program.

Keep on top of news, tips, tools, programs, and new capabilities by following us on the Business Central for partners blog.

Learning
Coaching
Tooling
Resources

The "Ready to Go" learning catalog is an extensive collection of materials for Dynamics 365 Business Central,
including training resources, white papers, and tools for both app developers (ISVs) as well as resellers (VARs). It is
designed for marketeers, business decision makers, sales and pre-sales roles, architects, consultants, and
developers. Access the "Ready to Go" learning catalog.

https://aka.ms/businesscentralapps
https://community.dynamics.com/business/b/businesscentraldevitpro
https://go.microsoft.com/fwlink/?linkid=2002101

The “Ready to Go” Online Learning Catalog
This “Ready to Go” learning catalog provides Dynamics 365 Business Central partners a single point of access to training resources. It contains
readiness information for multiple roles inside organizations which resell Dynamics 365 Business Central and for those who develop apps for
Microsoft AppSource. The information in this document is being updated on a weekly basis.

Materials for developers, architects, and engineers

The “Ready to Go” online learning for developers, architects, and engineers.

Materials for application consultants

The “Ready to Go” online learning for application consultants.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-learning-dev-archs-engineers
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-learning-app-consultants

Materials for pre-sales roles

The “Ready to Go” online learning for pre-sales.

Materials for sales roles

The “Ready to Go” online learning for sales.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-learning-presales
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-learning-sales

Materials for marketeers

The “Ready to Go” online learning for marketeers.

Materials for business decision makers

The “Ready to Go” online learning for business decision makers.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-learning-marketeers
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-learning-bus-decision-makers

Getting You Started with Yyour Add-On App
6/17/2019 • 11 minutes to read

Build your business on Dynamics 365 Business Central

Guidelines for Business Central Add-on apps

IMPORTANT

STEP 1: Create and set up your accounts

Microsoft Dynamics 365 Business Central is a business management solution that helps companies connect their
financials, sales, service and operations to streamline business processes, improve customer interactions and make
better decisions. With this modern business platform, you can easily and quickly tailor, extend and build
applications so they fit your specific needs — with little to no code development.

AppSource is Microsoft’s marketplace for your Dynamics 365 Business Central offerings and there are several
reasons why going to market with Microsoft AppSource is a great idea. For example, it allows you to promote your
brand, expand your reach, accelerate the customer journey and upsell your solutions and it connects you with
millions of Office 365 & Dynamics 365 business users. Find more information about which opportunities you have
as a partner at: aka.ms/BusinessCentralApps

You can bring two types of offerings to Microsoft AppSource:

Add-on Apps (that brings your industry expertise to market), Connect Apps (that connect services) and
Embed Apps.
Or Packaged Consulting Services (that bring ready-made packaged engagements to market).

To ease your journey, from the initial listing to the final publication of your Add-on app on AppSource, we have
created two whitepapers that outlines 4 consecutive steps that you need to go through. To bring your Business
Central offers to AppSource smoothly, we recommend that you check off each step as you progress. We highly
recommend that you lean on the guidelines in these whitepapers to support you throughout the process of
bringing your app to AppSource:

Getting you started with Add-on Apps

STEP 1: Create and set up your accounts
STEP 2: List your app on AppSource

Developing and publishing your Add-on App to AppSource

STEP 3: Develop your app
STEP 4: Initiate the validation and publication process

Please review all of the steps and follow the Marketing Validation Checklist and Technical Validation Checklist.

MPN ID

All App builders and app publishers must be identifiable to Microsoft. For this reason, you need to become a
member of Microsoft’s Partner Network (MPN) – this will of course be off no cost to you.

Sign up to become a member of our Partner network here:

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-checklist-marketing
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-checklist-submission
https://partners.microsoft.com/PartnerProgram/simplifiedenrollment.aspx

Object Ranges

Developer account

PartnerSource Business Center (PSBC) account and your unique license file

Register as a Partner

Developing an Add-on app requires you to be known as Dynamics 365 Business Central developer and requires
you to have a unique development license file with a specific object range.

To obtain an object range for developing a Microsoft Dynamics 365 Business Central, you must first have access to
PartnerSource Business Center (PSBC)

Access to PSBC is provided by having an active:

Solution Provider Agreement (SPA) if you are a reselling partner using the Dynamics Pricelist
Partner Registration Agreement (PRA) if you are a non-selling partner.

The relevant contract can be requested through your local Regional Operations Center (ROC) Contracts and
Agreements Team below:

mbscon@microsoft.com : If you are based in Europe, the Middle East, or Africa.
mbsagree@microsoft.com : If you are based in the Americas.
mbslques@microsoft.com : If you are based in the Asia Pacific region.

When you develop a Microsoft Dynamics 365 Business Central App for Microsoft AppSource, you will need to
request access to an object range which holds a certain number of objects with which you can build your solution.
In order to avoid overlap between objects used in different solution,each partner is assigned a number of objects in
a unique object range. For example, a partner could get assigned the object range 70,001,000 – 70,001,999 which
will give them 1000 numbered objects which they can use to develop Microsoft Dynamics 365 Business Central
solutions.

Requesting the correct license file and object range

Depending on where you will deploy your Dynamics 365 Business Central solution (cf. on premise or in the Cloud)
you can use different licensing methods and object ranges. There are currently 2 available ranges which you can
request. Both have some characteristics which you need to keep in mind:

The RSP Object Range (1-69 million): This object range is tied to the RSP Program details. The program
details specify that you have to pay quarterly for used objects. However, if you comply with the Certified for
Microsoft Dynamics (CFMD) program requirements, one of the benefits of the program is that the quarterly
fees on object costs will be waived. This object range can both be implemented on-premises, partner hosted (in
C/AL or AL format) or in the Business Central SAAS Service (AL Only format). The RSP Program page
describes the process on how to request the RSP object range.
The App Object Range (70-75 million): This object range was originally designed to run in the Business
Central service only for Microsoft Appsource Apps.
Today you can implement apps developed in this range both on-premises, partner hosted and in the Business
Central SAAS Service. This object range is free of charge, the only requirement on this range is that your
objects can be AL only.
You can request both object ranges here.

You will have to make a choice which object range is best for you. Some partners desire to have 1 product line
which can be implemented everywhere, others want to build a new SAASified app separate from their legacy
solutions.

A developer account enables you to submit apps and add-ins to Microsoft’s marketplaces, including the Windows

https://businesscenter.mbs.microsoft.com/#
https://mbs.microsoft.com/partnersource/northamerica/partner-essentials/agreements-guides-and-handbooks/RegisterSolutionProgram
https://mbs.microsoft.com/partnersource/global/partner-essentials/partner-programs/certified-for-microsoft-dynamics/process/CfMD_Process
https://mbs.microsoft.com/partnersource/global/partner-essentials/partner-strategy/365businesscentralrequestuniqueobjectrange

Access to the Cloud Partner Portal and being set up as a publisher

Get onboarded to tools and programs
Create your sandbox environment

The “Ready to Go” program

Store, Office Store, Azure Marketplace, and Microsoft AppSource. Note, you only need one developer account per
company (not one per app submission).

Register (or check if you already have access) here:
A one-time registration fee applies

Choosing a primary contact email and publisher display name

When registering for a Microsoft Developer Account you will be asked to provide an “E-mail address” and a
“Publisher display name”. When choosing your display name and primary email account, please take the following
into account:

Email: To ease submission and avoid missing vital communications we recommend you provide a companywide
email/dev center account that can be shared across multiple users so that several people can manage your
portal submission.

Although, if you prefer a singular account, where you can add multiple users through the portal, then this is
possible too.

Publisher Display name: A display name refers to how you want your company name displayed on your app in
Microsoft AppSource.

See example to the right, where the display name is highlighted in yellow.

Consistency is key!

It is key that you use the same display name and email throughout your app submission, as you will be asked to
provide them in several different touch points. such as for example:

To sign into the Cloud Partner Portal (and creating your app offer)
To enroll and sign in to the Collaborate tool and “Ready to Go” platform

The Cloud Partner Portal is the place where you first will submit your App for the marketing validation and later
submit it for publication.

In order to be set up as a publisher and access the Cloud Partner Portal, you need to email Ryan Weigel at
rweigel@microsoft.com , and provide him the following information:

Your Publisher display name (which will be displayed on AppSource)
The Email account you chose as the primary contact (which is needed when logging into the Cloud Partner
Portal)
Your MPN ID

You have 3 options to work develop against the current version of Microsoft Dynamics 365 Business Central.

If your add-on is lightweight, it might be sufficient to use a sandbox environment
If you want to setup a Docker-based development environment on Azure, you can use:
If you want to setup a local Docker-based developer environment, you can download a PowerShell script
available at

https://developer.microsoft.com/en-us/store/register
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-get-started
http://aka.ms/BCSandboxAzure
http://aka.ms/BCSandboxLocal

Register on Collaborate

There are several things to keep in mind in building an Add-on app. The "Ready to Go" program is designed to
support you in bringing your Microsoft Dynamics 365 Business Central offers into Microsoft Appsource. The
program encompasses the following three core support options that you can leverage:

Element 1: “Ready to Go” Online learning
Element 2: “Ready to Go” Coaching
Element 3: “Ready to Go” Platform

If you want to have more in depth learning resources to get up to speed, then you can get a sneak-peek of the
extensive set of "Ready to Go" resources available in the online learning catalog. We highly recommend that
you either consume the materials which are built for you in the “Ready to Go” online learning catalog or get
coached by one of our ISV Development Centers.

Learn more about how you can leverage the “Ready to Go” program’s different support options here:
aka.ms/ReadyToGo.

Prerequisites you need to have to register on Microsoft Collaborate

Azure Active Directory (AAD)

Note: If you have Office 365 then your company should have AAD

AAD Global Administrator permission

To find out if your company has an AAD account, please check with your Network Administration team for your
company.

How your Global Administrator must register for Collaborate

Not all people from your company can initiate the onboarding into Collaborate – only your company Global
Administrator has the permission to do so.

To start the registration process, your company Global Administrator must first go to the following link:
https://aka.ms/Collaborate

Next, your company Global Administrator must click on the ‘Get Started’ option under the ‘Microsoft Collaborate’
header.

Note: If you are properly registered, and have setup your above Developer Account, the registration page
should autofill with your Company details. If the page is not filled automatically, please complete the form
manually.

Once completed, be sure and click the 'Terms of Use' (TOU) checkbox at the bottom of the registration page. Note:
You need to accept the TOU to successfully register (cf. image below).

Click the Next button to complete your initial registration. When successful, you will see the image below.

As the final step, to complete registration, click ‘GO TO DASHBOARD’.

How to use the dashboard to add your coworkers to Microsoft Collaborate If you DO NOT want to add any
coworkers:

Please skip this part and move on to the next section called “Getting access to the available builds and
engagements” to download packages through Microsoft Collaborate.

If you DO want to add coworkers, please follow the 5 steps below:

1. Log on to Microsoft Collaborate with your Global Administrator account on https://aka.ms/Collaborate.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-learning-catalog
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-ready-to-go?tabs=coaching
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-ready-to-go?tabs=learning
https://aka.ms/readytogo
https://aka.ms/Collaborate
https://aka.ms/Collaborate

STEP 2: List your Add-on app on Microsoft AppSource

Next steps

2. Click on the ‘Gear’ Icon on the top right corner of the page and then on ‘Account Settings’ as shown on the
image below.

3. Click on ‘Users’ under ‘Settings’ in the grey panel on the left-hand side of the page. The following image will
appear.

4. Click the grey ‘ADD USERS’ button and leave the default choice to ‘Add existing users’ as-is. Now you can
search for the user(s) that you want to add to Collaborate. To add them you need to select them from the
menu, and then click the grey ‘ADD SELECTED’ button (see image below).

5. You have now successfully added your coworker to Collaborate. The added users will appear in your list of
users and will now be able to log on to Microsoft Collaborate using the following link:
https://aka.ms/Collaborate

Getting access to the available builds and engagements

1. Register on Microsoft Collaborate by using your AAD Global Admin account (as described in detail above).
2. Once you have successfully registered (and added coworkers) on Microsoft Collaborate, your company’sAzure

Active Directory (AAD) global administrator should send us an emailto complete the on-boarding [Dynamics
365 Business Central Programs](mailto: Dyn365BEP@microsoft.com).We need to manually assign you to the
right programs and engagements. Expect a response from us within 1-2 business days.

3. In this email to [Dynamics 365 Business Central Programs](mailto: Dyn365BEP@microsoft.com), please specify
the following:

Your ‘Publisher Display Name’
The name(s) of the people you have added to Microsoft Collaborate
The email address(es) of the people you have added to Microsoft Collaborate (No personal email addresses
please)
The roles you have given then on Collaborate (Participant, Power user)
MPN ID# and registered Partner Name

To list your app, you need to register it on Microsoft AppSource.

List your app here: https://appsource.microsoft.com/en-us/partners/list-an-app

When listing your app you need to specify the following:

Contact Info (First name, Last name, Email)
Company Info (Company name, Company website, MPN Id)
App Info: Type of offer you intend to publish (cf. app or consulting service)
Type of app you intend to publish (cf. Dynamics 365 Business Central Add-in)
App name

App description: Intended users of the app (cf. IT professional, Developers, Business Users)

Upon listing your app on AppSource you will receive an email from us that outlines the next steps you need to take
along with a list of useful resources that can help you bring your app to AppSource quickly.

Now that you have completed step 1 and 2 (cf. setting up your accounts and listing your offer on AppSource) you
can now proceed to step 3 and 4 (cf. Developing your offer initiating the validation and publication process). Please
review all of the steps and follow the Marketing Validation Checklist and Technical Validation Checklist.

https://aka.ms/Collaborate
https://aka.ms/Collaborate
https://appsource.microsoft.com/en-us/partners/list-an-app
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-checklist-marketing
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-checklist-submission

Useful resources

Guidelines and general information

Monthly “Ready to Go” Office Hours call

GitHub

Follow “Ready to Go” engagements on social media

Find general information on Add-on apps for Business Central here: aka.ms/AppSourceGo.

“Ready to Go” Office Hours is a monthly call that takes place the second Tuesday of every month. The call is
structured as an FAQ session, where a team of our different experts will be present to answer any technical or
marketing related questions that you may have in relation to bringing your app into AppSource. Sign up for the
individual calls that you want to participate in here: aka.ms/ReadyToGoOfficeHours.

Use the GitHub forum to ask, or search, the community and Microsoft experts for questions respectively. Go to:
https://github.com/microsoft/al/issues now and start asking away.

Get insights on what’s happening with Business Central – follow us on Twitter and LinkedIn.

If you have any other technical questions in relation to developing your Add-on app, then please email:
d365val@microsoft.com.

https://aka.ms/AppSourceGo
https://aka.ms/ReadyToGoOfficeHours
https://github.com/microsoft/al/issues
mailto:d365val@microsoft.com

Marketing Validation Checklist
6/17/2019 • 4 minutes to read

IMPORTANT

ITEM NUMBER VALIDATION REQUIREMENTS GUIDANCE/EXAMPLES

In these guidelines, you will find an outline of our requirements for marketing validation as well as examples of best practices,
which you can use as inspiration, while developing the storefront details of your offer, your sales landing page and video
materials.

To ease your experience with developing the storefront details of your listing, we have numerated the core
elements, as they appear when you upload your content in the “Storefront Details” tab on the Cloud Partner Portal.

This image below is an example of what an offering looks like on AppSource, when the storefront details are
completed according to best practices. We highly recommend that you review these guidelines. Click on any of the
links under Guidance/Examples to gain more insight on that particular section or item within the marketing
validation process.

0.A - 0.C Your app can be in any language – if
not in English, a document with English
translation is required. Branding -
Remember to use the product branding
guidelines properly

General Best Practices including
Language and Branding

0.D Must be the same as the manifest.
(Your offer name) for Microsoft
Dynamics 365 Business Central

Offer Name

1 Max. 25 words or 100 characters, value
proposition

Offer Summary

2 - 2.G Use simple HTML tags, 3000 characters
See link for best practices on formating
the content.

Description

2.F Supported editions - Premium, Essential
or both

Premium SKU Listing

2.G - 7 Mark only the Dynamics 365 Business
Central supported countries that apply.

Supported Countries

3-4 Choose the industries the your offer is
best aligned to. (max 2) Categories that
your offer caters to (max 3)

Industries and Categories

5 Add-on App - free or trial, Connect App
- Contact me

Package and App Type

6 Your Help Link cannot be the same as
your Support Link. Your Help Link
should be a landing page on your
website where one can find help
resources, such as documentation,
FAQs, step-by-step guides, webinars,
etc.

Help Link

7 - 8 Listed under Description and Language
& Branding

Supported Countries and Languages

9-10-11 Enter the latest version number. Enter
date (dd/mm/yyyy)when you expect
your app to be released

App Version, App Release Date,
Supported Products

12 Although it's not required, it is strongly
recommended that you use keywords
as to optimize the searchability of your
app. Maximum of 3 words.

Keywords

13 Enter a secret key that you'll use to
preview your offer on AppSource before
going live

Hide Key

ITEM NUMBER VALIDATION REQUIREMENTS GUIDANCE/EXAMPLES

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-checklist-a-languange-branding
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-checklist-b-offername-summary
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-checklist-b-offername-summary
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-checklist-c-offer-description
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-checklist-c-offer-description
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-checklist-d-supportedcountries-languages
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-checklist-e-industries-categories-apptype
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-checklist-e-industries-categories-apptype
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-checklist-h-help-support
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-checklist-d-supportedcountries-languages
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-checklist-f-supportedproducts-keywords
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-checklist-f-supportedproducts-keywords
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-checklist-f-supportedproducts-keywords

14 You are required to provide two logos
on AppSource. 48x48 pixel resolution
(for your app's search page) and
216x216 resolution (for your app's
details page). Both in .png format.

Logos

15 We recommend that you add one or
two videos that would act as a demo or
a quick 3 minute sales pitch on your
app.

Videos

16 Minimum of 1 document (max of 3)
permitted.

Documents

17 Please double check the resolution
needs to be 1280 x 720 and only in
.png format. It's required to have a
minimum of 3 but you can have up to
5.

Screenshots

18 Landing page where prospects can find
information on how you handle their
data.

Privacy Policy Link

19 You need to provide a URL for a distinct
page with your license agreement,
where prospects can find the
information on your terms of use.

License Agreeement

20 It is a requirement that you provide
different (i.e. more than two) contact
options on your app landing page.

Support Link

Special Rules for Localization,
Connect & Consulting Services Apps

Add-On Apps with some unique
requirements.

Localization Apps

Add-On Apps with some unique
requirements.

Connect Apps

Add-On Apps with some unique
requirements.

Consulting Services

ITEM NUMBER VALIDATION REQUIREMENTS GUIDANCE/EXAMPLES

Marketing Checklist for Showcasing Your App
The storefront details on AppSource is the first impression that prospects get regarding your offer. First
impressions last, so make sure to invest some time in developing the content on the storefront, so it gives a good
impression from the beginning. Failing to do so will jeopardize the hard work you put in, when developing your
offer, likely leaving the prospect confused or looking elsewhere. Accordingly, we recommend you put in the time,
effort and due diligence when developing this content. Follow this marketing validation checklist and get your app
passed on the first submission.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-checklist-g-marketingartifacts-logo-video-docs-screenshots
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-checklist-g-marketingartifacts-logo-video-docs-screenshots
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-checklist-g-marketingartifacts-logo-video-docs-screenshots
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-checklist-g-marketingartifacts-logo-video-docs-screenshots
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-checklist-i-privacypolicy-termsofuse
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-checklist-i-privacypolicy-termsofuse
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-checklist-h-help-support
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-checklist-j-leadmanagement-specialty
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-checklist-j-leadmanagement-specialty
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-checklist-j-leadmanagement-specialty

Helpful Videos

Why marketing validation is mandatory

Video - Best Practices for Submitting your App
Video - Successfully submit an app on AppSource

The marketing validation is in place to make sure that the customer journey on AppSource is a uniform experience,
where customers quickly and easily can get an overview of your offer ’s functionality, why they can benefit from
using it, while also enticing them to learn more and take the necessary actions to start using your offer.
Accordingly, to ensure that your listing establishes a good first impression, we carry out a marketing validation of
all Dynamics 365 Business Central apps that are being published on AppSource. This also goes for apps that
already are live, if some of the content in their storefront details needs to be edited – in this case they need to be
resubmitted for marketing validation as well. Consequently, to be published on AppSource all listings need to pass
the required elements within the marketing validation process.

https://youtu.be/lOL1oRMTq_4
https://youtu.be/WZXGc16HJGU

Technical Validation Checklist
3/31/2019 • 2 minutes to read

REQUIREMENT EXAMPLE/GUIDANCE

Develop your extension in Visual Studio Code. Developing AL Language extensions

The app.json file has mandatory settings that you must
include. Here you can also read more about dependency
syntax and multiple countries per a single app syntax.

Mandatory app.json settings

Coding of Date must follow a specific format (no longer
region specific)

Use the format yyyymmddD . For example, 20170825D .

Remote services (including all Web services calls) can use
either HTTP or HTTPS. However, HTTP calls are only possible
by using the HttpRequest AL type.

Guidance on HTTP use

Only JavaScript based Web client add-ins are supported. The
zipping process is handled automatically by the compiler.
Simply include the new AL controladdin type, JavaScript
sources, and build the app.

Control Add-Ins

The .app file must be digitally signed. Signing an APP Package File

The user scenario document must contain detailed steps for
all setup and user validation testing.

User Scenario Documentation

Set the application areas that apply to your controls. Failure
to do so will result in the control not appearing in Dynamics
365 Business Central.

Application Area guidance

Permission set(s) must be created by your extension and
when marked, should give the user all setup and usage
abilities. A user must not be required to have SUPER
permissions for setup and usage of your extension.

Exporting Permission Sets
Managing Users and Permissions

Before submitting for validation, ensure that you can
publish/sync/install/uninstall/reinstall your extension. This
must be done in a Dynamics 365 Business Central
environment.

How to publish your app

Thoroughly test your extension in a Dynamics 365 Business
Central environment.

Testing Your Extension

Do not use OnBeforeCompanyOpen or OnAfterCompanyOpen Replacement Options

Include the proper upgrade code allowing your app to
successfully upgrade from version to version.

Upgrading Extensions

The following is a checklist of all requirements that you must meet before submitting an extension for
validation. If you do not meet these mandatory requirements, your extension will fail validation.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-restapi-overview
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-applicationarea-property
https://docs.microsoft.com/en-us/dynamics365/business-central/ui-how-users-permissions

Pages and code units that are designed to be exposed as
Web services must not generate any UI that would cause an
exception in the calling code.

Web Services Usage

You must include all translations of countries your extension
is supporting. The use of xliff is required.

Translating Your Extension, Countries and Translations
Supported.

You are required to prefix or suffix the Name property of
your fields. This eliminates collision between apps.

Prefix/Suffix Guidelines

You are required to include a Visual Studio Code test package
with your extension. Ensure that you include as must code
coverage as you can.

Testing the Advanced Sample Extension

DataClassification is required for fields of all tables/table
extensions. Property must be set to other than
ToBeClassified .

Classifying Data

You must use the Profile object to add profiles instead of
inserting them into the Profiles table.

Profile Object

Use addfirst and addlast for placing your actions on
Business Central pages. This eliminates breaking your app
due to Business Central core changes.

Placing Actions and Controls

REQUIREMENT EXAMPLE/GUIDANCE

See Also
Developing AL Language extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/compliance/apptest-countries-and-translations

How to Make Compelling Videos
5/3/2019 • 9 minutes to read

Reasons why video is a superior medium

Speak to Specific Personas in your videos

Choose the video format that is relevant for the audience that you want
to target

Video type 1: “Why” video

Why use video? It is well worth investing time and resources to create marketing videos for your app, it is taken
seriously in a business environment.

Videos offers a very rich, stimulating communication medium that engages multiple senses.
Video engages the mind and triggers emotions, which makes it more compelling than text-based content.
Our brains have an easier time processing visual stories than bullet points or straight facts.

A recent Demand Gen survey indicated that 58% of B2B buyers consume video content, while Hyperfine media
states that 59% of executives would rather watch video than read text. Also, 50% of executives look for more
information after seeing a product/service in a video.

You should create a video for each of the three core personas in the company:

WHY persona: Owner/executive/leadership
HOW: Business line manager
WHAT: IT buyer, User

A horizontal generic message that attempts to speak to everyone will likely not reach anyone in an emotionally
engaging way. Wasting a prospect’s time by requiring him/her to listen to irrelevant data or information will only
create frustration and lead him/her to form a negative bias towards your company.

How to set up “Why” videos

Recommended length: 60-90 seconds
Purpose:

Focus:
Your video should clearly communicate WHY prospects need to buy your solution now.

Make sure the prospect is the hero of the story, not you or your company. Prospects are not interested in
hearing about your company at this stage. They are simply trying to determine if what you offer is of
value to THEM.
Your video should speak to the principal challenges and goals of your core decision-maker persona.
Describe the desired end state they will achieve by using your app.
A client/customer speaking about the benefits they received from your app is far more credible and
compelling than anyone from your organization.

Don’t only rely on “features” to acquire new customers.

How to speak to a WHY persona in a video

Video type 2: “How & What” video

Target audience:

Message:

Owner/executive/leadership
They have limited time and financial resources as well as many competing priorities and resource
requirements
You need to elevate the discussion to a strategic level, where you highlight market share,
competitiveness, profitability, differentiation, revenue loss, and more.

The question you must answer beyond a doubt is WHY should they invest the time and money to buy
your app? What will they get out of it?
Why should they spend money on a new system now? Can’t they put it off?
The WHY messaging teaches people something and it is industry specific and results oriented, as well as
being memorable. It engages the emotional/limbic brain and leads to meaningful action.

How to set up “How and What product videos”

Recommended length: Up to 3 minutes.

Purpose:

This video goes into greater depth communicating the main benefits of your app as well as HOW you
solve your prospects’ problems. You can include some WHAT content. • Focus:
Demonstrating the proof of your claims is critical during this video.
Show very specific dashboards or visually show how you address prospect challenges.
If possible, use contrast to create desire and a sense of urgency. For example, you could show a complex,
ugly data-filled forecast spreadsheet next to a beautiful visual dashboard stating “your sales forecast
before and after.”

How to speak to a HOW persona: (Business line manager)

Target audience: Business Line Manager
HOW focuses on the operational benefits your solution will provide and HOW your organization will
support the implementation.
Speaking to the HOW persona starts to separate you from the pack. • Message: o HOW content is
VISUAL in nature and ACTION oriented. It allows your prospects to identify with you at a FUNCTIONAL
business level and to Add-on with you. It provides evidence that your organization has relevant industry
experience. Tribal acceptance increases, while risk decreases.
HOW messaging begins to appeal to the limbic brain because it is focused primarily on emotional
business pains and problems.

How to speak to a WHAT persona: (IT buyer, User)

Target audience: IT-buyer, User

Message:

WHAT people are often tasked with finding a solution and are important influencers in the decision, but
they are not the financial decision makers, and their opinions are easily overturned by HOW and WHY
people in the organization.
Therefore, don’t invest all of your marketing time, money, and effort into providing content just for them.

You need to survive the WHAT inquisition and provide information about product-related features,
functionality, and data so that prospects clearly understand your solution offering.
However, this will seldom trigger an emotional response and, therefore, it is likely there will be little or no
emotional engagement with your content.

Video type 3: “Getting started” video

Video type 4: “Customer testimony” video

Video tips

WHAT content is binary. WHAT content is a commodity. WHAT content is boring. Logical WHAT content
is a necessary evil because many prospects initially go looking for it, but stopping here means remaining
relevant only to WHAT personas.

How to set up “Getting started videos”

Recommended length: 2–3 minutes maximum.
Purpose: This video should prove it is quick and easy to get up and running with your app.
Target: What personas (Users, It buyers)

How to set up “Customer testimonial videos” - Recommended length: Up to 2 minutes

Purpose:

Focus:
Social reinforcement: Customer stories are the best proof of gain.

A story coming directly from your client in the form of a testimonial is stronger than having your
prospects take your word for it. If prospects see that other similar people orcompanies have already
purchased your solution, then their natural response will be to more readily accept it as a solution for
themselves.

How to structure your video and practical things to keep in mind when producing videos

How to structure the flow in your video?

Gain immediate attention in the first 10 seconds of the video Stimulate curiosity by include a hook
phrase/comment that will elude to solving a pain point. Ask questions about the prospects’ core business
challenges or ask about something they would like to do but can’t accomplish today.
Highlight the prospects’ problems: Use an empathetic approach when describing their current situation and
demonstrate that you understand their current business challenges. They must relate to this if they are to
continue watching.
Give them new learning Teach them something they don’t know. Demonstrate you have expertise and
knowledge about their business or industry that they might not. Show you can offer strategic value to them.
Paint a picture of a desired outcome they would love to have or state they crave to experience Highlight the
benefits, rewards, and value they will enjoy after they purchase from you. Include both what it looks like and
how it will feel.
Prove what you’re saying is true Prospects don’t trust us when we say our products are great. Include objective
and credible proof in the form of data, charts, graphs, quotes, statistics, or testimonials as evidence of your
claims.
Ask them to take action Include a call to action at the end of all videos. When viewers watch your videos, they
should feel inspired to take the next step towards purchasing. Tell them what to do next and include an
interactive link to the next step in the buying cycle. Use scarcity to compel them to action. Provide a timelimited
offer or, for example, say it is “only for the first 20 customers”.

Practical things to keep in mind when producing and distributing your video

Does and don’t when producing your video

Don’t make the video too long As our attention span is 8 seconds the ideal length of video is 90 seconds

(minimum 30 seconds/maximum 2 minutes).
Add interactivity where possible Overlay text, charts, animation, questions etc. Visually call out key messages.
Make sure your audio is high quality.
Make your video easily shareable
Enable your video to be shared on multiple media. Track views and attention span. Observe and measure viewer
patterns so that you can learn from prospects’ actual behaviors and then improve future content.

How to make a good narrative that speak to the right persona in the right way?

Your narrative should have a beginning, middle, and end.

The brain is on alert at the beginning of the video and at the end.

Speak directly to a particular persona in the second person.

Speak to a particular persona:

Ask rhetorical questions that stimulate pain and anxiety in your prospects in order to demonstrate that you
understand their business problems.

Use visual and auditory language to help the prospect imagine a new possible future.

Use contrast whenever possible.

Lead with a story, not with your app or the technology.
Don’t turn your videos into a product pitch.
You’ll build more brand affinity and trust by shedding light on a problem your prospects care about
rather than by pitching your solutions to them directly.

Make sure the first and last ten seconds are compelling, memorable, and interesting.

Do not talk about them in the third person, and avoid using terms like “our clients” and “companies”;
instead, use “you” language as often as possible.
Use a lot of industry specific vocabulary, terminology, and visuals. If possible, film onsite at a customer’s
location rather than in your office or in a studio.

Do not try to appeal to everyone at once, as you may not fully engage anyone with this approach.
Keep your delivery casual and authentic to instill trust. Speak directly to the prospect as if you were
having a fireside chat
The prospect should be the hero of the story, i.e. do not speak about you and your company.

For example: Are your margins decreasing? Having cash flow problems because you can’t collect
payments sooner than 90 days? Had another large write off? Lost an important customer recently due to
a late delivery?

For example: “imagine seeing” , “picture yourself”, or “ how would you like to hear your clients say…” and
so on.

Compare prospects’ experience now versus what it could be after the implementation of your solution.
Call out your competitive differentiators while anchoring your solution in prospects’ minds so that they
can compare all others against the bar you set.

How to make a good narrative that speak to the right persona in the right way?

Where possible, use tangible, concrete language.

Providing customer references and testimonials is much more compelling and effective than selling your
company or product yourself.

Surprise and delight them.

Include quantifiable proof in the form of data or visual pictures.
No vague claims like “transform your business with the cloud”. This is an emotionless statement.

Let others speak for you. A customer testimonial video will always be more believable and compelling
than a video of you saying the same thing.

Use humor to make them smile. We take ourselves and our problems too seriously. Be warm,

memorable, and unique.

Guideline on Creating an Effective Sales Landing
Page for Your App
5/3/2019 • 12 minutes to read

Building a landing page that drives a successful buying transaction

Accommodating more languages than English

Examples of how other partners have implemented our best practices

Microsoft will drive qualified traffic to AppSource. Though, once a prospect becomes aware of your app, it will be
your job to guide them through to a successful buying transaction. Deliberately mapping and architecting the
buying journey is critical to ensure a high level of engagement and conversion. Only presenting your app’s features
and functionality, or just providing a free trial, will not ensure prospects will become buyers. For this you need to
have a good landing page that is built to help you capture attention, accelerate your customer acquisition process,
and drive buying behavior. The recommendations on this page will help you do so.

Your app landing page should be built to move prospects effectively through the following stages:

English is the de facto language that is used on AppSource to ease the validation process and create a uniform user
experience.

For you, this means that both the storefront details of your app, and everything that is accessible through it must
be in English too.

This includes: your app’s landing page, videos, documentation – such as “Learn more” documents, factsheets, set
up instructions, privacy policies, SLAs etc. – as well as help, support- and contact options.

If your app caters to a local language that isn’t English, you can improve the user experience by:

Creating a website that has two landing pages (i.e. two language buttons – cf. one in English and one in the
given local language). In so doing your customers can switch to the language they master and thus easily be
able to find the right docs and contact info by a shift of a button.
However, this set up implies that you need to make two versions of all your docs, support options and landing
pages.
Note, as mentioned earlier within the "Marketing Validation Checklist" everything that is accessible through the
Cloud Partner Portal needs to be in English.

Below you can see how Deex Korea Co Ltd has set up their apps landing page to accommodate two languages, and
everything that this entails. We recommend that you use it as inspiration on how to create a user-friendly landing
page. If you click on the pictures you will be re-directed to their two respective landing pages.

Example of Deex Korea Co Ltd.’s user-friendly landing pages that accomodates two language options and is set up
in accordance with our best practices:

To inspire you in creating a good landing page for your app, two of our valued partners, LS Retail and Industry
Built, have offered to provide a sample of what a best practice landing page for a Microsoft Dynamics 365 Business
Central partner could look like.

Have a look at their app landing pages and use them as inspiration to build your own landing page:

Industry Built’s Build Food app

http://www.buildfood.cloud/

Layout and structure elements
ELEMENT DESCRIPTION EXAMPLE

Company Include the company logo on the page ./media/image30.jpg

App name & app logo Include a visual logo of your product
name and a onesentence positioning
statement.

./media/image31.jpg

./media/image32.jpg

./media/image33.jpg

Top menu choices Use clean, straightforward and
descriptive menu options.

/media/image34.jpg

Search box Include a search box so visitors can
quickly find what they are looking for.

./media/image37.jpg

Emotional tribal anchor photos Visuals create an emotional Add-onion.
The brain skims over non-emotional
photos.

./media/image38.jpg

Visual Make your page easy to scan, with lots
of strong visual imagery.

./media/image39.jpg

Logo

The upper-right corner of the page is usually an ideal spot.

LS Retail’s LS Express Start app

In the following checklist, we have “broken down” the elements, on their landing pages in order to showcase best
practices on design and messaging. More specifically, we are looking into layout and structure elements, content
elements, visual elements, anxiety reducing elements and support elements.

Additionally, we have provided specific recommendations on how to apply these elements to help you increase
conversion and maximize the effectiveness of your product’s sales landing page.

We urge you to review and implement these best practices on your landing page – in so doing you will contribute
in providing the Microsoft community of customers with a consistent buying experience across publishers.

The upper-left corner of the landing page is the most valuable section of the entire landing page.
Place your company logo in this location.

If you need help formulating a positioning statement, try the value proposition generator located at here

There should ideally be 5 or fewer choices; do not include more than 7 options.
The menu text should state what the prospect gains if they click on the menu item
The text should be written from their perspective, not yours.

Recommended menu items:

How to Buy, Benefits Gained, Why Us, and Contact.

https://lsexpress.lsretail.com/
http://neuralimpact.ca/valueproposition/

Content elements: Text and messaging

Faces evoke more emotion than landscapes or machines, and so on.
Include a happy customer that looks similar to your prospect in terms of age, demographic, and industry, and
which shows them dealing with the issues that your prospect can relate to.
Try not to use stock photos of people or objects.

Engagement

Too much text forces the brain to skim, skip, and exit. Text engages the logical, analytical brain, but not the
emotional brain.
Keep it clean and straightforward in terms of design and layout. Use lots of pictures, graphs, and screen shots to
enhance engagement.

| Element | Description | Example | |--------------------------------------|-------------|--------------| |Include a headline
question| Get your prospects’ attention by asking them a compelling pain-based question that they can relate to.|
“Struggling to manage your ingredient inventory and fretting over allergens?” | ||You want the prospect to mentally
say “YES” as often as possible and to peak their curiosity enough to read more.| || Your questions should be
intriguing and customer-centric.| ||In general, 8 out of 10 people will read headline copy, but only 2 out of 10 will
read the rest.| |Microsoft Dynamics 365 product description| Somewhere on the landing page, make sure you
include the standard Microsoft Dynamics 365 Business Central product description provided by Microsoft This is a
requirement because your product is adding value to and building on this foundational solution.| Insert this
paragraph: Microsoft Dynamics 365 Business Central is a comprehensive business management solution for small
and medium-size businesses (SMBs) that have outgrown their basic accounting software. From day one, this new
application makes ordering, selling, invoicing, and reporting easier and faster. Dynamics 365 Business Central is
deeply integrated with Office 365 and includes built-in intelligence, so it is easy to use and helps users make better
business decisions. | Messaging (Address their pains)| Pain is a strong motivator of action. | ./media/image40.jpg|
||- Identify 1-3 key sources of the client’s most prominent pain early on the page.| ./media/image41.jpg| || || - Call
out the fears that are likely to be holding them back. ||- Your landing page text and messaging should
predominantly focus on the pain the prospect is experiencing, and NOT the features of your product or service.

Clearly demonstrate to your prospects that you genuinely understand their industry and unique business
problems.

Describe the business challenges they are facing now and the ways their revenue growth, margins, productivity
and so on, are being negatively impacted by not taking action now.

| Element | Description | Example | |--------------------------------------|-------------|--------------| |Messaging
(Product benefits)|Paint a clear, visual and desirable picture of what is possible. | ./media/image43.jpg|
|||./media/image44.jpg| |||./media/image46.jpg|

Describe the most significant benefits and rewards that your prospect will realize after purchase.

Don’t only list features and app functionality, start with the benefit first, then you can follow with the features.
Paint a picture of a possible experience the prospect will immediately desire.

For example, “Save time and money (benefits) by having a system that does all the tracking and
calculations for you (features).”

Clearly articulate a compelling desired outcome

If possible, use industry-specific language and vocabulary to resonate with your prospect deeply.
Choose a particular persona to speak to directly.
Engage prospects by speaking directly to them using first person “you” language.

| Element | Description | Example | |--------------------------------------|-------------|--------------| |Messaging (Prove
your claims) | Include specific calls-to-action on your app page.| “Reduce how long it takes to set up your recipes

ELEMENT DESCRIPTION EXAMPLE

Pictures (Differentiation comparison
images) Show them, don’t tell them

Show the before and after state. ./media/image57.jpg

ELEMENT DESCRIPTION EXAMPLE

Compelling proof screen shots Visually demonstrate all the claims that
you are making.

Quickly and easily view inventory items
./media/image61.jpg
./media/image62.jpg

in the morning from 1 hour to 10 minutes.” ./media/image52.jpg|

Don’t make general and abstract claims.

Use data as often as possible to support your statements.

If you make specific claims, support your claims with proof, while Quantifying impacts and gains.

The more specific and concrete your promise of value is, the better.
Abstract concepts such as “more efficiency, more productivity, transform your business” are not emotionally
impactful or convincing and do not compel a prospect to act.

Target market If you support multiple countries or languages, this is a key selling feature. • Find a way to show this
visually. ./media/image49.jpg

| Element | Description | Example | |--------------------------------------|-------------|--------------| |Messaging
(Compelling call-to-action)| Include specific calls-to-action on your app page|./media/image53.jpg|

This can be your free trial; a time-limited special price; a scheduled walk-through demonstration; and so on.
The words "free” and “save” are highly emotional words in the English language, so they should be used.
Use bright colors, such as orange, yellow, or red, to call attention to your buttons.

Button text should use benefit language rather than descriptive language.

For example, instead of “Download” write “Click here to start saving money now.”
Try not to send prospects away from your page – always have an embedded next step in your call to action that
brings them back to your landing page.

| Element | Description | Example | |--------------------------------------|-------------|--------------| |Messaging (Create
a sense of urgency by teaching the prospects) |Help your prospect gain a sense of urgency to buy by teaching
them one thing about how they can be more efficient or profitable now. |./media/image55.jpg Your bakery
profitability will decrease over the next five years due to an increase of 3% in the cost of key inputs, such as wheat
and sugar. Want to know five key strategies that can help you mitigate this challenge? Click here to find out how to
preserve your profit margin ./media/image56.jpg|

Show them how their performance in one key business area is below that of their competitors.
For an example you can provide a quick online self-assessment, a top-10 tips blog post, and much more. Visual
elements

This is a visual image of how your prospects do things now versus how they will be able to do it in the future.
You are not telling them but showing them using a visual.

Graphic dashboards are the most effective method.
Zoom in on the main benefit-related features.
Make sure it is readable, and the benefit is obvious.

ELEMENT DESCRIPTION EXAMPLE

Videos (Tell your story using videos not
text)

Include as many videos as possible. ./media/image63.jpg
./media/image64.jpg

Elements that reduce anxiety and risk, while increasing trust

ELEMENT DESCRIPTION EXAMPLE

Reduce risk Prospects are afraid of being scammed
and taken advantage of on the internet.
They are naturally cautious and highly
suspect.

Source: Microsoft.com

Include a caption.
Data should be industry specific so that it resonates with the viewer.

You want prospects to see how their data/process would look in your system.

Videos have a much higher level of engagement and viewing time and convey much more than you can ever
say with words.

Include at least one customer testimonial video on your app landing page.

Your client should speak specifically about the pains they had before and the benefits they gained after, not
product features. It should be all about your customers, not you.

Include one product demonstration video.

See the video best practices https://aka.ms/ReadyToGo

| Element | Description | Example | |--------------------------------------|-------------|--------------| |Customer
testimonials|Don’t sell your product; let your customers do that for you.| ./media/image65.jpg
./media/image67.jpg|

Social proof is more credible and trustworthy to prospects. The purpose of testimonials is to reduce the buyer's
anxiety and fear.

Your testimonials should answer the following questions:

“Will this work for my situation?”
“What benefit will I really get if I buy this?”
“Is this going to be too hard?”
“How long is this going to take?"
“Can I trust this company?”

You want to convert prospects to buyers.
Make it easy for them to buy, while reducing their anxiety. Transparency is the key to building trust.
Make sure that you include a link to a BUY NOW page, which includes full pricing details.
Give them a compelling offer they cannot refuse. Offer a time-limited trial or special pricing discount if they buy
in 30 days.
Use scarcity to compel action. Offer a 100% money-back guarantee.

We recommend providing three offerings, optimized for three different customer segments. For more
recommendations on pricing, see the pricing guide located at https://mbspartner.microsoft.com/BFI/Topic/64

https://aka.ms/ReadyToGo
https://mbspartner.microsoft.com/BFI/Topic/64

ELEMENT DESCRIPTION EXAMPLE

Live chat Include live chat, with a photo of one of
your team members smiling at an
appropriate time to increase conversion,
such as when a prospect clicks the back
button on your pricing page.

Support elements: Interactivity and contact options

Include their name if possible to build trust.

| Element | Description | Example | |--------------------------------------|-------------|--------------| |SHORT lead
capture form|Include a lead capture form on your page.| ./media/image68.jpg|

Only ask for their name and email address, you can get the rest later.
Your forms should not have more than 4 or 5 fields to fill out. You have not yet earned the right or enough trust
to ask for too much information at this point.

Most lead capture forms are way too long, demanding, and intimidating, and have low completion rates.

Note, nobody has the time or is willing to fill out an annoying form, which is of no value to them, especially if it
is purely self-serving from your standpoint.

| Element | Description | Example | |--------------------------------------|-------------|--------------| |Contact|Provide
prospects with different contact options based on their readiness to interact with you.| ./media/image69.jpg|

Ideally, include a phone number and an email address with an employee photo.
This alone could double your conversion rate.

| Element | Description | Example | |--------------------------------------|-------------|--------------| |AppSource app
page link & social share|Include a link back to your listing on AppSource, so the prospect can return when ready.|
Return to AppSource ./media/image70.jpg|

Also, enable visitors to share and forward your app with others!

| Element | Description | Example | |--------------------------------------|-------------|--------------| |Close them! Add a
get started button|Include a very specific call-to-action button with the option to buy or try.|./media/image71.jpg
./media/image72.jpg|

Getting Started with C/SIDE and AL for On-Premises
3/31/2019 • 2 minutes to read

Steps to install Business Central on-premises with C/SIDE and AL
development environment

TIP

NOTE

See Also

To get started with a mixed development environment of C/SIDE and AL, you must follow the steps below.

1. Install Business Central on-premises and make sure to include the AL Development Environment.
2. Download Visual Studio Code.
3. From Visual Studio Code, locate Extensions in the left navigation bar, and then choose Install from vsix.
4. Browse to the equivalent folder of

C:\Program Files (x86)\Microsoft Dynamics 365 Business Central\130\AL Development Environment and then
choose Install.

5. Now, press Alt+A, Alt+L to trigger the AL Go! command, choose a project, and then choose Your own
server.

6. Authenticate with the credentials you use for signing into Business Central on-premises.
7. In the launch.json file, update the "server": "http://localhost" setting with the URL for server running

Business Central on-premises and save the file.
8. In the app.json file, add the "target": "Internal" setting.
9. Now, use the Business Central Administration Console to ensure that the settings on the Development tab are

set as follows:

10. Make sure to read and ensure any additional settings here Running C/SIDE and AL Side-by-Side.

Allowed Extension Target Level is set to Internal.
Enable Developer Service Endpoint checkbox is selected.
Enable Loading Application Symbol References at Server Startup checkbox is selected.

For information about which sandboxes you can choose, see Choosing Your Dynamics 365 Business Central Development
Sandbox Environment.

Build and get inspired by our sample library on GitHub.

AL Development Environment
FAQ for Developing in AL

https://code.visualstudio.com/Download
https://github.com/Microsoft/al

Running C/SIDE and AL Side-by-Side
3/31/2019 • 3 minutes to read

Get started generating symbols and compiling all objects

Syntax example

finsql.exe Command=generatesymbolreference, Database="Demo Database NAV (11-0)", ServerName=.\NAVDEMO

NOTE

Continuously generate symbols each time you compile objects in
C/SIDE

Business Central on-premises supports development using both C/SIDE and AL, as well as Designer side-by-side.
When new objects are added or changed in C/SIDE these changes must be reflected in the symbol download in
Visual Studio Code using the AL Language extension. To enable this reflection, a command and argument called
generatesymbolreference has been added to finsql.exe and you can run it as illustrated below.

Use the generatesymbolreference command specified with the database and server name to add symbol
references to the Object Metadata table for the specified database.

Given the generatesymbolreference command, C/SIDE will traverse all the objects in the database and generate
symbols for them. This command should be run at least once to generate the initial set of symbols to which
incremental updates can be applied.

This is a lengthy operation. When you run the command, the console returns to an empty command prompt, and
does not display or provide any indication about the status of the run. However, the finsql.exe may still be running
in the background. It can take several minutes for the run to complete, and the symbols will not be generated until
such time. You can see whether the finsql.exe is still running by using Task Manager and looking on the Details
tab for finsql.exe.

When the process ends, a file named navcommandresult.txt is saved to the Dynamics NAV Client connected to
Business Central installation folder. If the command succeeded, the file will contain text like
[0] [06/12/17 14:36:17] The command completed successfully in '177' seconds. If the command failed, another file

named naverrorlog.txt will be generated. This file contains details about the error(s) that occurred.

The symbol references are stored in the Symbol Reference column of the Object Metadata table of the database. For on-
premises installations, if you experience problems with generating symbols, and the information in the naverrorlog.txt did
not help, try changing the values in the Symbol Reference column to NULL by using an SQL query, then generate the
symbols again

The generatesymbolreference flag enables incremental symbol generation through the UI or through the compile
command passed on the command line. To update the symbols for a set of objects from the UI, start C/SIDE with
the generatesymbolreference flag, make any desired modifications to your application objects, and compile them.

NOTE

NOTE

Syntax example

finsql.exe generatesymbolreference=yes

Business Central on-premises server setting

IMPORTANT

See Also

Use generatesymbolreference set to yes as a command line argument each time you start finsql.exe to have all
compilations add a symbol reference to the Object Metadata table. The default setting of the argument is no.

If you make changes in C/SIDE and start the C/SIDE development environment without the generatesymbolreference

flag set to yes , the symbols downloaded from Visual Studio Code will not reflect your changes.

This flag is also a part of the Compile-NavApplicationObject PowerShell command and you can use it to compile
and generate symbols on a filtered set of application objects through PowerShell. This alternative should be
considered if you do not work with the UI in C/SIDE. For more information about it, see Compile-
NavApplicationObject.

In addition to the symbol generation setting you have chosen above, you must enable the Business Central on-
premises server setting.

1. Go to Business Central Administration.
2. Scroll to the Development tab and expand the tab.
3. Choose the Edit button, and then select the Enable loading application symbols at server startup

checkbox.

This setting must be enabled to allow any symbol generation. If the setting is not enabled, the generatesymbolreference

setting does not have any effect.

Developing Extensions

https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.ide/compile-navapplicationobject?view=businesscentral-ps

Creating Runtime Packages for Business Central On-
Premises
5/21/2019 • 2 minutes to read

Start using runtime packages

Limitations

See also

If you want to distribute extensions, you can generate runtime packages that do not contain AL code, but only the
final artifacts used by the server at runtime. Runtime packages thereby allow you to protect the intellectual
property represented by your AL source code.

When the runtime package is generated on the server, the developer license is checked for permissions to the used
extension IDs. The extension in a runtime package can then be installed on servers that do not have a developer
license; the server only needs permissions to run the objects, but not to modify or insert them.

The first step in using runtime packages is to have an extension developed and published to an on-premise
instance. Next, use the following PowerShell command to connect to the server, find the extension, and download
the runtime package.

Get-NavAppRuntimePackage

For more information about this cmdlet, see Get-NAVAppRuntimePackage cmdlet.

The following example gets the NAV App runtime package with the provided name and version.

Get-NAVAppRuntimePackage -ServerInstance DynamicsNAV -AppName 'Proseware SmartApp' -Version 2.3.4.500 -
ExtensionPath 'Prosware SmartApp_2.3.4.500_runtime.app'

For publishing and installing the package, use the Publish-NavApp and the Install-NAVApp PowerShell cmdlets.

The limitation of runtime packages is that they only work for on-premise installations and therefore cannot be
submitted to AppSource. Moreover, the debugging experience is very limited since no source code is available.

Publish-NAVApp cmdlet
Install-NAVApp cmdlet

https://go.microsoft.com/fwlink/?linkid=859214
https://go.microsoft.com/fwlink/?linkid=616079
https://go.microsoft.com/fwlink/?linkid=618056
https://go.microsoft.com/fwlink/?linkid=616079
https://go.microsoft.com/fwlink/?linkid=618056

JSON Files
6/17/2019 • 6 minutes to read

App.json file

SETTING MANDATORY VALUE

id Yes The unique ID of the extension. When
app.json file is automatically created, the ID
is set to a new GUID value.

name Yes The unique extension name.

publisher Yes The name of your publisher, for example:
NAV Partner, LLC

brief No, but required for AppSource submission Short description of the extension.

description No, but required for AppSource submission Longer description of the extension.

version Yes The version of the app package.

privacyStatement No, but required for AppSource submission URL to the privacy statement for the
extension.

EULA No, but required for AppSource submission URL to the license terms for the extension.

help No, but required for AppSource submission URL to an online description of the
extension. The link is used in AppSource
and can be the same as the value of the
contextSensitiveHelpUrl property or a

different link, such as a link to your
marketing page.

url No URL of the extension package.

logo No, but required for AppSource submission Relative path to the app package logo from
the root of the package.

dependencies No List of dependencies for the extension
package. For example:
"dependencies": [{ "appId":
"4805fd15-75a5-46a2-952f-
39c1c4eab821", "name":
"WeatherLibrary", "publisher":
"Microsoft", "version": "1.0.0.0"},
{}]

screenshots No Relative paths to any screenshots that
should be in the extension package.

In an AL project there are two JSON files; the app.json file and the launch.json file. These files are generated
automatically when you start a new project. The app.json file contains information about extension that you are building,
such as publisher information and specifies the minimum version of base application objects that the extension is built on.
Often the app.json file is referred to as the manifest. The launch.json file contains information about the server that the
extension launches on.

The following table describes the settings in the app.json file:

platform Yes, if system tables are referenced in the
extension

The minimum supported version of the
platform symbol package file, for example:
"11.0.0.0". See the Symbols for the list of
object symbols contained in the platform
symbol package file.

application Yes, if base application objects are extended
or referenced. The AL package will be
compiled against the application that is
present on the server that you connect to.
This allows you to write a single AL
Language extension for multiple country
versions as long as you do not depend on
country-specific code. If you do depend on
country-specific code you should only try
to compile your app against a server set up
for that country.

The minimum supported version, for
example: "application": "11.0.0.0"

idRange Yes For example:
"idRange": {"from": 50100,"to":
50149}

. A range for application object IDs. For all
objects outside the range, a compilation
error will be raised. When you create new
objects, an ID is automatically suggested.

idRanges Yes For example:
"idRanges": [{"from": 50100,"to":
50200},{"from": 50202,"to": 50300}]

. A list of ranges for application object IDs.
For all objects outside the ranges, a
compilation error will be raised. When you
create new objects, an ID is automatically
suggested. You must use either the
idRange or the idRanges setting.

Overlapping ranges are not allowed and
will result in a compilation error.

showMyCode No This is by default set to false and not
visible in the manifest. To enable viewing
the source code when debugging into an
extension, add the following setting:
"showMyCode": true

target No By default this is Extension . For
Dynamics NAV, you can set this to
Internal to get access to otherwise

restricted APIs and .NET Interop. The
Dynamics NAV Server setting must then
also be set to Internal .

contextSensitiveHelpUrl No, but required for AppSource submission The URL for the website that displays
context-sensitive Help for the objects in the
app, such as
https://mysite.com/documentation .

helpBaseUrl No The URL for the website that overtakes all
Help for the specified locales. This property
is intended for localization apps specifically
since the setting overwrites the default URL
of
https://docs.microsoft.com/{0}/dynamics365/business-
central

.

SETTING MANDATORY VALUE

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-symbols

supportedLocales No The list of locales that are supported for
looking up Help. The value on the list is
inserted into the URL defined in the
contextSensitiveHelpUrl and
helpBaseUrl properties. The first locale

on the list is default. An example is
"supportedLocales": ["da-DK", "en-
US"]

.

runtime Yes The version of the runtime that the project
is targeting. The project can be published
to the server with an earlier or the same
runtime version. The available options are:
1.0 - Business Central April 2018 release,
2.2 - Business Central October 2018

release CU 2, and 3.0 - Business Central
April 2019 release.

SETTING MANDATORY VALUE

Launch.json file

Publish to local server settings

SETTING MANDATORY VALUE

name Yes "Publish to your own server"

type Yes Must be set to ".al" . Required by Visual
Studio Code.

request Yes Request type of the configuration. Must be
set to "launch" . Required by Visual
Studio Code.

server Yes The HTTP URL of your server, for example:
"http://localhost|serverInstance"

port No The port assigned to the development
service.

serverInstance Yes The instance name of your server, for
example: "US"

authentication Yes Specifies the server authentication method
and can be set to "UserPassword" ,
"Windows" , or "AAD" . Currently, AAD

authentication is supported only for
Dynamics 365 Business Central sandboxes.
AAD authentication cannot be used for on-
premise servers.

startupObjectType No Specifies whether the object to open after
publishing is a Page type ("Page") or
Table type ("Table") object. The default is
"Page" .

The following table describes the settings in the launch.json file. The launch.json file has two configurations depending
on whether the extension is published to a local server or to the cloud.

startupObjectId No Specifies the ID of the object to open after
publishing. Only objects of type Page and
Table are currently supported.

schemaUpdateMode No Specifies the data synchronization mode
when you publish an extension to the
development server, for example:
"schemaUpdateMode": "Recreate"

The default value is Synchronize. For more
information, see Retaining table data after
publishing
This feature is not supported in Dynamics
NAV.

breakOnError No Specifies whether to break on errors when
debugging. The default value is true .

breakOnRecordWrite No Specifies if the debugger breaks on record
changes. The default value is false .

launchBrowser No Specifies whether to open a new tab page
in the browser when publishing the AL
extension (Ctrl+F5). The default value is
false . If the value is not specified or set

to true , the session is started. If the
value is explicitly set to false , the session
is not started unless you launch your
extension in debugging mode.

SETTING MANDATORY VALUE

Publish to cloud settings

SETTING MANDATORY VALUE

name Yes "Publish to Microsoft cloud sandbox"

type Yes Must be set to ".al" . Required by Visual
Studio Code.

request Yes Request type of the configuration. Must be
set to "launch" . Required by Visual
Studio Code.

startupObjectType No Specifies whether the object to open after
publishing is a Page type ("Page") or
Table type ("Table") object. The default is
"Page" .

startupObjectId No Specifies the ID of the object to open after
publishing. Only objects of type Page and
Table are currently supported.

tenant No Specifies the tenant to which the package is
deployed. If you specify multiple
configurations, a drop-down of options will
be available when you deploy. This
parameter must contain a tenant AAD
domain name, for example
mycustomer.onmicrosoft.com .

sandbox No Specifies which sandbox to use in cases
where multiple sandboxes are owned by
the same tenant.

SETTING MANDATORY VALUE

The platform symbol file

See Also

The platform symbol file contains all of the base app objects that your extension builds on. If the AL Language extension in
Visual Studio Code detects that the referenced symbols are not present on local disk, you will get a visual prompt in Visual
Studio Code to download the symbols from one of the servers specified in the launch.json file. For more information about
the platform symbol file, see Symbols.

AL Development Environment
Debugging in AL
Security Setting and IP Protection
Configure Context-Sensitive Help

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-symbols

Security Setting and IP Protection
5/24/2019 • 2 minutes to read

IP protection setting

NOTE

NOTE

Changing the IP protection setting

"showMyCode": true

See Also

When developing an extension, your code is by default protected against downloading or debugging. Read below
about the security setting and adding Intellectual Property (IP) protection against downloading or debugging into
an extension to see the source code in the extensions.

The extension development package provides a pre-configured setting for IP protection against viewing or
downloading the code of the extensions. However, this setting can also be controlled in the manifest; the app.json

file.

When you start a new project, an app.json file is generated automatically, which contains the information about
the extension that you are building on. The app.json file contains a setting called showMyCode , which controls
whether it is possible to debug into the extension, when that extension is taken as a dependency. The default value
of this property is set to false. This means that debugging into an extension to view the code is not allowed. For a
more refined setting, you can specify the NonDebuggable attribute on methods and variables. For more
information, see NonDebuggable Attribute.

The showMyCode setting is not visible in the app.json file when it is generated.

Even though showMyCode is set to false, you will still be able to view that code if an extension is deployed through Visual
Studio Code, as opposed to deploying using a cmdlet or via AppSource.

If you want to allow debugging into an extension to view the source code, you can add the showMyCode property in
the app.json file and set the property value to true. For example, if a developer develops extension A and he or
someone else on the team develops extension B, and B depends on A, then debugging B will only step into the
code for A if a method from A is called and if the ShowMyCode flag is set to true in the app.json for extension A as
shown in the example below:

By adding this setting, you enable debugging into an extension to view the source code when that extension is set
as a dependency.

JSON Files
AL Development Environment
NonDebuggable Attribute

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-nondebuggable-attribute
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-nondebuggable-attribute

Developing for Multiple Platform Versions
3/31/2019 • 2 minutes to read

Defining the platform version

NOTE

Version compatibility

Things to be aware of

See Also

The AL language extension is compatible with multiple platform versions. You can install the AL Language
extension from the Visual Studio Code marketplace and use it to develop solutions for Dynamics 365 Business
Central.

To set the platform version, add the runtime property in the app.json file. This attribute defines the platform
version that the extension is targeting. Depending on the platform version, some features become available, while
some features are not supported. For example, OData-bound actions can only be used when the platform version
is 2.0 or higher.

AL Language extension is not compatible with Dynamics NAV 2018 version backwards. For Dynamics NAV 2018
development, the traditional method should be used. You must install the Visual Studio Code extension from the
ALLanguage.vsix file shipped on the DVD.

The following two elements are compared when you publish an extension.

1. The runtime version of the extension defined in the app.json file.
2. The runtime version of the platform that the extension is targeting.

In the app.json file, set the extension runtime version lower than the platform version. When you set the extension
to a higher runtime version, the extension package may contain certain features that the platform may not
support which would result in an error. Therefore, you must lower the extension runtime version than the one that
platform supports in order to publish your extension.

The runtime version of the extension package is currently set to '2.0'. The runtime version must be set
to '1.0' or earlier in the app.json file in order to install the extension package on this platform.

1. An error will be thrown when you publish an extension with a higher runtime version than the one that
platform supports. For example, if you set the runtime value to 2.0 , you get the following error message.

2. When you lower the extension runtime version, you may get warnings about the newest features not
supported by the earlier versions of the platform.

3. A best-effort compilation is made when you publish an extension compiled with a lower runtime version.
This is allowed in order to avoid recompilation of the extension package every time you upgrade the
platform.

Debugging in AL
Developing Extensions

Microsoft .NET Interoperability from AL

Debugging
4/10/2019 • 6 minutes to read

IMPORTANT

IMPORTANT

TIP

Breakpoints

The process of finding and correcting errors is called debugging. With Visual Studio Code and the AL Language
extension you get an integrated debugger to help you inspect your code to verify that your application can run as
expected. You start a debugging session by pressing F5. For more information about Debugging in Visual Studio
Code, see Debugging.

To enable debugging in versions before Business Central April 2019, the NetFx40_LegacySecurityPolicy setting in the
Microsoft.Dynamics.Nav.Server.exe.config file must be set to false. This requires a server restart.

To use the development environment and debugger, you must make sure that port 7049 is available.

There are a number of limitations to be aware of:

"External code" can only be debugged if the code has the showMyCode flag set. For more information, see
Security Setting and IP Protection.
The debugger launches a new client instance each time you press F5. If you close the debugging session, and
then start a new session, this new session will rely on a new client instance. We recommend that you close the
Web client instances when you close a debugging session.

To control table data synchronization between each debugging session, see Retaining table data after publishing.

The basic concept in debugging is the breakpoint, which is a mark that you set on a statement. When the
program flow reaches the breakpoint, the debugger stops execution until you instruct it to continue. Without any
breakpoints, the code runs without interruption when the debugger is active. You can set a breakpoint by using
the Debug Menu in Visual Studio Code. For more information, see Debugging Shortcuts.

Set breakpoints on the external code that is not part of your original project. You can step into the base
application code by using the Go To Definition feature, and set breakpoints on the referenced code which is
generally a .dal file. To set a breakpoint on the external code or base application code, you do the following:

Use Go To Definition which opens the “external file” and then a breakpoint can be set.
Using the debugger, step into the code, and then set a breakpoint.

In the following video illustration, the Customer.dal is an external file. A breakpoint is set in the Customer.dal

file which is referenced from your AL project to stop execution at the marked point.

https://code.visualstudio.com/docs/editor/debugging

Break on Errors

TIP

Break on Record changes

RECORD CHANGE AL METHODS

Create a new record INSERT Method (Record)

Update an existing record MODIFY Method (Record), MODIFYALL Method (Record),
RENAME Method (Record)

Delete an existing record DELETE Method (Record), DELETEALL Method (Record)

For more information about Go To Definition, see AL Code Navigation.

Specify if the debugger breaks on the next error by using the breakOnError property. If the debugger is set to
breakOnError , then it stops execution both on errors that are handled in code and on unhandled errors.

The default value of the breakOnError property is true, which means the debugger stops execution that throws
an error by default. To skip the error handling process, set the breakOnError property to false in the
launch.json file.

If the debugging session takes longer, you can refresh the session by pressing the Ctrl+Shift+P keys, and select the Reload
Window.

Specify if the debugger breaks on record changes by using the breakOnRecordWrite property. If the debugger is
set to break on record changes, then it breaks before creating, modifying, or deleting a record. The following
table shows each record change and the AL methods that cause each change.

The default value of the breakOnRecordWrite property is false, which means the debugger is not set to break on
record changes by default. To break on record changes, you can set the breakOnRecordWrite property to true in
the launch.json file. For more information, see JSON Files.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-insert-method-record
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-modify-method-record
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-modifyall-method-record
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-rename-method-record
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-delete-method-record
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-deleteall-method-record

 Debugging shortcuts
KEYSTROKE ACTION

F5 Start debugging

Ctrl+F5 Start without debugging

Shift+F5 Stop debugging

Ctrl+Shift+F5 Start debugging without publishing. Using this command on
a changed, but not published code may trigger false existing
breakpoints. For example, if you modify method “foo”, add
two lines and put a breakpoint on the second line and then
start debugging without publishing, that breakpoint will not
be hit, or if it is hit is not your new code that it breaks. If it
breaks, it will break on the line that the server thinks the
breakpoint is, based on the last published code.

F10 Step over

F11 Step into

Shift+F11 Step out

F12 Go To Definition

Debugging SQL behavior

View database statistics

Current SQL latency (ms) When the debugger hits a breakpoint, the Business Central
Server will send a short SQL statement to the database and
measure how long time it takes. The value is in milliseconds.

Number of SQL Executes This number shows the total number of SQL statements
executed in the debugging session since the debugger was
started.

Number of SQL Rows Reads This number shows the total number of rows read from the
Business Central database in the debugging session since the
debugger was started.

View SQL statement statistics

For more shortcuts, see Debugging.

Traditionally, debugging AL has been about examining behavior of the language runtime, for example, looking
into the content of local variables at a breakpoint. As of Business Central April 2019, the AL debugger also offers
the capability to examine the impact that your AL code has on the Business Central database.

In the VARIABLES pane in debugger, expand the node to get insights such as the current network latency
between the Business Central Server and the Business Central database, the total number of SQL statements
executed, and the total number of rows read, as well as insights into the most recent SQL statements executed by
the server. The following insights are part of the database statistics:

https://code.visualstudio.com/docs/editor/debugging

Statement The SQL statement that the AL server sent to the Business
Central database. You can copy this into other database
tools, such as SQL Server Management Studio, for further
analysis.

Execution time (UTC) The timestamp (in UTC) of when the SQL statement was
executed. You can use this to infer whether the SQL
statement was part of the AL code between current and last
breakpoint (if set).

Duration (ms) The duration in milliseconds of the total execution time of the
SQL statement measured inside the Business Central Server.
You can use this to analyze whether you are missing indexes
(Business Central keys), or to experiment with performance of
database partitioning and/or compression.

Approx. Rows Read This number shows the approximate number of rows read
from the Business Central database by the SQL statement.
You can use this to analyze whether you are missing filters.

NOTE

NonDebuggable Attribute

See Also

The database insights also let you peek into the most recent and the latest long running SQL statements
executed by the server. To view a list if these, expand either the <Last Executed SQL Statements> or <Last
Long Running SQL Statements> node. The following insights are part of the SQL statement statistics:

The number of SQL statements tracked by the debugger can be configured in the Business Central Server. The
default value is 10.

For Business Central on-premises, the Business Central Server instance has several configuration settings that control the
SQL statistics that are gathered and then displayed in debugger, like whether long running SQL statements or SQL
statements are shown. If you are not seeing the insights that you expect to see in debugger, check the server
configuration. For more information, see Configuring Business Central Server.

To restrict the ability to debug certain methods and/or variables, see NonDebuggable Attribute.

Developing Extensions
JSON Files
AL Code Navigation

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-nondebuggable-attribute

Working with Rapid Application Development
6/4/2019 • 2 minutes to read

How RAD works

IMPORTANT

NOTE

RAD shortcuts

Working with Visual Studio Code and Dynamics 365 Business Central you can benefit from Rapid Application
Development (RAD) on large code projects. RAD allows faster development on projects with a large number of
files by doing a delta compilation and publishing only on those application objects that have changed during
development in Visual Studio Code. RAD publishing is an interim state and does not replace a full publish.

The files that have been changed by the application developer within Visual Studio Code are persisted in a special
RAD (.rad) file during builds. This file is saved in the .vscode folder of the code project. RAD changes are the
changes of application objects within a RAD session. Only application objects, page customization objects, and
profile objects are handled for RAD. RAD changes will not be persisted during save, only during build, publish, and
debug.

If you change many files and close Visual Studio Code without a build (Ctrl+Shift+B), publish (Ctrl+F5, Ctrl+Shift+F5) or
debug (F5, Shift+F5) all the RAD changes will be lost. This means that if you, in the next Visual Studio Code session perform a
RAD publishing, this is done on the latest changes and not the prior changes. This can lead to an incomplete published
package if it succeeds. It is therefore a best practice to do a regular publish. You can always check the RAD file in the code
project to see what application objects are going to be changed during publishing.

In scenarios when application IDs are renamed, or refactored it is also a best practice to first do a full publishing,
and then a RAD publishing for the consecutive changes. RAD does not check for application ID changes and ID
changes can occur in a wrongly published application.

A RAD published file will not contain the following files that are normally packaged during regular publishing:

Translation files
Permission files
Custom word and report rdlc layout files
Table data
Web service definitions

These files will need to be re-generated with full publishing (Ctrl+F5).

A RAD file will be deleted as a result of a successful publishing.

If RAD publishing fails, then you must do a full publishing before performing another RAD publishing. The final state of an
application must be built using full publishing, and never with Rad publishing.

There are two commands for starting a RAD-based action.

SHORTCUT DESCRIPTION

Ctrl+Alt+F5 Start RAD debugging without publishing.

Alt+F5 Start RAD publishing.

See also
Developing Extensions in AL
Debugging

The Lifecycle of Apps and Extensions for Business
Central
3/31/2019 • 6 minutes to read

Scenario 1: Business Central service update

Impact

Scenario 2: App update

Impact

Scenario 3: Reported bugs in your app

Impact

When you build an app or extension to Business Central and get that published to AppSource, it becomes an app
like so many others - the app itself can be updated, and the platform that it sits on, the Business Central service
itself, will also get updated. But what happens after your app gets published?

When your app has passed all of our validations and has gone live to App Source, customers can install your
extension and use it for their business. You might ask, what now happens with my app?

The following sections describe the different upgrade scenarios that we have seen play out as we update Business
Central.

You don’t need to make any bug fixes, feature adds, or app changes to your app. It continues to work fine without
any interaction on your part.

The monthly service upgrades to Business Central do not impact your app. Your app just gets moved along and no
upgrade code from your app needs to get used. Business Central itself gets upgraded on your tenant, and once
complete, the customer sees no difference with your app.

You (our partner) add some features to your app and also some minor bug fixes. The app is submitted for
validation. The app passes validation and gets checked into the service. This is now the active app for any new
tenants and also for existing tenants that have never had your app installed before

Customers can either do an uninstall and then reinstall on their own, or they can ask their partner do it on their
behalf from the Extension Management window within Business Central. Otherwise, they would have to wait until
our every 6-month major release. That is the only time we do a force upgrade of extensions (except for critical bug
hotfix extension updates)

You (our partner) has various customers report some bugs that are impacting their usage of the app. The bugs
aren’t critical but they are important. The partner makes the fixes in the app and resubmits for validation. The app
passes validation and gets checked into the service. This is now the active app for any new tenants and also for
existing tenants that have never had your app installed before

We still do not force the upgrade of this app to this latest version on all of the tenants. Some tenants may not be
using the functionality that includes this bug and continue to work fine on the current version of the app. Therefore,
you should work directly with all of the impacted customer tenants to uninstall and reinstall to get the latest app
version that contains fixes for the bug.

Scenario 4: Critical bug in your app

Scenario 5: Microsoft feature breaks your app

Impact

Conclusions

How Microsoft handles your app

Critical bug within the app is found in tenants. These tenants cannot do their day to day work due to this bug. This
fits into our hotfix scenario as it is critical. A support ticket is related to this case. The partner immediately provides
a fixed app for validation. The validation team makes this top priority and does validation ASAP. Fixed app passes
validation and gets checked into the service. All tenants with the app are refreshed automatically by the Microsoft
team to this fixed version.

Microsoft has to break your app file for a needed Business Central core change. Some reasons for breaking could
be security, bugs in the underlying code, high priority feature adds, and so on. Keep in mind, we do our very best to
not break your app through our changes. We try and find proper ways of doing the changes without breaking your
app. However, if we can’t find a proper (non-breaking) way, then we could break your app. This won’t be as likely in
a minor update release (unless a security change is required on our part and that is the change that breaks you),
but it can be more likely in our major (every 6-month) releases.

Here is our process when this takes place:

First of all, Microsoft will not make a breaking change in the production environment at any point. Therefore,
existing tenants are not expected to see this breaking change occur.
When we make a breaking change, we do it in a build branch that is for a future release (monthly service minor
or major release)
We notify the partner in advance and give the partner ample time to fix their app, get it validated, and have it
ready
The fixed app will already be in our service and slotted as required for when your tenant is to be moved to the
Business Central release that has the app breaking change
As a result, the customer (tenant owner) should never see their Business Central break. Because the tenant gets
moved from one monthly service update of Business Central to another, the tenant is being upgraded to the
release of ours that breaks the specific app. However, our service detects that there is a new required version of
that app (your fixed version). Therefore, we auto install the fixed version of the app for the tenant

You're responsible for your app. You own the process of updating the app and providing upgrade code if the
schema changes between versions of the app.
If a customer uninstalls your app, and then installs it again later, then when they install the app the second time,
they get the latest version from AppSource.

When Microsoft upgrades a tenant with a service update, your app is tested against the new service version. If the
app breaks, Microsoft rolls back to the previous healthy state. Your customer never learns that anything was about
to break.

When a tenant uninstalls and reinstalls an extension via the Extension Management page or AppSource, there is
platform logic that determines whether an Install or an Upgrade must take place. We detect which version of the
extension the tenant previously had installed and perform the appropriate action. Therefore, the result of manually
uninstalling/installing the extension is the exact same as an automated upgrade.

Additionally, there will not be any data loss during uninstall, install, or upgrade actions. Data for extensions is
stored in its own tables in the tenant database. Before an extension gets installed, it first get synchronized on the
tenant database. This step is implicit and happens automatically when a tenant installs an extension. This
synchronization process creates the database tables for the extension. Once the extension is installed and the

See Also

tenant is using it, extension-specific data will get stored in these tables.

When an extensions gets uninstalled, these tables do not get removed. Therefore, when the extension gets
reinstalled (or upgraded), the data is still available. You do not need to worry about data loss for choosing the
uninstall/install route. However, do keep in mind that if any actions are being performed on the tenant while the
extension is uninstalled, the extension’s events and such will not be firing, and your app may miss the creation of
new data. Try to perform the uninstall/install while the tenant is not online.

Retaining table data after publishing
Checklist for Submitting Your App
Upgrading Extensions

Converting Extensions V1 to Extensions V2
3/31/2019 • 5 minutes to read

Convert the source code from V1 to V2

Complete the development of the extension

IMPORTANT

Extensions are a programming model where functionality is defined as an addition to existing objects and defines
how they are different or modify the behavior of the solution. This article explains the steps involved in
converting V1 extensions, written in C/SIDE. to V2 extensions; written using the AL Language extension for
Visual Studio Code. The overall steps for the conversion are:

1. Convert the source code from C/AL to the AL syntax.
2. Complete the development of the extension in AL syntax.
3. Write upgrade code to restore and modify data from the V1 Extension tables.
4. Build the extension.
5. Uninstall the V1 extension, and publish and run upgrade on the V2 extension.

To convert the source code, you must use the Txt2Al conversion tool. The Txt2Al conversion tool allows you to
take existing application objects that have been exported in .txt format and convert them into the new .al format.
The .al format is used when developing extensions for Dynamics 365 Business Central. For more information
about converting the source code, see Txt2Al Conversion Tool.

When the source code has been converted using the Txt2Al conversion tool, open the project folder in Visual
Studio Code, and then modify or add code to the new version as needed. For more information about getting
started with Visual Studio Code and the AL Language extension, see Getting Started with AL.

You might run into compilation errors, which can typically be caused by:

Object IDs that have changed. The conversion tool tries to convert your code into the object ID range allowed
for Extensions V2.
Field or control names look different; the AL syntax requires names, this means that no empty or default
names are allowed.
Menu suites do not exist in Extensions V2.
.NET references are not allowed; there is no support for .NET types. Instead you must use the classes that
replace .NET calls. For more information, see Reference.

In the app.json, keep the ID the same as in the V1 extension. Also, make sure to increase the version number.

The version number has the format Major.Minor.Build.Revision , for example 1.5.0.0 . To increase the
version number, you must increase the value of Major , Minor , or Build by at least one, for example
1.5.1.0 or 1.6.0.0 .

To use NAVAPP.RestoreArchiveData() method for upgrading, you must not change the IDs of the tables that
are being restored; this means that tables from your V1 extension must have the same IDs in the V2
extensions.

Write upgrade code to move data from V1 Extensions

METHOD DESCRIPTION

NAVAPP.DeleteArchiveData(70000000) Deletes the archived data from table 70000000.

NAVAPP.GetArchiveRecordRef(70000000, archRef) Gets a record ref to the archived data from table 70000000.

archVersion := NAVAPP.GetArchiveVersion() Gets the version of the archived data from the old extension.

NAVAPP.RestoreArchiveData(70000000) Restores the data from the archive of table 70000000.

IMPORTANT

Example

Just like with V1 extensions, you have to write code to handle data in tables during upgrade. Writing code for the
V1-to-V2 extension upgrade is very similar to the code that you have been writing for V1 Extensions. The
differences are:

TRIGGER DESCRIPTION

OnCheckPreconditionsPerCompany() or
OnCheckPreconditionsPerDatabase()

Used to check that certain requirements are met in order
to run.

OnUpgradePerCompany() or OnUpgradePerDatabase() Used to run the actual upgrade work

OnValidateUpgradePerCompany() or
OnValidateUpgradePerDatabase()

Used to check that the upgrade was successful

Instead of adding code to normal codeunit, you write code in an upgrade codeunit, which is a codeunit
whose SubType property is set to Upgrade.

Instead of adding code to the user-defined methods OnNavAppUpgradePerDatabase() or
OnNavAppUpgradePerCompany() , you add code to one or more of the following system triggers for data

upgrade. These triggers are invoked when a data upgrade is started. The following table lists the upgrade
triggers in the order in which they run.

However, for this one-time conversion, all of the same NAVAPP system methods you used in V1 extensions
work with V2 extensions and can be called from any of the upgrade triggers.

By using these methods, you can restore or move all your data from the old V1 extension into the new V2 by
running an upgrade.

To use NAVAPP.RestoreArchiveData() , you must not change the IDs of the tables that are being restored; this means
that tables from your V1 extension must have the same IDs in the V2 extensions.

This code illustrates a simple upgrade codeunit for restoring the V1 extension data for extension table 70000000 .

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-subtype-property-codeunit

codeunit 70000001 MyExtensionUpgrade
{
 Subtype=Upgrade;

 trigger OnUpgradePerDatabase();
 begin
 NAVAPP.RestoreArchiveData(70000000);
 end;
}

TIP

Build the extension package

Run the upgrade

Typing the shortcut ttrigger in Visual Studio Code will create the basic structure for a trigger.

Press Ctrl+Shift+B to compile and build the extension complete with the application objects and upgrade
codeunit.

The final task of the conversion is to publish the V2 extension, and run the data upgrade. The following steps use
an example that upgrades a V1 extension that is called 'ProsewareStuff' and has the version '1.5.0.0.'. The V1
extension is published, installed, and populated with data. The V2 extension has the same name (and ID), but it
has the version '1.5.1.0'. The Dynamics 365 Business Central service instance is called 'DynamicsNAV', and there
is only one tenant.

The steps use the Dynamics NAV Server Administration tool.

Uninstall-NAVApp -ServerInstance NAV -Name ProsewareStuff -Version 1.5.0.0

IMPORTANT

Publish-NAVApp -ServerInstance DynamicsNAV -Path .\ProswareStuff_1.5.1.0.app -SkipVerification

Sync-NAVApp -ServerInstance NAV -Name ProswareStuff -Version 1.5.1.0

1. Uninstall the V1 extension.

This removes the tables from the SQL Server database and archives extension data.

The V1 extension must be uninstalled before upgrading it to a V2 extension.

2. Publish the V2 extension. This example assumes the extension is not signed.

This validates the extension syntax against server instance, and stages it for syncing.

3. Synchronize the V2 extension with the database.

This adds tables from V2 extension to SQL database.

4. Run the upgrade process to handle archived data from the V1 extension.

Going forward

See Also

Start-NAVAppDataUpgrade -ServerInstance NAV -Name ProswareStuff -Version 1.5.1.0

Unpublish-NAVApp -ServerInstance NAV -Name ProswareStuff -Version 1.5.0.0

This runs the upgrade logic defined by the upgrade codeunit in the extension, and installs the new V2
extension.

5. (optional) Unpublish the V1 extension.

This removes the unused extension package from server.

The upgrade code unit becomes an integral part of the extension. The NAVAPP methods were mainly be used
for the conversion from V1 to V2. After converting the extension, you should begin to write upgrade code as
described in Upgrading Extensions.

Getting Started with AL
Keyboard Shortcuts
AL Development Environment

The Txt2Al Conversion Tool
3/31/2019 • 3 minutes to read

Using the Txt2Al conversion tool

Parameters
PARAMETER DESCRIPTION

--source=Path Required. The path of the directory containing the .delta files.

--target=Path Required. The path of the directory into which the converted
AL files will be placed.

The Txt2Al conversion tool allows you to take existing Dynamics NAV objects that have been exported in .txt
format and convert them into the new .al format. The .al format is used when developing extensions for Dynamics
365 Business Central. Converting the objects consists of following two steps:

1. Exporting the objects from C/SIDE in a cleaned format.
2. Converting the objects to the new syntax.

To run the Txt2Al conversion tool, follow the steps outlined below.

1. Start with a clean Dynamics NAV database and compile the database.
It is very important that you compile the database to get the right result in the next step.

2. Make an export of all the baseline objects in the command line using the following syntax:
finsql.exe Command=ExportToNewSyntax, File=<filename.txt>, Database="<databasename>", ServerName=
<servername> ,Filter=Type=table;ID=<tableID>

The following example exports the table 225 from the Demo Database NAV (13-0) database:
finsql.exe Command=ExportToNewSyntax, File=exportedBaselineObjects.txt, Database="Demo Database NAV (13-0)",
ServerName=.\NAVDEMO ,Filter=Type=table;ID=225

3. Import your solution using the import option in C/SIDE and compile the database.
It is very important that you compile the database to get the right result in the next step.

4. Export all new and/or modified objects using the following syntax:
finsql.exe Command=ExportToNewSyntax, File=<filename.txt>, Database="<databasename>", ServerName=
<servername> ,Filter=Type=table;ID=<tableID>

The following example exports the table 231 from the Demo Database NAV (13-0) database:
finsql.exe Command=ExportToNewSyntax, File=exportedNewModifiedObjects.txt, Database="Demo Database NAV (13-
0)", ServerName=.\NAVDEMO ,Filter=Type=table;ID=231

5. Run the Set-ObjectPropertiesFromMenuSuite cmdlet which will convert MenuSuite information on pages and
reports in the generated AL objects to enable them for search. For more information, see Making Pages and
Reports Searchable in the Web client

6. Create .delta files using the Compare-NAVApplicationObject powershell script. For more information, see
Generating DELTA Files.

7. Go to the \Program Files(x86)\Microsoft Dynamics 365 Business Central\130\RoleTailored Client folder and
locate the txt2al.exe converter tool.

8. Run the tool from the command line using the following syntax:
txt2al --source --target --rename --type --extensionStartId --injectDotNetAddIns --dotNetAddInsPackage --
dotNetTypePrefix --translationFormat --addLegacyTranslationInfo

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/upgrade/upgrade-pages-report-for-search

--rename Rename the output files to prevent clashes with the source
.txt files.

--type=ObjectType The type of object to convert. Allowed values: Codeunit, Table,
Page, Report, Query, XmlPort

--extensionStartId The starting numeric ID of the extension objects (Default:
70000000). It will be incremented by 1 for each extension
object.

--help Show help screen.

--injectDotNetAddIns Inject the definition of standard .NET add-ins in the resulting
.NET package. The standard .NET add-ins are a set of add-ins
that are embedded into the platform.

--dotNetAddInsPackage=Path Specify the path to an AL file containing a definition for a .NET
package containing .NET type declarations that should be
included in the .NET package definition produced by the
conversion. This should be used to inject a custom set of .NET
control add-in declarations. The file should contain something
similar to the example shown below.

--dotNetTypePrefix Specify a prefix to be used for all .NET type aliases created
during the conversion.

--translationFormat=ObjectType Specify the format to use when generating translation files.
The allowed values are: Xliff, Lcg.

--addLegacyTranslationInfo Add information to the translation file that can be used to
migrate existing translations/translated resources. During
conversion, XLIFF files from all the ML properties in the app
are extracted. If this switch is set, a comment is added in the
generated XLIFF that specifies what the ID of the translation
item would be in C/SIDE. This acts as a mapping that allows
you to convert existing translation resources for your app.

PARAMETER DESCRIPTION

NOTE

TIP

See Also

It is recommended to only use the conversion tool for export. Importing objects that have been exported can damage your
application.

You can use the Dynamics NAV Development Shell cmdlet Export-NAVApplicationObject with the -ExportToNewSyntax

flag set instead of using finsql. From the command prompt in the Dynamics NAV Development Shell, run
Get-Help Export-NAVApplicationObject -full to see the full syntax.

Developing Extensions
AL Development Environment
Page Extension Object

Report Object
Page Properties

Generating Delta files
5/24/2019 • 2 minutes to read

IMPORTANT

The ExportToNewSyntax flag
PARAMETER DESCRIPTION

Type SwitchParameter

Aliases None

Position Named

Default value None

Accept pipeline input False

Accept wildcard characters False

Example
Compare-NAVApplicationObject -OriginalPath "C:\PageWith2Controls.txt" -ModifiedPath "C:\PageWith3Controls.txt"
-ExportToNewSyntax

See Also

You can use the Compare-NAVApplicationObject powershell cmdlet to generate .delta files from two versions of a set
of application objects.

The cmdlet has a ExportToNewSyntax switch that allows generating .delta files that can be used as a starting point
for creating extensions. Setting the ExportToNewSyntax flag generates .delta files that contain additional information
needed to generate the correct structure and layout of extension objects.

The Txt2Al conversion tool will reject .delta files that were generated without using the -ExportToNewSyntax flag.

Using the ExportToNewSyntax switch for the Compare-NAVApplicationObject cmdlet produces a .delta file that can be
converted to an extension.

The Txt2Al Conversion Tool
Developing Extensions
Converting Extensions V1 to Extensions V2

Exporting data for Extensions
3/31/2019 • 2 minutes to read

To export permission sets

To export web services

For your extension to run properly, configuration and starting data such as permission sets and table data may be
needed. An extension can include the following types of data that can be imported for the tenant during the
installation of the extension.

Permission sets
Web services
Starting table data
Custom report layouts

The data must be exported into files to be included in the extension. To use the export functions you must use a
container sandbox environment for Dynamics 365 Business Central. For more information, see Get started with
the Container Sandbox Development Environment.

NOTE

WARNING

1. Open the Microsoft Dynamics NAV Development Shell.

2. Export the relevant permission set using the Export-NAVAppPermissionSet cmdlet to export the permission
set to a file. The following command exports the BASIC permission set.

Export-NAVAppPermissionSet -ServerInstance DynamicsNAV110 -Path '.\PermissionSet.xml' -PermissionSetId
BASIC

Export each permission set to a separate XML file.

3. Add the exported permission set files to the Visual Studio Code project that contains your extension.

If you do not include a permission set with your extension, only users with the SUPER permission set will be able to
use the extension.

NOTE

1. Open the Microsoft Dynamics NAV Development Shell.

2. Export the relevant web service using the Export-NAVAppTenantWebService cmdlet to export the web service
to a file. The following command exports the Customer Card page.

Export-NAVAppTenantWebService -ServerInstance DynamicsNAV110 -Path TenantWebService.xml -ServiceName
Customer -ObjectType Page -ObjectId 21

Export each web service to a separate XML file.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-get-started-container-sandbox

To export table data

To export custom report layouts

See Also

3. Add the exported web services files to the Visual Studio Code project that contains your extension.

NOTE

codeunit 50100 MyExtensionUpgrade
{
 Subtype = Upgrade;
 trigger OnUpgradePerDatabase()
 begin
 NavApp.LoadPackageData(50100);
 end;
}

WARNING

1. Open the Microsoft Dynamics NAV Development Shell.

2. Export the relevant data using the Export-NAVAppTableData cmdlet to export the data to a file. This includes
setting the path to a folder where you want the .navxdata file created. A data file in the format of
TAB.navxdata will be created. (Example: TAB10000.navxdata).

Export-NAVAppTableData -ServerInstance DynamicsNAV110 -Path ‘C:\NAVAppTableData’ -TableId 10000

Export the data for each table to a separate XML file.

3. Add the exported table data files to the Visual Studio Code project that contains your extension.

4. Call the procedure in a Codeunit with the Subtype property Install or Upgrade and specify the table ID in
the NavApp.LoadPackageData procedure as shown in the following example.

An extension can only include table data for new tables that are added as part of the extension.

NOTE

1. Open the Microsoft Dynamics NAV Development Shell.

2. Export the relevant report layouts using the Export-NAVAppReportLayout cmdlet to export to a file:

Export-NAVAppReportLayout -ServerInstance DynamicsNAV110 -Path .\ReportLayout.xml -LayoutId 1

Export each custom report layout to a separate XML file.

3. Add the exported custom report files to the Visual Studio Code project that contains your extension.

Developing Extensions in AL
Converting Extensions V1 to Extensions V2
Writing Extension Install Code

Writing Extension Install Code
5/28/2019 • 2 minutes to read

How to write install code

TRIGGER DESCRIPTION

OnInstallAppPerCompany() Includes code for company-related operations. Runs once for
each company in the database.

OnInstallAppPerDatabase() Includes code for database-related operations. Runs once in
the entire install process.

Install codeunit syntax

codeunit [ID] [NAME]
{
 Subtype=Install;

 trigger OnInstallAppPerCompany()
 begin
 // Code for company related operations
 end;

 trigger OnInstallAppPerDatabase()
 begin
 // Code for database related operations
 end;

}

TIP

There might be certain operations outside of the extension code itself that you want performed when an extension
is installed. These operations could include, for example, populating empty records with data, service callbacks and
telemetry, version checks, and messages to users. To perform these types of operations, you write extension install
code. Extension install code is run when:

An extension is installed for the very first time.
An uninstalled version is installed again.

This enables you to write different code for initial installation and reinstallation.

You write install logic in an install codeunit. This is a codeunit that has the SubType property is set to Install. An
install codeunit supports two system triggers on which you can add the install code.

The install codeunit becomes an integral part of the extension version. You can have more than one install
codeunit. However, be aware that there is no guarantee on the order of execution of the different codeunits. If you
do use multiple install units, make sure that they can run independent of each other.

The following code illustrates the basic syntax and structure of an install codeunit:

Use the shortcuts tcodunit and ttrigger to create the basic structure for the codeunit and trigger.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-subtype-property-codeunit

Get information about an extension

Install codeunit example

codeunit 50100 MyInstallCodeunit
{
 Subtype=Install;

 trigger OnInstallAppPerDatabase();
 var
 myAppInfo : ModuleInfo;
 begin
 NavApp.GetCurrentModuleInfo(myAppInfo); // Get info about the currently executing module

 if myAppInfo.DataVersion = Version.Create(0,0,0,0) then // A 'DataVersion' of 0.0.0.0 indicates a
'fresh/new' install
 HandleFreshInstall
 else
 HandleReinstall; // If not a fresh install, then we are Re-installing the same version of the
extension
 end;

 local procedure HandleFreshInstall();
 begin
 // Do work needed the first time this extension is ever installed for this tenant.
 // Some possible usages:
 // - Service callback/telemetry indicating that extension was installed
 // - Initial data setup for use
 end;

 local procedure HandleReinstall();
 begin
 // Do work needed when reinstalling the same version of this extension back on this tenant.
 // Some possible usages:
 // - Service callback/telemetry indicating that extension was reinstalled
 // - Data 'patchup' work, for example, detecting if new 'base' records have been changed while you
have been working 'offline'.
 // - Setup 'welcome back' messaging for next user access.
 end;
}

See Also

Each extension version has a set of properties that contain information about the extension, including: AppVersion,
DataVersion, Dependencies, Id, Name, and Publisher. This information can be useful when installing. For example,
one of the more important properties is the DataVersion property, which tells you what version of data you are
dealing with. These properties are encapsulated in a ModuleInfo data type. You can access these properties by
through the NAVApp.GetCurrentModuleInfo() and NAVAPP.GetModuleInfo() methods.

This example uses the OnInstallAppPerDatabase() trigger to check whether the data version of the previous
extension version is compatible for the upgrade.

Developing Extensions
Getting Started with AL
How to: Publish and Install an Extension
Converting Extensions V1 to Extensions V2
Building Your First Sample Extension With Extension Objects, Install Code, and Upgrade Code

Upgrading Extensions V2
5/28/2019 • 5 minutes to read

NOTE

Developing an extension for upgrading

Writing upgrade code

Upgrade triggers

TRIGGER DESCRIPTION FAILS THE UPGRADE ON ERROR

OnCheckPreconditionsPerCompany()
and
OnCheckPreconditionsPerDatabase()

Used to check that certain
requirements are met in order to run
the upgrade.

Yes

OnUpgradePerCompany() and
OnUpgradePerDatabase()

Used to perform the actual upgrade. Yes

OnValidateUpgradePerCompany() and
OnValidateUpgradePerDatabase()

Used to check that the upgrade was
successful.

Yes

This article provides information about how to make a newer version of extension upgrade available on tenants.
The first phase of this process is to develop the extension for upgrading, which means adding code to upgrade
data from the previous extension version. Once you have the upgrade code in place, you can publish and
synchronize the new version, and the run the data upgrade.

An upgrade is defined as enabling an extension that has a greater version number, as defined in the app.json file, than the
current installed extension version.

When developing a new extension version, you must consider the data from the previous version, and any
modifications that must be applied to the data to make it compatible with the current version. For example, it
could be that the new version adds a new field that needs default values set for existing records or the new
version adds new tables that must be linked to existing records. To address this type of data handling, you must
write upgrade code for the extension version.

If there are no data changes between the versions of your extension, then you do not need to write upgrade code.
All data that is not modified by upgrade code will automatically be available when the process completes.

You write upgrade logic in an upgrade codeunit, which is a codeunit whose SubType property is set to Upgrade.
An upgrade codeunit supports several system triggers on which you can add data upgrade code. These triggers
are invoked when you run the data upgrade process on the new extension.

The upgrade codeunit becomes an integral part of the extension and can be modified as needed for subsequent
versions. You can have more than one upgrade codeunit. However, be aware that although there is a set order to
the sequence of the upgrade triggers, there is no guarantee on the order of execution of the different codeunits. If
you do use multiple upgrade units, make sure that they can run independent of each other.

The following tables describes the upgrade triggers and lists them in the order in which they are invoked.

PerCompany triggers are run once for each company in the database, where each trigger is executed within its
own system session for the company.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-subtype-property-codeunit

NOTE

Upgrade codeunit syntax

codeunit [ID] [NAME]
{
 Subtype=Upgrade;

 trigger OnCheckPreconditionsPerCompany()
 begin
 // Code to make sure company is OK to upgrade.
 end;

 trigger OnUpgradePerCompany()
 begin
 // Code to perform company related table upgrade tasks
 end;

 trigger OnValidateUpgradePerCompany()
 begin
 // Code to make sure that upgrade was successful for each company
 end;
}

TIP

Get information about an extension

PerDatabase triggers are run once in the entire upgrade process, in a single system session that does not open
any company.

These triggers are also available in upgrade codeunits for the base application, not just for extensions.

The following code illustrates the basic syntax and structure of an upgrade codeunit:

Use the shortcuts tcodeunit and ttrigger to create the basic structure for the codeunit and trigger.

Each extension version has a set of properties that contain information about the extension, including:
AppVersion , DataVersion , Dependencies , Id , Name , and Publisher . This information can be useful when

upgrading.

The AppVersion is one of the available properties and it's value differs depending on the context of the code
being run:

Normal operation: AppVersion represents the value of the currently installed extension.
Installation code: AppVersion represents the version of the extension we are trying to install.
Upgrade code: AppVersion represents the version of the extension that we are upgrading to (e.g. ‘newer’
version).

Another one of the more important properties is the DataVersion property, that represents the value of most
recently installed/uninstalled/upgraded version of the extension, meaning that it reflects the most recent version
of the data on the system, be that from the currently installed, or a previously uninstalled extension. The
DataVersion property value differs depending on the context of the code being run:

Normal operation: DataVersion represents the version of the currently installed extension, in which case it is
identical to the AppVersion property.
Installation code:

Upgrade codeunit example

codeunit 70000001 MyUpgradeCodeunit
{
 Subtype=Upgrade;

 trigger OnCheckPreconditionsPerDatabase();
 var
 myInfo : ModuleInfo;
 begin
 if NavApp.GetCurrentModuleInfo(myInfo) then
 if myInfo.DataVersion = Version.Create(1, 0, 0, 1) then
 error('The upgrade is not compatible');
 end;

 trigger OnUpgradePerDatabase()
 begin
 NavApp.RestoreArchiveData(Database::"TableName");
 end;
}

Running the upgrade for the new extension version

Upgrade code:

Reinstallation (applying the same version): DataVersion represents the version of the extension we are
trying to install (identical to the AppVersion property).
New installation: DataVersion represents the value of ‘0.0.0.0’ which is used to indicate that there is no
data.

The version of the extension we are upgrading from. Either what was last uninstalled, or what is
currently installed.

All of these properties are encapsulated in a ModuleInfo data type. You can access these properties through the
NAVApp.GetCurrentModuleInfo() and NAVApp.GetModuleInfo() methods.

This example uses the OnCheckPreconditionsPerDatabase() trigger to check whether the data version of the
previous extension version is compatible for the upgrade before restoring the archived data of the old extension.

To upgrade to the new extension version, you use the Sync-NavApp and Start-NAVAppDataUpgrade cmdlets of
the Dynamics NAV Administration Shell to synchronize table schema changes in the extension with the SQL
database and run the data upgrade code.

Publish-NAVApp -ServerInstance DynamicsNAV -Path .\ProswareStuff_1.7.1.0.app -SkipVerification

Sync-NAVApp -ServerInstance DynamicsNAV -Name ProswareStuff -Version 1.7.1.0

1. Publish the new extension version. For simplicity, this example assumes the extension is not signed, which
is not allowed with Dynamics 365 and is not recommended with an on-premise production environment.

This validates the extension syntax against server instance, and stages it for synchronizing.

2. Synchronize the new extension version with the database.

This synchronizes the database with any table schema changes in the extension; it adds the tables from the
extension to the tenant.

3. Run a data upgrade.

https://go.microsoft.com/fwlink/?linkid=846311
https://go.microsoft.com/fwlink/?linkid=849315

See Also

Start-NAVAppDataUpgrade -ServerInstance DynamicsNAV -Name ProswareStuff -Version 1.7.1.0

This runs the upgrade logic that is defined by the upgrade codeunits in the extension. This will uninstall the
current extension version, and enable the new version instead.

Developing Extensions
Getting Started with AL
How to: Publish and Install an Extension
Converting Extensions V1 to Extensions V2
Sample Extension

Publishing and Installing an Extension v2.0
5/24/2019 • 3 minutes to read

NOTE

Publish and synchronize an extension

To publish and synchronize an extension

Install an extension

To make your extension available to tenant users requires three basic tasks: publish the extension package to the
Dynamics 365 Business Central server instance, synchronize the extension with the tenant database, and install
the extension on the tenant.

This article describes how to publish and install the first version of an extension. If you want to publish an install newer
version of an extension, see Upgrading Extensions.

Publishing an extension to a Dynamics 365 Business Central server instance adds the extension to the
application database that is mounted on the server instance, making it available for installation on tenants of the
server instance. Publishing updates internal tables, compiles the components of the extension behind-the-scenes,
and builds the necessary metadata objects that are used at runtime.

Synchronizing an extension updates the database schema of the tenant database with the database schema that
is defined by the extension objects. For example, if a table or table extension is included in the extension, then the
respective full or companion table is created in the tenant database.

Publish-NAVApp -ServerInstance YourDynamicsNAVServer -Path ".\MyExtension.app"

Sync-NavApp -ServerInstance YourDynamicsNAVServer -Name ExtensionName -Version 1.0.0.0 -Tenant
TenantID

1. Start the Dynamics NAV Administration Shell.

2. To publish the extension, run the Publish-NAVApp cmdlet.

The cmdlet takes as parameters the Dynamics 365 Business Central service instance that you want to
install to and the .app package file that contains the extension. The following example publishes the
extension MyExtension.app to the YourDynamicsNAVServer instance.

3. To synchronize the schema of a tenant database to the extension, run the Sync-NavApp cmdlet.

The following example synchronizes the extension MyExtension with version number 1.0.0.0:

Replace TenantID with the tenant ID of the database. If you do not have a multitenant server instance, use
default or omit this parameter.

The extension can now be installed on tenants.

After you publish and synchronize an extension, you can install it on tenants to enable the extension and make it
available to users in the client. Installing an extension can be done from the Dynamics 365 client or Dynamics

https://go.microsoft.com/fwlink/?linkid=616079
https://go.microsoft.com/fwlink/?linkid=846311

NOTE

To install an extension by using Dynamics NAV Administration Shell

To install an extension by using the client

See Also

NAV Administration Shell.

Installing an extension will run any installation code that is built-in to the extension. Installation code could, for example,
perform operations like populating empty records with data, service callbacks and telemetry, version checks, and messages
to users. For more information, see Writing Extension Install Code.

Install-NAVApp -ServerInstance YourDynamicsNAVServer -Name ”My Extension” –Tenant Tenant1, Tenant3

1. Start the Dynamics NAV Administration Shell.

2. To install the extension on one or more tenants, use the Install-NAVApp cmdlet.

The following example installs the extension My Extension for Tenant1 and Tenant3. In single-tenant
deployments, you either specify default as the tenant ID, or you omit the –Tenant parameter.

1. In Dynamics 365 Business Central , use search to open the Extension Management page.

In the Extension Management window, you can view the extensions that are published to your server.
For each extension, you can see the current installation status.

2. Choose an extension to see additional information and to install the extension.

3. Review and accept the license agreement.

4. Choose the Install button to install the extension.

Unpublishing and Uninstalling Extensions
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-unpublish-and-uninstall-extension-v2

Upgrading AppSource Apps in Production
5/21/2019 • 2 minutes to read

To upgrade an AppSource app

See Also

When an updated version of an AppSource app becomes the active version in the Dynamics 365 Business Central
service, tenants do not automatically get this updated version. This upgrade must be done manually.

Follow the steps below to update a tenant to the latest version of any AppSource app.

1. Login to the Dynamics 365 Business Central Web client.
2. In the Tell Me box, enter Extension Management, and then choose the related link.
3. Locate the app that you want to update.
4. Under Manage, choose Uninstall.
5. When the uninstall is complete, choose Install to reinstall the app.

This will now update the app to the latest available version

For Dynamics 365 Business Central “Major” releases (April and October), every app installed on your tenant will
be updated automatically to the latest available version in our service.

Developing Extensions
Getting Started with AL
How to: Publish and Install an Extension

Signing an APP Package File
5/21/2019 • 3 minutes to read

NOTE

IMPORTANT

Steps for signing your .app file

Code signing is a common practice for many applications. It is the process of digitally signing a file to verify the
author and that the file has not been tampered with since it was signed. The signature of the APP package file is
verified during the publishing of the extension using the Publish-NAVApp cmdlet. For more technical information
on signing, see Authenticode.

If you want to publish an unsigned extension package in your on-premise environment, you need to explicitly state that by
using the - SkipVerification parameter on the Publish-NAVApp cmdlet. An extension without a valid signature will not be
published on AppSource.

The signing of an APP package file must be performed on a computer that has Dynamics 365 Business Central
installed. If you use a Dynamics 365 Business Central Docker image for your development environment, that
environment will meet this requirement. You must also have the certificate that will be used for signing on the
computer. The certificate must include code signing as the intended purpose. It is recommended that you use a
certificate purchased from a third-party certificate authority.

If you publish the extension as an app on AppSource, the APP package file must be signed using a certificate purchased from
a Certification Authority that has its root certificates in Microsoft Windows. You can obtain a certificate from a range of
certificate providers, including but not limited to GoDaddy, DigiCert, and Symantec, see the image below.

1. Prepare your computer for signing.
2. Make sure that you sign the .app file on a computer that has Dynamics 365 Business Central installed.
3. Copy the certificate that you purchased from a third-party certificate authority to a folder on the computer. The

example uses a pfx version of the certificate. If the certificate you purchased is not in a pfx format, create a PFX
file. The file path for the sample command is C:\Certificates\MyCert.pfx . (Optionally, create your own
certificate for local test or development purposes using the Self-signed certificate information).

4. Install a signing tool such as SignTool or SignCode to the computer. The sample command will use SignTool.
5. Copy your extensions .app file to the computer if it is not already on the computer. The file path for the sample

command is C:\NAV\Proseware.app .
6. Run the command to sign the .app file.
7. The following example signs the Proseware.app file with a time stamp using the certificate in the password-

protected MyCert.pfx file. The command is run on the computer that was prepared for the signing. Once the
command has been run, the Proseware.app file has been modified with a signature. This file is then used when

https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/ms537359(v=vs.85)
https://uk.godaddy.com/help/windows-install-codedriver-signing-certificate-and-create-pfx-file-2698
https://docs.microsoft.com/en-us/dotnet/framework/tools/signtool-exe
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/ms537364(v=vs.85)

SignTool sign /f C:\Certificates\MyCert.pfx /p MyPassword /t
http://timestamp.verisign.com/scripts/timestamp.dll “C:\NAV\Proseware.app”

IMPORTANT

Self-signed certificate

New-SelfSignedCertificate –Type CodeSigningCert –Subject “CN=ProsewareTest”

Makecert –sk myNewKey –n “CN=Prosewaretest” –r –ss my

See Also

publishing the extension.

It is recommended to use a time stamp when signing the APP package file. A time stamp allows the signature to be verifiable
even after the certificate used for the signature has expired. For more information, see Time Stamping Authenticode
Signatures. Depending on the certification authority, you may need to acquire a specific certificate in order to time stamp, an
Extended Validation certificate from DigiCert for example.

For testing purposes and on-premise deployments, it is acceptable to create your own self-signed certificate using
the New-SelfSignedCertificate cmdlet in PowerShell on Windows 10 or MakeCert.

The following example illustrates how to create a new self-signed certificate for code signing:

The following MakeCert command is used to create a new self-signed certificate for code signing:

Getting Started with AL
Keyboard Shortcuts
AL Development Environment

https://docs.microsoft.com/da-dk/windows/desktop/SecCrypto/time-stamping-authenticode-signatures
https://www.digicert.com/code-signing/ev-code-signing/
https://docs.microsoft.com/en-us/powershell/module/pkiclient/new-selfsignedcertificate?view=win10-ps
https://docs.microsoft.com/da-dk/windows/desktop/SecCrypto/makecert

Deploying a Tenant Customization
3/31/2019 • 2 minutes to read

NOTE

IMPORTANT

Steps for deploying your .app file

When you have finished developing and testing your tenant customization, you must deploy the extension (.app
file) containing the customization to your customer’s production tenant. You must be able to log into the
customer’s tenant as a user with permissions to the Extension Management page to complete the deployment.

Use the Upload Extension action to deploy the extension. The extension can be deployed for the current version
or for the next version of the service. In most cases it is sufficient to select the current version, unless you have
developed the extension specifically for the next version.

When you deploy an .app file for the next version, the extension will be queued up to be deployed as part of the customer’s
tenant being upgraded to the next version. You can typically use this in a situation where you have built an upgrade of the
extension to work with the next version.

The extension you are deploying could be the initial release of the customization or an upgrade to a previous
version. You must use the same steps for uploading a new extension or an extension upgrade. The service will
determine if the extension needs to be upgraded based on the extension’s app ID and version.

If you are developing and deploying an extension as an update to a previously deployed extension, you must keep the app
ID the same and increase the version to successfully upgrade the extension to the new version.

The platform metadata requires that extensions be unique across all tenants, based on the package ID, app ID, name,
publisher, and version. For example, you successfully deployed an extension on a tenant. You then recompiled the extension’s
source code so that a new extension package file was created with a different package ID than the original. If you try to
upload this extension on a different tenant, you will get the error
An extension with same App ID and version has already been uploaded. Resolve and deploy again. . When

developing a per-tenant extension from the same source code as an extension that is already deployed on a tenant, we
recommend that you adjust the App ID, Name, Publisher, and Version of the extension to maintain uniqueness.

These parameters are defined in the app.json file of the extension. For more information, see JSON files.

1. Log into your customer’s Dynamics 365 Business Central tenant.
2. Open the Extension Management page.
3. Choose the Upload Extension action.
4. Select the browse button to select the .app file to upload. Browse to and select the extension’s .app file.
5. Select if you want to deploy for the current version (most common) or next version. Select the language for the

deployment.
6. Choose the Deploy button.
7. The extension will be deployed in the background.

To check the status of the deployment, choose Deployment Status and then view the status of the extension
deployment. Select the row to see additional details.
In the deployment status details there is a Refresh button in the actions you must press to retrieve the most
recent status and details.

See Also

8. When the extension has been successfully deployed, choose the Refresh button to see the new extension in the
list of installed extensions.

Getting Started with AL
AL Development Environment
FAQ for Developing in AL
Using Designer

Extending Application Areas
5/24/2019 • 5 minutes to read

Extending application areas and the experience tier

IMPORTANT

IMPORTANT

Application areas represents a feature in the system that offers developers, administrators, and users the ability to
define differentiated user experiences.

Application areas are mapped to controls to show or hide them on page objects to enable more or fewer business
scenarios.

In this example you will:

Add a new application area in the Application Area Setup table.
Enable the application area in the OnInstallAppPerCompany trigger.
Extend the experience tier in the OnGetExperienceAppArea event.
Modify the experience tier (optional).
Validate the application area in the OnValidateApplicationAreas.

The code used in this example is still under active development and might be subject to change in the future.

The following example extends the Customer List page. The field ExampleField is added and it is followed by a
series of properties. The ApplicationArea property sets the application areas that apply to the control and in this
code, ExampleAppArea is assigned to it.

If your extension fails to use ApplicationArea in any controls or actions, they will not be visible when you use an experience
tier.

The OnOpenPage trigger will display the message only if ApplicationArea is enabled.

pageextension 50100 CustomerListExt extends "Customer List"
{
 layout
 {
 addafter(Name)
 {
 field(ExampleField; "Name 2")
 {
 Caption = 'Example Field';
 ApplicationArea = ExampleAppArea;
 ToolTip = 'This is a field added by an example extension';
 Importance = Promoted;
 }
 }
 }

 trigger OnOpenPage()
 var
 EnableExampleExtension : Codeunit "Enable Example Extension";
 begin
 if EnableExampleExtension.IsExampleApplicationAreaEnabled() then
 Message('App published: Example Extension');
 end;
}

Adding an application area

tableextension 50100 "Application Area Setup" extends "Application Area Setup"
{
 fields
 {
 // Spaces in field name are omitted in the ApplicationArea attribute
 // e.g. ApplicationArea = ExampleAppArea;
 field(50100;"Example App Area";Boolean)
 {
 }
 }
}

To add an application area, the Application Area Setup table must be extended. A new boolean field is added and
the name of this field will be used in the attribute that you want to be tagged with this application area. This
particular case, in the code below, is an exception, because space is used inside it. Usually, spaces are omitted in the
application area attribute. At this point, the extension has an application area but it still needs to be enabled.

The codeunit Install Example Extension is of the subtype Install and it enables the application area inside the
OnInstallAppPerCompany trigger.

codeunit 50101 "Install Example Extension"
{
 Subtype = Install;

 trigger OnInstallAppPerCompany()
 var
 EnableApplicationArea : Codeunit "Enable Example Extension";
 begin
 if(EnableApplicationArea.IsExampleApplicationAreaEnabled()) then
 exit;

 EnableApplicationArea.EnableExampleExtension();

 // Add your code here
 end;
}

NOTE

The registration of the application area inside an experience tier is made inside the
OnGetEssentialExperienceAppArea. There are different versions of this event, one for each experience tier and
in this case, Essential is chosen. This will make the extension visible inside the Essential experience and the event
exposes an Application Area Setup temporary record; TempApplicationAreaSetup, to the Application Area
Setup table. At this point, to enable the application area, this must be set to true.

This event is important because it is called every single time an experience tier is reset, which can happen because of many
reasons.

Another thing that is possible inside these methods is to modify the experience tier. You can also modify other
application areas, such as creating an extension that extends the Fixed Assets functionality. By subscribing to
OnValidateApplicationAreas, the application area inside an experience tier is validated.
OnValidateApplicationAreas is guaranteed to be executed after the events in the OnGet*ExperienceAppArea
family. The validation is necessary in the presence of extensions concurrently manipulating the same application
areas.

In case a needed application area is not enabled, the suggested action is to show an error and turn off the extension
to avoid unintended behavior. However, if the functionality controlled by this application area is of secondary
importance and its loss does not affect the rest of the extension, it is also appropriate to keep the extension
enabled.

codeunit 50100 "Enable Example Extension"
{
 // Extend and modify Essential experience tier with "Example App Area"
 [EventSubscriber(ObjectType::Codeunit, Codeunit::"Application Area Mgmt.",
'OnGetEssentialExperienceAppAreas', '', false, false)]
 local procedure RegisterExampleExtensionOnGetEssentialExperienceAppAreas(var TempApplicationAreaSetup:
Record "Application Area Setup" temporary)
 begin
 TempApplicationAreaSetup."Example App Area" := true;
 // Modify other application areas here
 end;

 // Validate that application areas needed for the extension are enabled
 [EventSubscriber(ObjectType::Codeunit, Codeunit::"Application Area Mgmt.", 'OnValidateApplicationAreas',
'', false, false)]
 local procedure VerifyApplicationAreasOnValidateApplicationAreas(ExperienceTierSetup: Record "Experience
Tier Setup"; TempApplicationAreaSetup: Record "Application Area Setup" temporary)
 begin
 if ExperienceTierSetup.Essential then
 if not TempApplicationAreaSetup."Example App Area" then
 Error('Example App Area should be part of Essential in order for the Example Extension to
work.');
 end;

 // Helpers ..
 procedure IsExampleApplicationAreaEnabled() : Boolean
 var
 ApplicationAreaSetup: Record "Application Area Setup";
 ApplicationAreaMgmtFacade: Codeunit "Application Area Mgmt. Facade";
 begin
 if ApplicationAreaMgmtFacade.GetApplicationAreaSetupRecFromCompany(ApplicationAreaSetup, CompanyName())
then
 exit(ApplicationAreaSetup."Example App Area");
 end;

 procedure EnableExampleExtension()
 var
 ApplicationAreaMgmtFacade: Codeunit "Application Area Mgmt. Facade";
 begin
 ApplicationAreaMgmtFacade.RefreshExperienceTierCurrentCompany();
 end;
}

Adding Advanced application area to the Essentials and Premium
experiences using an extension

IMPORTANT

If you are familiar with Dynamics NAV you will have noticed that Dynamics 365 Business Central is not exposing
all the controls/actions that you find in Dynamics NAV. These controls have been hidden so far by using the
application area Advanced, which is not assigned to any experiences. For more information, see Frequently Asked
Questions.

Most of these fields will become available/visible soon, but until then you will have to create an extension to get
(almost) the same experience as you have in Dynamics NAV. See the example below.

Adding the application area Advanced to the experience will mean that you lose some of the simplification made to pages.
For example, you will see more actions duplicated on many pages, compared to Business Central where the experience is
intended to be simpler than in Dynamics NAV. You must also consider that we plan to re-tag the Advanced actions/controls
and add them to the Essentials and/or Premium experiences in a future release.

https://docs.microsoft.com/dynamics365/business-central/across-faq

To enable Advanced in an extension

codeunit 50102 EnableAdvancedApplicationArea
{
 [EventSubscriber(ObjectType::Codeunit, Codeunit::"Application Area Mgmt. Facade",
'OnGetEssentialExperienceAppAreas','', false, false)]
 local procedure EnableAdvancedApplicationAreaOnGetEssentialExperienceAppAreas(var TempApplicationAreaSetup
: record 9178 temporary)
 begin
 TempApplicationAreaSetup.Advanced := true
 end;

 [EventSubscriber(ObjectType::Codeunit, Codeunit::"Application Area Mgmt. Facade",
'OnGetPremiumExperienceAppAreas','', false, false)]
 local procedure EnableAdvancedApplicationAreaOnGetPremiumExperienceAppAreas(var TempApplicationAreaSetup :
record 9178 temporary)
 begin
 TempApplicationAreaSetup.Advanced := true
 end;

 [EventSubscriber(ObjectType::Codeunit, Codeunit::"Application Area Mgmt. Facade", 'OnSetExperienceTier','',
false, false)]
 local procedure EnableAdvancedApplicationAreaOnSetExperienceTier(ExperienceTierSetup : record 9176;var
TempApplicationAreaSetup : record 9178 temporary;var ApplicationAreasSet : boolean)
 begin
 TempApplicationAreaSetup.Advanced := true
 end;
}

Application areas advantages and disadvantages

See Also

Depending on which experience you want to enable Advanced for you can subscribe to
OnGetEssentialExperienceAppAreas or OnGetPremiumExperienceAppAreas . If you have defined your own experience

you must subscribe to OnSetExperienceTier .

The experiences are additive so you only need to subscribe to one of the events. For example, to enable Essentials
and Premium experiences you only need to subscribe to OnGetEssentialExperienceAppAreas .

If you decide to code application areas as an extension, there are some aspects that must be considered.
Application areas enable hiding entire business scenarios and you can have the same code base, which makes it
possible to quickly modify the UI for different business scenarios or audiences. However, tagging errors as missing
tags or incorrect tags will occur and every single control will need to be tagged.

ApplicationArea Property
ApplicationArea Method
AccessByPermission Property
Properties

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-applicationarea-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-applicationarea-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-accessbypermission-property

Extending Item Charge Distribution Methods
3/31/2019 • 5 minutes to read

NOTE

To add a new option to the item charges distribution methods

To ensure correct valuation, your inventory items must carry any added costs, such as freight, physical handling,
insurance, and transportation that you incur when purchasing or selling the items.

Users can add these costs by adding a Charge (Item) line to the involved purchase or sales document. For more
information, see Use Item Charges to Account for Additional Trade Costs in application help.

Item charges are distributed over other item lines in the document according to a distribution method. Dynamics
365 Business Central offers four distribution methods out of the box: Equally, By Amount, By Weight, and By
Volume. This article explains how to remove or add item charge distribution methods. The article describes the
method for purchases. The steps are similar for sales, except the events are located in codeunit 5807, Item Charge
Assgnt. (Sales).

To enable extension of item charges distribution methods, two events have been added to codeunit 5805, Item
Charge Assgnt. (Purch.). The work consists of the following two tasks:

1. In the OnBeforeShowSuggestItemChargeAssignStrMenu event, you manipulate the options that are
presented to users. You can remove, add, and change the order of the options.

Keep in mind that other extensions may also manipulate the options.
You should not assume that an option will exist, nor should you write code that may remove an option
added by another extension.

2. In the OnAssignItemCharges event, you distribute the item charge amount over the item lines according
to your new distribution method.

You must verify that the option selected by the user is your new option. If it is not, then exit without
taking action.
When you have distributed the amount over the lines, you must set the ItemChargesAssigned boolean to
true. If you do not set this boolean to true, an error will occur.

The following procedures show how to extend the item charges distribution methods:

1. Add a new option to the item charges distribution methods in the
OnBeforeShowSuggestItemChargeAssignStrMenu event.

2. Add a new distribution method for item charges.
3. Call the new distribution method in the OnAssignItemCharges event.

The procedures are based on an example where the By Fairy Dust option is added to the string menu
(STRMENU) and added to the CASE statement.

To complete this example you will have to add a new field Fairy Dust to the Purchase Line table and other relevant tables
and pages.

Create a new codeunit and add an event subscriber to the OnBeforeShowSuggestItemChargeAssignStrMenu
event.

https://docs.microsoft.com/en-us/dynamics-nav-app/payables-how-assign-item-charges

codeunit 50100 "Item Ch. Assign by Fairy Dust"
{
 var
 ByFairyDustTok: Label 'By Fairy Dust';

 local procedure AssignByFairyDustMenuText(): Text
 begin
 exit(ByFairyDustTok)
 end;

 [EventSubscriber(ObjectType::Codeunit, Codeunit::"Item Charge Assgnt. (Purch.)",
'OnBeforeShowSuggestItemChargeAssignStrMenu', '', false, false)]
 local procedure AddByFairyDustOnBeforeShowSuggestItemChargeAssignStrMenu(PurchLine: Record "Purchase Line";
var SuggestItemChargeMenuTxt: Text; var SuggestItemChargeMessageTxt: Text; var Selection: Integer)
 begin
 // if 'By Fairy Dust' is not in the menu options, add it at the end
 if StrPos(SuggestItemChargeMenuTxt, AssignByFairyDustMenuText) = 0 then begin
 SuggestItemChargeMenuTxt += ',' + AssignByFairyDustMenuText;
 // make the last option ('By Fairy Dust') the default selection
 Selection := StrLen(DelChr(SuggestItemChargeMenuTxt, '=', DelChr(SuggestItemChargeMenuTxt, '=',
','))) + 1;
 end;
 end;
}

To add a new distribution method for item charges

 local procedure AssignByFairyDust(var ItemChargeAssignmentPurch: Record "Item Charge Assignment (Purch)";
Currency: Record Currency; TotalQtyToAssign: Decimal; TotalAmtToAssign: Decimal);
 var
 TempItemChargeAssgntPurch: Record "Item Charge Assignment (Purch)" temporary;
 LineArray: array[2] OF Decimal;
 TotalFairyDust: Decimal;
 QtyRemaining: Decimal;
 AmountRemaining: Decimal;
 begin
 // copy lines to temp variable and calculate total Fairy Dust
 repeat
 if not ItemChargeAssignmentPurch.PurchLineInvoiced then begin
 TempItemChargeAssgntPurch.Init();
 TempItemChargeAssgntPurch := ItemChargeAssignmentPurch;
 TempItemChargeAssgntPurch.Insert(false);
 GetItemValues(TempItemChargeAssgntPurch, LineArray);
 TotalFairyDust := TotalFairyDust + (LineArray[2] * LineArray[1]);
 end;
 until ItemChargeAssignmentPurch.Next = 0;

 if TempItemChargeAssgntPurch.Findset(true) then
 repeat
 // Calculate Fairy Dust to assign to the line
 GetItemValues(TempItemChargeAssgntPurch, LineArray);
 if TotalFairyDust <> 0 then
 TempItemChargeAssgntPurch."Qty. to Assign" :=
 (TotalQtyToAssign * LineArray[2] * LineArray[1]) / TotalFairyDust + QtyRemaining
 else
 TempItemChargeAssgntPurch."Qty. to Assign" := 0;

 // Assign Fairy Dust to the line and calculate the remaining Fairy Dust to assign
 ItemChargeAssignmentPurch.Get(
 TempItemChargeAssgntPurch."Document Type",
 TempItemChargeAssgntPurch."Document No.",
 TempItemChargeAssgntPurch."Document Line No.",
 TempItemChargeAssgntPurch."Line No.");

In the new codeunit, add functions to distribute the charges over the item lines.

 ItemChargeAssignmentPurch."Qty. to Assign" := Round(TempItemChargeAssgntPurch."Qty. to Assign",
0.00001);
 ItemChargeAssignmentPurch."Amount to Assign" :=
 ItemChargeAssignmentPurch."Qty. to Assign" * ItemChargeAssignmentPurch."Unit Cost" +
AmountRemaining;
 AmountRemaining := ItemChargeAssignmentPurch."Amount to Assign" -
 Round(ItemChargeAssignmentPurch."Amount to Assign", Currency."Amount Rounding Precision");
 QtyRemaining := TempItemChargeAssgntPurch."Qty. to Assign" - ItemChargeAssignmentPurch."Qty. to
Assign";
 ItemChargeAssignmentPurch."Amount to Assign" :=
 Round(ItemChargeAssignmentPurch."Amount to Assign", Currency."Amount Rounding Precision");
 ItemChargeAssignmentPurch.Modify(false);

 until TempItemChargeAssgntPurch.Next = 0;
 TempItemChargeAssgntPurch.DeleteAll(false);
 end;

 procedure GetItemValues(TempItemChargeAssgntPurch: Record "Item Charge Assignment (Purch)" temporary; var
DecimalArray: Array[2] OF Decimal);
 var
 PurchaseLine: Record "Purchase Line";
 PurchRcptLine: Record "Purch. Rcpt. Line";
 ReturnShptLine: Record "Return Shipment Line";
 TransferRcptLine: Record "Transfer Receipt Line";
 SalesShptLine: Record "Sales Shipment Line";
 ReturnRcptLine: Record "Return Receipt Line";
 begin
 // Get the Fairy Dust for the line
 Clear(DecimalArray);
 with TempItemChargeAssgntPurch do
 case "Applies-to Doc. Type" of
 "Applies-to Doc. Type"::Order,
 "Applies-to Doc. Type"::Invoice,
 "Applies-to Doc. Type"::"Return Order",
 "Applies-to Doc. Type"::"Credit Memo":
 begin
 PurchaseLine.Get("Applies-to Doc. Type", "Applies-to Doc. No.", "Applies-to Doc. Line
No.");
 DecimalArray[1] := PurchaseLine.Quantity;
 DecimalArray[2] := PurchaseLine."Fairy Dust";
 end;
 "Applies-to Doc. Type"::Receipt:
 begin
 PurchRcptLine.Get("Applies-to Doc. No.", "Applies-to Doc. Line No.");
 DecimalArray[1] := PurchRcptLine.Quantity;
 DecimalArray[2] := PurchRcptLine."Fairy Dust";
 end;

 "Applies-to Doc. Type"::"Return Receipt":
 begin
 ReturnRcptLine.Get("Applies-to Doc. No.", "Applies-to Doc. Line No.");
 DecimalArray[1] := ReturnRcptLine.Quantity;
 DecimalArray[2] := ReturnRcptLine."Fairy Dust";
 end;
 "Applies-to Doc. Type"::"Return Shipment":
 begin
 ReturnShptLine.Get("Applies-to Doc. No.", "Applies-to Doc. Line No.");
 DecimalArray[1] := ReturnShptLine.Quantity;
 DecimalArray[2] := ReturnShptLine."Fairy Dust";
 end;
 "Applies-to Doc. Type"::"Transfer Receipt":
 begin
 TransferRcptLine.Get("Applies-to Doc. No.", "Applies-to Doc. Line No.");
 DecimalArray[1] := TransferRcptLine.Quantity;
 DecimalArray[2] := TransferRcptLine."Fairy Dust";
 end;
 "Applies-to Doc. Type"::"Sales Shipment":
 begin
 SalesShptLine.Get("Applies-to Doc. No.", "Applies-to Doc. Line No.");

 SalesShptLine.Get("Applies-to Doc. No.", "Applies-to Doc. Line No.");
 DecimalArray[1] := SalesShptLine.Quantity;
 DecimalArray[2] := SalesShptLine."Fairy Dust";
 end;
 end;
 end;

To call the new distribution method

 [EventSubscriber(ObjectType::Codeunit, Codeunit::"Item Charge Assgnt. (Purch.)", 'OnAssignItemCharges', '',
false, false)]
 local procedure AssignByFairyDustOnAssignItemCharges(SelectionTxt: Text; var ItemChargeAssignmentPurch:
Record "Item Charge Assignment (Purch)"; Currency: Record Currency; PurchaseHeader: Record "Purchase Header";
TotalQtyToAssign: Decimal; TotalAmtToAssign: Decimal; VAR ItemChargesAssigned: Boolean);
 begin
 // if item charges are already assigned, exit
 if ItemChargesAssigned then
 exit;
 // if the user did not choose 'By Fairy Dust', exit
 if not (SelectionTxt = AssignByFairyDustMenuText) then
 exit;
 // assign item charges by fairy dust
 AssignByFairyDust(ItemChargeAssignmentPurch, Currency, TotalQtyToAssign, TotalAmtToAssign);
 // charges have been assigned
 ItemChargesAssigned := true;
 end;

See Also

In the new codeunit, add a subscriber to the OnAssignItemCharges event.

Extending Application Areas

Events in AL
3/31/2019 • 3 minutes to read

EVENT TYPES DESCRIPTION

BusinessEvent Specifies the method to be business type event publisher.

IntegrationEvent Specifies the method to be integration type event publisher.

Global Global events are predefined system events.

Trigger Trigger events are published by the runtime.

How events work

The use of events is a proven and established programming concept that can ease application upgrade and limit
or even eliminate the need for code modifications in customized applications because of application platform
changes.

You can use events to design the application to react to specific actions or behavior that occur. Events enable you
to separate customized functionality from the application business logic. By using events in the application where
customizations are typically made, you can lower the cost of code modifications and upgrades to the original
application.

Code modifications to customized functionality can be made without having to modify the original
application.

Changes to the original application code can be made with minimal impact on the customizations.

Events can be used for different purposes, such as generating notifications when certain behavior occurs or the
state of an entity changes, distributing information, and integrating with external systems and applications. For
example, in the CRONUS International Ltd. demonstration database, events are used extensively for workflow and
Dynamics 365 for Sales integration.

The following table describes all the different event types:

The process for implementing these events is slightly different. To learn about the different types, see Event Types.

The basic principle is that you program events in the application to run customized behavior when they occur.
Events in AL are modeled after Microsoft .NET Framework. There are three major participants involved in events:
the event, a publisher, and a subscriber.

An event is the declaration of the occurrence or change in the application. An event is declared by an AL
method, which is referred to as an event publisher function. An event publisher method is comprised of a
signature only and does not execute any code.

A publisher is the object that contains event publisher method that declares the event. The publisher
exposes an event in the application to subscribers, essentially providing them with a hook-up point in the
application.

Publishing an event does not actually do anything in the application apart from making the event available
for subscription. The event must be raised for subscribers to respond. An event is raised by adding logic to

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-business-attribute
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-integration-attribute

How to implement events

See Also

the application that calls into the publisher to invoke the event (the event publisher method).

Partners or subsystems can then take advantage of the published event in their solutions. An ISV that
delivers vertical solutions, and Microsoft itself, are the typical providers of published events.

Business and integration type events must be explicitly published and raised, which means that you must
create event publisher functions and add them to objects manually. On the other hand, trigger events,
which occur on table and page operations, are published and raised implicitly by the system at runtime.
Therefore, no coding is required to publish them.

A subscriber listens for and handles a published event. A subscriber is an AL method that subscribes to a
specific event publisher method and includes the logic for handling the event. When an event is raised, the
subscriber method is called and its code is run. A subscriber enables partners to hook into the core
application functionality without having to do traditional code modifications. Any Dynamics 365 solution
provider, which also includes Microsoft, can use event subscribers.

There can by multiple subscribers to a single event publisher method. However, a publisher has no knowledge of
subscribers, if any. Subscribers can reside in different parts of the application than publishers.

Implementing events consists of the following tasks:

1. Publish the event.

For business and integration events, create and configure a method in an application object to be an event
publisher method. For more information, see Publishing Events. This is not required for trigger events
because these are automatically published by the system.

2. Raise the event.

Add code that calls the event publisher method. For more information, see Raising Events. This is not
required for trigger events because these are raised automatically by the system.

3. Subscribe to the event.

At the consumer end, add one or more subscriber methods that subscribe to published events when they
are raised. For more information, see Subscribing to Events.

Publishing Events
Raising Events
Subscribing to Events
Developing Extensions Using the New Development Environment

Event Types
3/31/2019 • 7 minutes to read

Business events

Integration events

Global events

Dynamics 365 Business Central supports different types of events for different purposes.

A business event is a custom event that is raised by AL code. It defines a formal contract that carries an implicit
promise not to change in future releases. It is the expectation that business events are published by solution ISVs,
including Microsoft.

Business events can be compared with publicly released APIs on which 3rd party solution provider develop
integrations and additions. Therefore, the downstream cost of making changes to a business event
implementation can be considerable for those who use the event in their applications. There may be some cases
where changes are required; however, you should keep these to an absolute minimum.

Development considerations

A typical business event reflects changes in “state” with regards to a process. This makes them very well suited for
workflow. An example of a business event could be when a sales order has been posted. It is important to note
that business events should not be tied to the implementation-details, such as the tables or fields in which the data
is stored. Preferably, the event publisher developer should be free to change the implementation, while still
keeping the business event intact. To learn about the syntax and example on how to use the BusinessEvent type,
see BusinessEvent Attribute.

Business events should be documented with the solution, including the before-state and after-state of the events.

An integration event is also a custom event that is raised by AL code, like a business event, except that it does not
carry the same promise of not changing, nor does it have the restriction not to expose implementation details.

The main purpose of integration events is to enable the integration of other solutions with Dynamics 365 Business
Central without having to perform traditional code modifications.

Development considerations

An integration event can be changed to a business event later. At which time, it must adhere to the same implied
contract and commitment as any business event. It can also simply be designed-in hook points for external add-
ons. To learn about the syntax and example on how to use the IntegrationEvent type, see IntegrationEvent
Attribute.

Global events are predefined system events that are automatically raised by various base application codeunits.
For example, codeunit 40 LoginManagement includes several global method triggers, such as CompanyOpen,
CompanyClose, and GetSystemIndicator. For most of these global method triggers, there are one or two global
events: a before and after event. For example, there is an OnBeforeCompanyOpen event and an
OnAfterCompanyOpen event. The global events are defined as integration event publishers by local methods in
the following codeunits.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-business-attribute
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-integration-attribute

CODEUNIT ID CODEUNIT NAME EVENT

40 LoginInManagement OnRoleCenterOpen

OnAfterLogInEnd

OnBeforeLogInStart

OnBeforeCompanyOpen

OnAfterCompanyOpen

OnBeforeCompanyClose

OnAfterCompanyClose

42 TextManagement OnBeforeMakeTextFilter

OnAfterMakeDateTimeFilter

OnAfterMakeDateFilter

OnAfterMakeTextFilter

OnAfterMakeTimeFilter

42 CaptionManagement OnAfterCaptionClassTranslate

44 ReportManagement OnAfterGetPrinterName

OnAfterHasCustomLayout

45 AutoFormatManagement OnAfterAutoFormatTranslate

49 GlobalTriggerManagement OnAfterGetGlobalTableTriggerMask

OnAfterOnGlobalInsert

OnAfterOnGlobalModify

OnAfterOnGlobalDelete

OnAfterOnGlobalRename

OnAfterGetDatabaseTableTriggerSetup

OnAfterOnDatabaseInsert

OnAfterOnDatabaseModify

OnAfterOnDatabaseDelete

OnAfterOnDatabaseRename

OnBeforeOnDatabaseInsert

OnBeforeOnDatabaseModify

OnBeforeOnDatabaseDelete

OnBeforeOnDatabaseRename

CODEUNIT ID CODEUNIT NAME EVENT

Trigger events

NOTE

Database trigger events

DATABASE TRIGGER EVENT WITH SIGNATURE DESCRIPTION

OnBeforeDeleteEvent(VAR Rec: Record, RunTrigger:
Boolean)

Executed before a record is deleted from a table.

OnAfterDeleteEvent(VAR Rec: Record, RunTrigger:
Boolean)

Executed after a record is deleted from a table.

OnBeforeInsertEvent(VAR Rec: Record, RunTrigger:
Boolean)

Executed before a record is inserted in a table.

OnAfterInsertEvent(VAR Rec : Record, RunTrigger :
Boolean)

Executed after a record is inserted in a table.

OnBeforeModifyEvent(VAR Rec : Record, VAR xRec :
Record, RunTrigger : Boolean)

Executed before a record is modified in a table.

OnAfterModifyEvent(VAR Rec : Record, VAR xRec :
Record, RunTrigger : Boolean)

Executed after a record is modified in a table.

OnBeforeRenameEvent(VAR Rec : Record, VAR xRec :
Record, RunTrigger : Boolean)

Executed before a record is renamed in a table.

Unlike business and integration events which must be programmed, trigger events are predefined events. Trigger
events are published by the runtime and they cannot be raised programmatically. There are two types of trigger
events: database trigger events and page trigger events.

Trigger events do not appear as methods in AL for a table or page object.

Trigger events are automatically raised by the system when it performs database operations on a table object, such
as deleting, inserting, modifying, and renaming a record, as defined in a table. Trigger events are closely associated
with the table triggers for database operations: OnDelete, OnInsert, OnModify, OnRename, and OnValidate (for
fields). For each database operation, there is a "before" and "after" trigger event with a fixed signature.

Available Database Trigger Events

The following table describes the available database trigger events:

OnAfterRenameEvent(VAR Rec : Record, VAR xRec:
Record, RunTrigger : Boolean)

Executed after a record is renamed in a table.

OnBeforeValidateEvent(VAR Rec : Record, VAR xRec :
Record, RunTrigger : Boolean; CurrentFieldNo :
Integer)

Executed before a field is validated when its value has been
changed.

OnAfterValidateEvent(VAR Rec : Record, VAR xRec :
Record, RunTrigger : Boolean, CurrentFieldNo :
Integer)

Executed after a field is validated when its value has been
changed.

DATABASE TRIGGER EVENT WITH SIGNATURE DESCRIPTION

PARAMETER TYPE DESCRIPTION

Rec Record The table that raises the event.

xRec Record The table that raises the event.

RunTrigger Boolean Specifies whether to execute the code in
the event trigger when it is invoked. If
this parameter is true, the code will be
executed. If this parameter is false, then
the code is not executed.

CurrentFieldNo Integer The number of the field that raises the
event.

ORDER ITEM EXAMPLE

1 Trigger event (before) OnBeforeDeleteEvent

2 Table trigger OnDelete

3 Global table trigger in codeunit OnDatabaseDelete

4 Database operations Delete the record

5 Trigger event (after) OnAfterDeleteEvent

Page trigger events

The following table describes the parameters of the trigger events:

Order of Event Execution

The relative order of execution of database trigger events, table triggers, and database operations is as follows:

Page Trigger events are raised automatically by the system when it performs certain operations in a page object.
Page trigger events are closely associated with the standard page triggers, such as OnOpenPage. OnClosePage,
and OnAction.

Available Page Trigger Events

The following table describes the available page trigger events:

TRIGGER EVENT WITH SIGNATURE DESCRIPTION

OnBeforeActionEvent(VAR Rec : Record) Executed before the OnAction Trigger, which is called when a
user selects an action on the page.

OnAfterActionEvent(VAR Rec : Record) Executed after the OnAction Trigger, which is called when a
user selects an action on the page.

OnAfterGetCurrRecordEvent(VAR Rec : Record) Executed after the OnAfterGetCurrRecord Trigger, which is
called after the current record is retrieved from the table.

OnAfterGetRecordEvent(VAR Rec : Record) Executed after the OnAfterGetRecord Trigger, which is called
after the record is retrieved from the table but before it is
displayed to the user.

OnBeforeValidateEvent(VAR Rec : Record, VAR xRec :
Record)

Executed before the OnValidate (Page fields) Trigger, which is
called when a field loses focus after its value has been
changed.

OnAfterValidateEvent(VAR Rec : Record, VAR xRec :
Record)

Executed after the OnValidate (Page fields) Trigger, which is
called when a field loses focus after its value has been
changed.

OnClosePageEvent(VAR Rec : Record) Executed after the OnClosePage Trigger, which is called when
page closes after the OnQueryClosePage trigger is executed.

OnDeleteRecordEvent(VAR Rec : Record, VAR
AllowDelete : Boolean)

Executed after the OnDeleteRecord Trigger, which is called
before a record is deleted from a table.

OnInsertRecordEvent(VAR Rec : Record, BelowxRec :
Boolean, VAR xRec : Record, VAR AllowInsert :
Boolean)

Executed after the OnInsertRecord Trigger, which is called
before a record is inserted in a table.

OnModifyRecordEvent(VAR Rec : Record, VAR xRec :
Record, VAR AllowModify : Boolean)

Executed after the OnModifyRecord Trigger, which is called
before a record is modified in a table.

OnNewRecordEvent(VAR Rec: Record, BelowxRec :
Boolean, VAR xRec : Record)

Executed after the OnNewRecord Trigger, which is called
before a new record is initialized.

OnOpenPageEvent(VAR Rec : Record) Executed after the OnOpenPage Trigger, which is called after a
page is initialized and run.

OnQueryClosePageEvent(VAR Rec : Record, VAR
AllowClose : Boolean)

Executed after the OnQueryClosePage Trigger, which is called
as a page closes and before the OnClosePage Trigger
executes.

PARAMETER TYPE DESCRIPTION

Rec Record The table that used page that raises the
event.

xRec Record The table that used page that raises the
event.

The following table describes the parameters of the trigger events:

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onaction-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onaction-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onaftergetcurrrecord-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onaftergetrecord-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onvalidate-page-fields-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onvalidate-page-fields-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onclosepage-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-ondeleterecord-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-oninsertrecord-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onmodifyrecord-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onnewrecord-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onopenpage-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onqueryclosepage-trigger

AllowDelete Boolean Specifies whether the OnDeleteRecord
trigger call was successful and the
record can be deleted. If this parameter
is true, the code will be executed. If this
parameter is false, then the code is not
executed.

AllowModify Boolean Specifies whether the OnModifyRecord
trigger call was successful and the
record can be modified. If this
parameter is true, the code will be
executed. If this parameter is false, then
the code is not executed.

BelowxRec Boolean Specifies whether the new record was
inserted after the last record in the
table (xRec).

AllowClose Boolean Specifies whether to the page can close.
If this parameter is true, the code will
be executed. If this parameter is false,
then the code is not executed.

PARAMETER TYPE DESCRIPTION

See Also
Events in AL
Publishing Events
Raising Events
Subscribing to Events

Publishing Events
5/3/2019 • 3 minutes to read

Creating an event publisher method to publish business and
integration events

To create an event publisher method

The first phase of implementing an event is publishing the event. Publishing an event exposes it in the application.
This provides hook up points for subscribers to register to the event, and eventually handle the event if it is raised.
An event is published by adding an AL method that is specifically set up as an event publisher.

Business and integration events require that you manually create an event publisher method for each event
that you want to publish. An event publisher method declares the event in the application and makes it
available for subscription; however, it does not raise the event. After an event is published, you can raise it
in your application, as needed, from where event subscribers can react and handle the event.

Trigger events, on the other hand, do not require that you create publisher methods. Trigger events are
predefined event publisher methods that are called automatically at runtime. This means that trigger events
are readily available to subscribers by default.

You create an event publisher method the same way you create any method in AL, except that there are specific
attributes that you set to make it an event publisher. Additionally, an event publisher method has the following
requirements and restrictions that you must follow, otherwise you will not be able to compile your code changes:

An event publisher method cannot include any code except comments.

An event publisher method cannot have a return value, variables, or text constants.

The following procedure provides an outline of the tasks that are involved in creating an event publisher method
for declaring an event.

IMPORTANT

1. Decide where you want to include the event publisher method.

You can include an event publisher method in the AL code of any object type, such as codeunit, page, or
table. You can create a new object or use an existing object.

If you include the event publisher method in a page object, the page must have a source table. Otherwise, you
cannot successfully create an event subscriber method to subscribe to the event.

2. Add an AL method to the object.

If you do not want the event publisher to be raised from other objects than the one defining it, make it a
local method by affixing it with local . The event still remains available to event subscribers from other
objects.

You should give the method a name that has the format On[Event], where [Event] is text that indicates what
occurred, such as OnAddressLineChanged .

3. Decorate the method with the either the Integration attribute or Business attribute as follows:

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-integration-attribute
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-business-attribute

 Example

NOTE

codeunit 70000001 MyPublishers
{
 [IntegrationEvent(false, false)]
 procedure OnAddressLineChanged(line : Text[100]);
 begin
 end;
}

See Also

[IntegrationEvent(IncludeSender : Boolean, GlobalVarAccess : Boolean)]

[BusinessEvent(IncludeSender : Boolean)]

TIP

or

Use the teventint snippet for an integration event or the teventbus snippet for a business event to get started.

For more information about integration and business events, see Event Types.

4. Add parameters to the method as needed.

You can include as many parameters of any type as necessary.

Make sure to expose enough information as parameters to enable subscriber methods to add value to the
application. On the other hand, especially with business events, do not expose unnecessary parameters that
may constrain you from changing or extending methodically in the future.

You can now add code to the application that raises the event by calling the event publisher method. You can also
create subscriber methods that handle the event when it is raised.

This example creates the codeunit 7000001 MyPublisher to publish an integration event. The event is published
by adding the global method called OnAddressLineChanged . The event takes a single text data type parameter.

This example is part of a larger, simple scenario where when users change the address of a customer on the page 21
Customer Card, you want to check that the address does not include a plus sign (+). If it does, you want to display a
message. To accomplish this, you will publish an event that is raised when the Address field on Customer Card is changed,
and add an event subscriber method to that includes logic that checks the address value and returns a message to the user
if it contains a plus sign.

The next step would be to raise this event in the application. To see an example for how this event is raised, go to
Raising Event Example.

Raising Events
Subscribing to Events
Events Dynamics 365

Raising Events
3/31/2019 • 2 minutes to read

Snippet support

TIP

Example

NOTE

After an event has been published by an event publisher method, you can modify the application to raise the
event where it is needed. Subscribers of an event will not react on the event until it is raised in the application.

To raise an event, you add logic in AL code of the application to call the event publisher method that declares the
event. The procedure for calling the event publisher method is the same as calling any other method in AL.

When the code that calls the event publisher method is run, all event subscriber methods that subscribe to the
event are run. If there are multiple subscribers, the subscriber methods are run one at a time in no particular
order. You cannot specify the order in which the subscriber methods are called.

If there are no subscribers to the published event, then the line of code that calls the event publisher method is
ignored and not executed.

Typing the shortcut teventsub will create the basic event subscriber syntax when using the AL Language
extension in Visual Studio Code.

Typing the keyboard shortcut Ctrl + space displays IntelliSense to help you fill in the attribute arguments and to
discover which events are available to use.

This example uses a page extension object 70000002 MyCustomerExt to modify the page 21 Customer Card
so that an event is raised when a user changes the Address field. This example assumes that the event has
already been published by the event publisher method OnAddressLineChanged in a separate codeunit called
70000001 MyPublishers.

This example is part of a larger, simple scenario where when users change the address of a customer on the page 21
Customer Card, you want to check that the address does not include a plus sign (+). If it does, you want to display a
message. To accomplish this, you will publish an event that is raised when the Address field on Customer Card is changed,
and add an event subscriber method to that includes logic that checks the address value and returns a message to the user
if it contains a plus sign.

In the code that follows, the page extension object modifies the OnBeforeValidate trigger of the Customer Card
page to raise the event OnAddressLineChanged which includes the new value of the Address field.

pageextension 70000002 MyCustomerExt extends "Customer Card"
{
 layout
 {
 modify(Address)
 {
 trigger OnBeforeValidate();
 var
 Publisher: Codeunit 70000001;
 begin
 Publisher.OnAddressLineChanged(Address);
 end;
 }
 }
}

See Also

To learn about how the event used in this example is published, see Publishing Events Example.

The next step would be to subscribe to the event to handle to condition. To see an example of how to subscribe to
this event, see Subscribing to Events Example.

Publishing Events
Subscribing to Events
Events Dynamics 365

Subscribing to Events
6/25/2019 • 4 minutes to read

Creating an event subscriber method

To create an event subscriber method

To handle events, you design event subscribers. Event subscribers determine what actions to take in response to
an event that has been raised. An event subscriber is an AL method that subscribes to, or listens for, a specific
event that is declared by an event publisher method. The event subscriber includes code that defines the business
logic to handle the event. When the published event is raised, the event subscriber is called and its code is run.

Subscribing to an event tells the runtime that the subscriber method must be called whenever the publisher
method is run, either by code (as with business and integration events) or by the system (as with trigger events).
The runtime establishes the link between an event raised by the publisher and its subscribers by looking for event
subscriber methods.

There can be multiple subscribers to the same event from various locations in the application code. When an
event is raised, the subscriber methods are run one at a time in no particular order. You cannot specify the order
in which the subscriber methods are called.

You create an event subscriber method just like other methods except that you specify properties that set up the
subscription to an event publisher. The procedure is slightly different for database and page trigger events than
business and integration events because business and integration events are raised by event publisher methods
in application code. Trigger events are predefined system events that are raised automatically on tables and
pages.

For an explanation about the different types, see Event Types.

[EventSubscriber(ObjectType::<Event Publisher Object Type>, <Event Publisher Object>, '<Published
Event Name>', '<Published Event Element Name>', <SkipOnMissingLicense>, <SkipOnMissingPermission>)]

ARGUMENT DESCRIPTION OPTIONAL

1. Decide which codeunit to use for the event subscriber method.

You can create a new codeunit or use an existing one.

2. Add an AL method to the codeunit.

We recommend that you give the method a name that indicates what the subscriber does, and has the
format [Action][Event]. [Action] is text that describes what the method does and [Event] is the name of the
event publisher method to which it subscribes.

3. Add code to the method for handling the event.

4. Decorate the event subscriber method with the EventSubscriber attribute, and change accordingly.

Set the arguments according to the following table. For optional arguments, if you do not want to set a
value, use an empty value (''). In this, the default value, if any, is used.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-eventsubscriber-attribute

<Event Publisher Object Type> Specify the type of object that
publishes the event. This can be
Codeunit , Page , Report ,
Table , or XMLPort .

no

<Event Publisher Object> Specify the object that publishes the
event. You can set this to the ID,
such as 50100 , or the
recommended way is to use the
object name by using the syntax
<Object Type>::"<Object Name>" ,

such as
Codeunit::"MyPublishers" , or for

database triggers
Database::"Customer" .

no

<Published Event Name> Specify the name of method that
publishes the event in the object
that is specified by the
<Event Publisher Object>

parameter.

no

<Published Event Element Name> Specifies the table field that the
trigger event pertains to. This
argument only requires a value for
database trigger events, that is,
when the
<Event Publisher Object Type>

is set to Table and the
<Published Event Name>

argument is a validate trigger event,
such as OnAfterValidateEvent .

no

<SkipOnMissingLicense> Set to true to skip the event
subscriber method call if the user's
license does not cover the event
subscriber codeunit. If false , an
error is thrown and the code
execution stops. false is the
default.

yes

<SkipOnMissingPermission> Set to true to skip the event
subscriber method call if the user
does not have the correct
permissions the event subscriber
codeunit. If false , an error is
thrown and the code execution
stops. false is the default.

yes

ARGUMENT DESCRIPTION OPTIONAL

TIP
Use the teventsub snippet to get started and typing the keyboard shortcut Ctrl + space displays IntelliSense
to help you fill the attribute arguments and to discover which events are available to use.

5. Optionally, set the codeunit's EventSubscriberInstance property to specify how the event subscriber

 Example 1

codeunit 70000002 MySubscriber
{
 EventSubscriberInstance = StaticAutomatic;

 [EventSubscriber(ObjectType::Codeunit, Codeunit::"MyPublishers", 'OnAddressLineChanged', '', true, true)]
 procedure CheckAddressLine(line : Text[100]);
 begin
 if (STRPOS(line, '+') > 0) then begin
 MESSAGE('Cannot use a plus sign (+) in the address [' + line + ']');
 end;
 end;
}

Example 2

codeunit 70000002 MySubscriber
{
 EventSubscriberInstance = StaticAutomatic;

 [EventSubscriber(ObjectType::Page, Page::"Customer Card", 'OnBeforeValidateEvent', 'Address', true,
true)]
 local procedure CheckAddressLine(var Rec : Record Customer)
 begin
 if (STRPOS('Rec.Address', '+') > 0) then begin
 MESSAGE('Cannot use a plus sign (+) in the address [' + 'Address' + ']');
 end;
 end;
}

See Also

method will be bound to the instance of this codeunit.

For more information, see EventSubscriberInstance Property.

This example creates the codeunit 7000002 MySubscriber to subscribe to an event that has been published by
the event publisher method called OnAddressLineChanged in the codeunit 70000001 MyPublishers. The event is
raised by a change to the Address field on page 21 Customer Card. This example assumes the following:

The codeunit 70000001 MyPublishers with the event publisher method OnAddressLineChanged already exists.
To see how to do this, see Publishing Event Example.
The code for raising the OnAddressLineChanged event has been added to the Customer Card page. To see how
to do this, see Raising Event Example.

The following code creates a codeunit called 70000002 MySubscriber that includes an event subscriber method,
called CheckAddressLine . The method includes code for handling the published event.

This example achieves the same as example 1, except it subscribes to the page trigger event
OnBeforeValidateEvent on the Address field instead. By using the page trigger, you avoid creating an event

publisher and adding code to raise the event because this is done automatically by the system.

Publishing Events
Raising Events
Event Types
Events in AL EventSubscriberInstance Property EventSubscriber Attribute

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-eventsubscriberinstance-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-eventsubscriberinstance-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-eventsubscriber-attribute

Discoverability of Events
5/24/2019 • 2 minutes to read

Using the Event Recorder

How to record Events

You subscribe to events to extend application and interact with the base application and other extensions. This topic
describes how to discover events that you can subscribe to without writing the code manually. Using the Event
Recorder, you can record the events that are published and raised while performing the actions of your scenario.
For example, record the events raised when you post a purchase order and identify the events that you need for
your extension. You can retrieve the events in the form of AL snippet code and use them in Visual Studio Code
directly.

You can launch the Event Recorder session from Dynamics 365 Business Central. It can be accessed in the
following two ways:

In Dynamics 365 Business Central, search for Event Recorder.
In Visual Studio Code, use the Ctrl+Shift+P keys and select the Open Event Recorder command to open the
Event Recorder page in the Dynamics 365 Business Central web client.

The following steps describe how to record events when you are on the Event Recorder page.

1. To record the current session, click the Start button located on the actions ribbon.
2. Perform all the actions that you want to record while the Event Recorder session is on. For example, post a

purchase order.

TIP

3. After you have performed the actions of your scenario, navigate back to the Event Recorder page and click the
Stop button to finish recording.
All the events raised while performing the actions of your scenario are recorded and can be viewed on the Event
Recorder page as shown below.

When the Event Recorder session is started, all the actions are recorded including the search activities. Therefore,
before starting the recorder, you can open two separate windows; one, to perform the actions of your scenario; and
second, to start and stop the Event Recorder session.

NOTE

Recorded Events

See Also

4. Click Get AL Snippet to get the event subscription code in AL. You can use the AL snippet code in Codeunits to
subscribe to those events.

The recorded events are not saved. When you refresh the page, the recorded events disappear.

For more information on how to subscribe to events, see Subscribing to Events.

All the recorded events display in the order they were called. The Event Recorder page provides information on the
events that were raised including the details whether the raised events were trigger events or custom events. The
custom events are either Business Events or Integration Events. For more information, see Event Types.

You can identify the Event types, additionally, you can discover which object types and methods raised the events
with the details like calling methods, object types, and object names. For more information about Events, see
Events in AL.

Events in AL
Publishing Events
Raising Events
Subscribing to Events
Debugging in AL
Developing Extensions

Notifications
3/31/2019 • 6 minutes to read

Notifications in the UI

Notifications in the development environment

METHOD DESCRIPTION

MESSAGE Specifies the content of the notification that appears in the UI.

SCOPE Specifies the scope in which the notification appears.

SEND Sends the notification to be displayed by the client.

ADDACTION Adds an action on the notification.

SETDATA Sets a data property value for the notification

GETDATA Gets a data property value from the notification.

RECALL Recalls a sent notification.

Creating and sending a notification

Notifications provide a programmatic way to send non-intrusive information to the User Interface (UI) in the Web
client. Notifications differ from messages initiated by the MESSAGE method. Messages are modal, which means
users are typically required to address the message and take some form of corrective action before they continue
working. On the other hand, notifications are non-modal. Their purpose is to give users information about a
current situation, but do not require any immediate action or block users from continuing with their current task.
For example, you could have a notification that a customer's credit limit is exceeded.

In the UI, notifications appear in the Notification bar (similar to validation errors) at the top of the page on which
a user is currently working. The user can then choose to dismiss the notification, which clears it. Or, if actions are
defined on notification, the user can choose one of the actions.

There can be multiple notifications. The notifications appear in chronological order from top to bottom.
Notifications remain for the duration of the page instance or until the user dismisses them or takes action on
them.
Notifications that are defined on sub-pages, for example in parts and FactBoxes, appear in the same
Notification bar.
Validation errors on the page will be shown first.

By using the Notification and NotificationScope data types and methods in AL, you can add code to send
notifications to users. The following table provides an overview of the available methods. The sections that follow
provide additional information about how to create notifications.

You create a notification by using the MESSAGE and SEND methods. The MESSAGE method defines the
message part of the notification. When the SEND method is called, the notification is sent to the client and content

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-message-method-notification
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-scope-method-notification
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-send-method-notification
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-addaction-method-notification
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-setdata-method-notification
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-getdata-method-notification
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-recall-method-notification

MyNotification.MESSAGE := 'This is a notification';
MyNotification.SEND;

Defining the notification scope

MyNotification.MESSAGE := 'This is a notification';
MyNotification.SCOPE := NOTIFICATIONSCOPE::LocalScope;
MyNotification.SEND;

Adding actions on a notification

MyNotification.MESSAGE := 'This is a notification';
MyNotification.SCOPE := NOTIFICATIONSCOPE::LocalScope;
MyNotification.ADDACTION('Action 1',CODEUNIT::"Action Handler",'RunAction1');
MyNotification.ADDACTION('Action 2',CODEUNIT::"Action Handler",'RunAction2');
MyNotification.SEND;

of the message is displayed.

The SEND method call should be the last statement in the notification code, after any ADDACTION or SETDATA
method calls for the notification instance.

The scope determines where the notification is broadcast in the client. There are two different scopes: LocalScope
and GlobalScope.

NOTE

A LocalScope notification appears in context of the user's current task, that is, on the page the user is
currently working on. LocalScope is the default.

A GlobalScope notification is not directly related to the current task, and will appear regardless of which the
page the user is viewing.

GlobalScope is currently not supported. This will be implemented in a future release.

The following code creates a notification in the LocalScope:

You add actions on notifications by using the ADDACTION method. This method provides a way for you to create
interactive notifications. By default, users have the option to dismiss the notifications. However, there might be
cases where you want to provide users with different actions that they can take to address the notification, like
opening an associated page for modifying data.

Conceptually, a notification action calls a method in a specified codeunit, passing the notification object in the call.
The method includes the business logic for handling the action.

The basic steps for adding an action are as follows:

1. Create a global method in a new or existing codeunit. The method must have a Notification data type
parameter for receiving the notification object.

2. Add AL code to the method for handling the action.
3. Specify the codeunit and method in the ADDACTION method call.

IMPORTANT

Sending data with a notification

MyNotification.MESSAGE := 'This is a notification';
MyNotification.SCOPE := NOTIFICATIONSCOPE::LocalScope;
MyNotification.SETDATA('Created',FORMAT(CURRENTDATETIME,0,9));
MyNotification.SETDATA('ID',FORMAT(CREATEGUID,0,9));
MyNotification.ADDACTION('Action 1',CODEUNIT::"Action Handler",'RunAction1');
MyNotification.ADDACTION('Action 2',CODEUNIT::"Action Handler",'RunAction2');
MyNotification.SEND;

DataValue := MyNotification.GETDATA('Created');
DataValue := MyNotification.GETDATA('ID');

Example

You can have more than one action on a notification. A LocalScope notification can have up to 3 actions. A GlobalScope
notification can have up to 2 actions.

You use the SETDATA and GETDATA methods to add data to a notification, which is typically needed when
actions are invoked. The SETDATA method sets, or adds, data to the notification. The data is defined as text in a
key-value pair. With the GETDATA method, you can then retrieve the data again.

The following code sets data for a notification:

The following code gets the data for a notification:

This simple example illustrates how notifications work and provides some insight into how you can use them. This
example extends page 42 Sales Order of the CRONUS International Ltd. demonstration database according to the
following:

The code compares a customer's balance with their credit limit. If the balance exceeds the credit limit, a
notification is sent to the client.
The notification includes an action, which has the caption Change credit limit, that opens page 21 Customer
Card. This enables the user to increase the credit limit.

To complete the example, follow these steps:

1. Create a page extension object that extends page 42 Sales Order, and add the notification code on the
OnOpenPage trigger.

See Also

pageextension 50100 CreditBalanceNotification extends "Sales Order"
{

 trigger OnOpenPage()
 var
 Customer: Record Customer;
 CreditBalanceNotification: Notification;
 OpenCustomer: Text;
 Text003: TextConst ENU = 'The current balance exceeds the credit limit.';
 Text004: TextConst ENU = 'Change credit limit';
 begin
 Customer.GET("Sell-to Customer No.");
 if Customer."Balance (LCY)" > Customer."Credit Limit (LCY)" then begin
 //Create the notification
 CreditBalanceNotification.MESSAGE(Text003);
 CreditBalanceNotification.SCOPE := NOTIFICATIONSCOPE::LocalScope;
 //Add a data property for the customer number
 CreditBalanceNotification.SETDATA('CustNumber', Customer."No.");
 //Add an action that calls the ActionHandler codeunit, which you define in the next step.
 CreditBalanceNotification.ADDACTION('Text004', CODEUNIT::"ActionHandler", 'OpenCustomer');
 //Send the notification to the client.
 CreditBalanceNotification.SEND;
 end;
 end;
}

codeunit 50100 ActionHandler
{
 trigger OnRun()
 begin

 end;

 procedure OpenCustomer(CreditBalanceNotification: Notification)
 var
 CustNumber: Text;
 CustNo: Text;
 CustRec: Record Customer;
 CustPage: Page "Customer Card";
 begin
 //Get the customer number data from the SETDATA call.
 CustNo := CreditBalanceNotification.GETDATA(CustNumber);
 // Open the Customer Card page for the customer.
 if CustRec.GET(CustNo) then begin
 CustPage.SETRECORD(CustRec);
 CustPage.RUN;
 end else begin
 ERROR('Could not find Customer: ' + CustNo);
 end;
 end;
}

2. Create a codeunit called ActionHandler for handling the notification action. Add a global method called
OpenCustomer that has a Notification data type parameter called CreditBalanceNotification for
receiving the Notification object, and include the following code on the method:

Notification Data Type
Developing Extensions
Getting Started with AL

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/datatypes/devenv-notification-data-type

Task Scheduler
3/31/2019 • 3 minutes to read

METHOD DESCRIPTION FOR MORE INFORMATION, SEE

CreateTask Adds a task to run a codeunit at a
specified date and time.

CreateTask Method

SetTaskReady Sets a task to the Ready state. A task
cannot run until it is Ready.

SetTaskReady Method

TaskExists Checks whether a specific task exists. TaskExists Method

CancelTask Cancels a scheduled task. CancelTask Method

How task scheduler works

Task flow

Error conditions and retry process

The task scheduler enables you to control when certain operations or processes (in other words tasks) are run.
Basically, a task is a codeunit or report that is scheduled to run at a specific data and time. Tasks run in a
background session between the Dynamics 365 Business Central service instance and database. Behind the
scenes, the task scheduler is used by the job queue to process job queue entries that are created and managed
from the clients.

In AL code, you create and manage tasks by using the AL methods that are available for the TASKSCHEDULER
data type.

To set up a task, you create a codeunit that contains the logic that you want to run at a scheduled time. Optionally,
you can create a second codeunit that contains the logic to handle the task if an error occurs for any reason. This
codeunit is referred to as a failure codeunit. Once you have the codeunits, you can add AL code to the application
that calls the CREATETASK method to schedule a task to run the codeunits. The CreateTask method can also
specify the earliest date to run the task, and whether the task is in the ready state.

Here is an overview of the process that a task goes through:

1. After you add a task, the task is recorded in table 2000000175 Scheduled Task of the database.

2. If the task is in the ready state, when the scheduled time occurs, a new background session is started and
the task codeunit is run.

You can view the session in the table 2000000111 Session Event.

3. If an error occurs, the following happens:

a. If a failure codeunit is not specified, then the retry flow is initiated.

b. If a failure codeunit has been specified, the error is passed in a call to the failure codeunit, and the
failure codeunit is run.

If the failure codeunit does not handle the error or fails itself, then the retry flow is initiated.

A task can fail under the following conditions:

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/taskscheduler/taskscheduler-createtask-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/taskscheduler/taskscheduler-settaskready-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/taskscheduler/taskscheduler-taskexists-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/taskscheduler/taskscheduler-canceltask-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/taskscheduler/taskscheduler-createtask-method

About task sessions and permissions

See Also

The company cannot be opened.

A SQL connection or transient error occurred with the database.

The Dynamics 365 Business Central service instance restarted while the task was being run.

When an error occurs, unless the task is interrupted by the failure codeunit, the server instance will rerun the task
according to the following retry flow:

1. Two minutes after the first failure.

2. Four minutes after the second failure.

3. Fifteen minutes after the third failure and any subsequent failures up to a maximum of 10 times, after
which the task is canceled.

The task runs in a background session, which means that there is no user interface. The behavior is similar to that
of the STARTSESSION method, where any dialog boxes that would normally appear are suppressed. For more
information about specific dialog boxes, see StartSession method.

The session runs by using the same user/credentials that are used when calling AL code. The user must have
appropriate permissions to the codeunit and any other objects that are associated with the operation of the
codeunit.

Task Scheduler Data Type
Developing Extensions
Getting Started with AL

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/session/session-startsession-method

Tables Overview
4/24/2019 • 3 minutes to read

Creating tables

Tables are the fundamental objects in any database. They are the objects in which you store and manipulate data.
This is true no matter what kind of data you need to manage. When you create a new database, you begin by
building the tables. Later, you create pages and reports in order to access and view the data in the tables.

A table can be visualized as a two-dimensional matrix, consisting of columns and rows. The following illustration
shows a table where each row is a record and each column is a field.

A table consists of two parts: the table data and a table description. The table data is the part users often think of
as comprising the database, because it contains the actual records with their data fields. The layout and properties
of those fields, however, are specified by the table description. The table description is not directly visible to the
user. The following illustration shows how the table data and the table description together form a table.

When you design a table, you assign a number of characteristics to it, such as a name, an ID number, and the fields
it contains. You also assign a number of characteristics (such as name, ID number, data type, and initial value) to
each field. When you design a new table, you also specify which keys you want the system to maintain. All these
characteristics are stored in the table description when you save your table design.

The information in the table description is used by SQL Server and occasionally by database users who need
information about the table structure. The table description makes the database flexible, as it lets the system
access tables with different structures. The database can extract the definitions of the table structure from the table
description and thereby correctly access any table.

The following illustration shows that a table description contains properties, triggers, fields, and keys and shows
how these are related.

The table description contains some properties that are related to the table, others that are related to the fields in
the table, and other properties related to keys. You can also see that triggers are defined both for the table and for
the fields in the table.

TO SEE

Create a new table object Table Object

Modify an existing table object Table Extension Object

Decide which field data type you want to apply to your data Field Data Types

Apply table and field properties Table and Table Extension Properties

Set primary and secondary table keys Table Keys

Using triggers in database design

TO SEE

Learn about the set of triggers that Dynamics 365 Business
Central supports for tables and fields.

Table and Field Triggers

Creating relationships between tables

TO SEE

Get a brief introduction to relational database design in
Dynamics 365 Business Central.

Setting Relationships Between Tables

See Also

In AL code, you can create new tables or modify existing tables. Read more about creating and modifying tables in
the following sections.

Dynamics 365 Business Central supports setting up actions to take place in response to specific events. These are
known as triggers. The following topics help to explain how Dynamics 365 Business Central implements this
feature of database design.

In Dynamics 365 Business Central, the primary way to establish a connection between tables is to use the
TableRelation property. The following topics go into detail about how this works.

Developing Extensions in AL

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/datatypes/devenv-field-data-types

Table Object
3/31/2019 • 2 minutes to read

NOTE

IMPORTANT

Snippet support

Table syntax

Tables are the core objects used to store data in Dynamics 365 Business Central. Regardless of how data is
registered in the product - from a web service to a finger swipe on the phone app, the results of that transaction will
be recorded in a table.

The structure of a table has four sections. The first block contains metadata for the overall table; the table type. The
fields section describes the data elements that make up the table; their name and the type of data they can store.
The keys section contains the definitions of the keys that the table needs to support. The final section details the
triggers and code that can run on the table.

Extension objects can have a name with a maximum length of 30 characters.

System and virtual tables cannot be extended. System tables are created in the ID range of 2.000.000.000 and above. For
more information about object ranges, see Object Ranges.

Typing the shortcut ttable will create the basic layout for a table object when using the AL Language extension in
Visual Studio Code.

table id MyTable
{
 DataClassification = ToBeClassified;

 fields
 {
 field(1;MyField; Integer)
 {
 DataClassification = ToBeClassified;

 }
 }

 keys
 {
 key(PK; MyField)
 {
 Clustered = true;
 }
 }

 var
 myInt: Integer;

 trigger OnInsert()
 begin

 end;

 trigger OnModify()
 begin

 end;

 trigger OnDelete()
 begin

 end;

 trigger OnRename()
 begin

 end;

}

Table example
This table stores address information and has four fields; Address, Locality, Town/City, and County.

table 50104 Address
{
 caption = 'Sample table';
 DataPerCompany = true;

 fields
 {
 field(1; Address; Text[50])
 {
 Description = 'Address retrieved by Service';
 }
 field(2; Locality; Text[30])
 {
 Description = 'Locality retrieved by Service';
 }
 field(3; "Town/City"; Text[30])
 {
 Description = 'Town/City retrieved by Service';
 }
 field(4; County; Text[30])
 {
 Description = 'County retrieved by Service';

 trigger OnValidate();
 begin
 ValidateCounty(County);
 end;

 }
 }
 keys
 {
 key(PrimaryKey; Address)
 {
 Clustered = TRUE;
 }
 }

 var
 Msg: TextConst = 'Hello from my method';

 trigger OnInsert();
 begin

 end;

 procedure MyMethod();
 begin
 Message(Msg);
 end;
}

See Also
AL Development Environment
Table Overview
Table Extension Object
Table Keys
Table Properties

Table Extension Object
3/31/2019 • 2 minutes to read

NOTE

IMPORTANT

IMPORTANT

Snippet support

Properties

Table extension syntax
tableextension Id MyExtension extends MyTargetTable
{
 fields
 {
 // Add changes to table fields here
 }

 var
 myInt: Integer;
}

The table extension object allows you to add additional fields or to change some properties on a table provided by
the Dynamics 365 Business Central service. In this way, you can add data to the same table and treat it as a single
table. For example, you may want to create a table extension for a retail winter sports store. In your solution you
want to have ShoeSize as an additional field on the customer table. Adding this as an extension allows you to write
code for the customer record and also include values for the ShoeSize .

Along with defining other fields, the table extension is where you write trigger code for your additional fields.

When developing a solution for Dynamics 365 Business Central , you will follow the code layout for a table
extension as shown in the example below.

Extension objects can have a name with a maximum length of 30 characters.

System and virtual tables cannot be extended. System tables are created in the ID range of 2.000.000.000 and above. For
more information about object ranges, see Object Ranges.

Extending tables from Dynamics 365 for Sales is currently not supported.

Typing the shortcut ttableext will create the basic layout for a table extension object when using the AL Language
extension in Visual Studio Code.

Using a table extension allows you to overwrite some properties on fields in the base table. For a list of Table
properties, see Table and Table Extension Properties.

Table extension example

tableextension 50115 RetailWinterSportsStore extends Customer
{
 fields
 {
 field(50116;ShoeSize;Integer)
 {
 trigger OnValidate();
 begin
 if (rec.ShoeSize < 0) then
 begin
 message('Shoe size not valid: %1', rec.ShoeSize);
 end;
 end;
 }
 }

 procedure HasShoeSize() : Boolean;
 begin
 exit(ShoeSize <> 0);
 end;

 trigger OnBeforeInsert();
 begin
 if not HasShoeSize then
 ShoeSize := Random(42);
 end;
}

Applies to

See Also

This table extension object extends the Customer table object by adding a field ShoeSize , with ID 50116 and the
data type Integer . It also contains a procedure to check if the ShoeSize field is filled in.

Tables

AL Development Environment
Table Overview
Table Object
Table and Table Extension Properties
Table Keys

Setting Relationships Between Tables
3/31/2019 • 2 minutes to read

Using Relationships

Table relationships and the TableRelation property

NOTE

<TableRelation> =
 <TableName>[.<FieldName>] [WHERE(<TableFilters>)] |
 IF (<Conditions>) <TableName>[.<FieldName>]
 [WHERE(<TableFilters>)] ELSE <TableRelation>
<Conditions> ::=
 <TableFilters>
<TableFilters> ::=
 [<TableFilter> {,<TableFilter>}]
<TableFilter> ::=
 <DstFieldName>=CONST(<FieldConst>) |
 <DstFieldName>=FILTER(<Filter>)

It is common to distinguish among the following types of relationships between tables in relational database
design:

One-to-many relationships

Many-to-many relationships

One-to-one relationships

The one-to-many relationship is the most common. If your database design model indicates that you need to set
up a many-to-many relationship, then your design is probably inefficient. You can typically break down a many-to-
many relationship into two one-to-many relationships. A one-to-one relationship is usually not optimal and can
often be avoided by combining the two tables.

If your database contains tables with related data, then you can define a relationship between them. You relate
tables by specifying one or more fields that contain the same value in related records. These matching fields often
have the same name in each table. You can use relationships to:

Validate data entries

Perform lookup functions in other tables

Propagate changes automatically from one table to other tables

Table relationships are defined in the AL Language development environment using the TableRelation property.
This property allows you to define both simple and advanced table relations.

You can define a relationship only to a field that is a member of the primary key group.

Advanced table relations are typically prefixed with a conditional statement and include filters. The following syntax
is for table relations.

For example:

table 50120 TableWithRelation
{
 fields
 {
 field(1; Id; Integer) { }
 field(2; Type; enum TypeEnum) { }
 field(3; Relation; Code[20])
 {
 TableRelation =
 if (Type = const (Customer)) Customer
 else if (Type = const (Item)) Item;
 }
 }
}

SYMBOL DESCRIPTION

TableName Specifies the related table.

FieldName Specifies a field in the related table.

Conditions Table relations can be conditional.

TableFilters A list of table filters.

TableFilter A constant expression or a filter expression.

DstFieldName Specifies the destination field name.

Filter A filter expression, such as 10|20..30.

Examples of table relationships

The following table describes each of the symbols.

For example, you have an Orders table that stores orders and a Salesperson table that stores the names of all
salespeople in your company. In the Orders table, you can include a Salesperson field that identifies the
salesperson. By setting up a relationship between these two tables, you can check whether the Salesperson field in
the Orders table contains a valid code.

For example, you have a Vendors table with all your vendors and a Currency Code table. You can create a
relationship between a Currency Code field in the Vendors table and the Currency Code table. This will allow
users to look up information about valid currency codes.

See Also

Furthermore, if you change one of the currency codes in the Currency Code table, then the change is
automatically propagated to all tables that refer to this code.

Overview of Tables

Viewing Table Data
6/17/2019 • 3 minutes to read

NOTE

IMPORTANT

Required permissions

View a table object directly from the client

https://businesscentral.dynamics.com/?table=18

https://businesscentral.dynamics.com/?company=CRONUS%20Inc.&table=18

For developers, administrators, and support personnel, it can be useful to inspect table data in the tenant database,
particularly when debugging or troubleshooting. To support this need, you can view table objects in the Web client.
This lets you to see the data in all rows and columns of a specific table, including any columns that are added by
table extensions.

In a production environment, administrators and support can view a table directly from the Web client.

In a development environment, in addition to viewing a table directly from the Web client, developers can
view a table automatically when they publish/debug an AL project from Visual Studio Code.

The table appears as read-only in the client, so modifications, insertions, and deletions cannot be made.

Data in the tables can be sensitive. Be sure to follow your organization's guidelines for handling such data.

Whether viewing the table directly from the client or from Visual Studio Code, your Dynamics 365 user account
must have the following permissions:

Read permission on the table that you want to view.
Execution permission (direct) on the System object 1350 Run table.

Any end-user that is assigned these permissions will be able to view that table in the browser.

For information about assigning permissions, see Manage Users and Permissions.

To view a table, you add the table=<TableID> parameter to the client's address (URL), replacing <TableID> with
the ID of the table that you want to view.

For example, if your URL starts with https://businesscentral.dynamics.com , then to view table 18 Customer in
your current company, you could use the following URL:

Or for a specific company, such as "CRONUS Inc.":

Note the use of & when table=<TableID> is not located directly after the domain name.

https://docs.microsoft.com/en-US/dynamics365/financials/ui-how-users-permissions

View a table object from an AL project in Visual Studio Code

{
 "version": "1.0.0",
 "configurations": [
 {
 "type": "al",
 "request": "launch",
 "name": "Publish to Microsoft cloud sandbox",
 "serverInstance": "dynamics",
 "startupObjectType": "Table"
 "startupObjectId": 18
 }
]
}

Constraints

ID NAME

2000000170 Configuration Package File

2000000170 Configuration Package File

2000000173 Data Sensitivity

2000000100 Debugger Breakpoint

2000000103 Debugger Watch

2000000130 Device

2000000114 Document Service

2000000190 Entitlement Set

2000000191 Entitlement

2000000180 MediaSet

2000000181 Media

2000000195 Membership Entitlement

2000000162 Nav App Capabilities

You can configure an AL project to view a table when you publish or debug the project (pressing F5 or Ctrl+F5).

In the launch.json file for the project, set the "startupObjectType" parameter to "table" and the
"startupObjectId" parameter to the ID of the table. For example:

For more information about the launch.json file, see Launch.json file.

You cannot view virtual tables or the following system tables:

2000000152 Nav App Data Archive

2000000161 Nav App Dependencies

2000000150 Nav App Object Metadata

2000000163 Nav App Object Prerequisites

2000000142 Nav App Resource

2000000151 Nav App TenantApp

2000000160 Nav App

2000000071 Object Metadata

2000000079 Object Tracking

2000000001 Object

2000000198 Page Documentation

2000000186 Profile Page Metadata

2000000082 Report Layout

2000000065 Send To Program

2000000112 Server Instance

2000000066 Style Sheet

2000000197 Token Cache

2000000081 Upgrade Blob Storage

2000000121 User Property

2000000076 Web Service

2000000194 Webhook Notification

2000000199 Webhook Subscription

ID NAME

See Also
Developing Extensions

Insert, Modify, ModifyAll, Delete, and DeleteAll
Methods
3/31/2019 • 4 minutes to read

Insert method

[Ok :=] Record.Insert([RunTrigger])

VARIABLE DATA TYPE SUBTYPE

Customer Record Customer

Customer.Init;
Customer."No." := '4711';
Customer.Name := 'Andrew Dixon';
Customer.Insert;

Modify method

[Ok :=] Record.Modify([RunTrigger])

The following methods maintain the database by adding, modifying, and removing records:

Insert
Modify
ModifyAll
Delete
DeleteAll

These methods are some of the most frequently used AL methods.

Some of these methods return an optional Boolean value that indicates whether the method succeeded. If you do
not handle the return value in your code, a run-time error occurs when a method returns false. If you handle the
return value by testing its value in an if statement, no error will occur, and you must take corrective action in the
code.

Insert inserts a record in a table. For more information, see Insert Method. Insert has the following syntax.

The following example inserts a new record, with the No. and Name fields specified in the assigned values, while
other fields will have their default values. If the No. field is the primary key of the Customer table, then the record
will be inserted in the Customer table unless the table already contains a record with the same primary key. In this
case you receive an error message because the return value is not tested.

This example requires that you create the following variable.

Modify modifies a record that already exists. For more information, see Modify Method. Modify has the following
syntax.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-insert-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-modify-method

VARIABLE DATA TYPE SUBTYPE

Customer Record Customer

Customer.Get('4711');
Customer.Name := 'Richard Roe';
Customer.Modify;

ModifyAll method

Record.ModifyAll(Field, NewValue [, RunTrigger])

VARIABLE DATA TYPE SUBTYPE

Customer Record Customer

Customer.SetRange("Salesperson Code",'PS','PS');
Customer.ModifyAll("Salesperson Code",'JR');

Delete method

[Ok :=] Record.Delete([RunTrigger])

Modify returns an optional Boolean value. It returns true if the record to be modified exists; otherwise, it returns
false.

The following example changes the name of customer 4711 to Richard Roe. This example requires that you create
the following variable.

ModifyAll performs a bulk update of records. For more information, see ModifyAll Method.

ModifyAll has the following syntax.

ModifyAll uses the current filters. This means that you can perform the update on a specified set of records in a
table. ModifyAll returns no value, nor does it cause an error if the set of records to be changed is empty.

In the following example, the SetRange statement selects the records where Salesperson Code is PS. The
ModifyAll statement changes the Salesperson Code of these records to JR. The example requires that you create
the following variable.

Delete deletes a record from the database. For more information, see Delete Method Delete has the following
syntax.

The record that you want to delete must be specified by using the values in the primary key fields before you call
this method. This means that Delete does take filters into consideration.

The following example shows how to use Delete to delete the record for customer number 4711. This example
requires that you create the following variable.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-modifyall-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-delete-method

VARIABLE DATA TYPE SUBTYPE

Customer Record Customer

Customer."No." := '4711';
Customer.Delete;

DeleteAll method

Record.DeleteAll([RunTrigger])

VARIABLE DATA TYPE SUBTYPE

Customer Record Customer

Customer.SetRange("Salesperson Code", 'PS', 'PS');
Customer.DeleteAll;

NOTE

See Also

Delete returns an optional Boolean value. It returns true if the record could be found; otherwise, it returns false.
Unless you test this value in your code, a run-time error occurs when Delete fails.

When you are developing your own applications, you should consider the following scenario:

1. Retrieve a record from the database.

2. Perform various checks to determine whether the record should be deleted.

3. If step 2 indicated that you should delete the record, then delete it.

This can cause problems in a multi-user environment. Another user can modify or delete the same record between
your performing steps 2 and 3. If the record is modified, then perhaps the new contents of the record would have
changed your decision to delete it. If it has been deleted by the other user, you can get a run-time error if you have
just verified that the record existed (in step 1). If the design of your application indicates that you can encounter this
problem, you should consider using the LockTable method. LockTable should be used sparingly because this
method degrades performance. For more information about the LockTable method, see LOCKTABLE Method.

DeleteAll deletes all the records that are specified by the filter settings. If no filters are applied, it deletes all the
records in the table. For more information, see DeleteAll Method DeleteAll has the following syntax.

The following example deletes all the records from the Customer table where the Salesperson Code is PS. This
example requires that you create the following variable.

When you use DeleteAll (true), a copy of the AL variable with its initial values is created. This means that when you use
DeleteAll(true) to run the OnDelete trigger, all the changes that were made to the variables in the method or codeunit that is
making the call cannot be seen in the OnDelete trigger. If you want to see the changes that you made to the variables, you
must use Delete(true) in a loop. There is no difference in performance between using DeleteAll(true) and using Delete(true) in
a loop.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-locktable-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-deleteall-method

AL Methods

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-al-method-reference

Get, Find, and Next Methods
3/31/2019 • 2 minutes to read

Get method

[Ok :=] Record.Get([Value],...)

CustomerRec.Get('4711');

if CustomerRec.GET('4711') then
.... // Do some processing.
else
.... // Do some error processing.

Find methods

Ok := Record.Find([Which])

The following methods are used to search for records:

Get
Find
Next

These methods are some of the most frequently used AL methods. When you search for records, you must know
the difference between Get and Find and to know how to use Find and Next in conjunction.

The Get Method (Record) retrieves one record based on values of the primary key fields.

Get has the following syntax.

For example, if the No. field is the primary key of the Customer table and if you have created a record variable
called CustomerRec that has a subtype of Customer, then you can use Get in the following way.

The result is that the record of customer 4711 is retrieved.

Get produces a run-time error if it fails and the return value is not checked by the code. In the previous example,
the actual code that you write should resemble the following.

Get searches for the records, regardless of the current filters, and it does not change any filters. Get always
searches through all the records in a table.

The Find Method (Record) locates a record in a table that is based on the values stored in the keys.

Find has the following syntax.

The Which parameter specifies how to perform the search. You can search for values that are greater than, less
than, or equal to the key value, or for the first or last record in a table.

The important differences between Get and Find are as follows:

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-get-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-find-method

SalesOrderLine.SetCurrentKey(Type,"No.");
SalesOrderLine.SetRange(Type,SalesOrderLine.Type::Item);
SalesOrderLine.SetRange("No.","No.");
IF SalesOrderLine.Find('-') THEN
ERROR(Text001,TableCaption,"No.",SalesOrderLine."Document Type");

Next method

Steps := Record.Next([Steps])

if (Rec.FindSet) then
repeat
 // process record
until (Rec.Next = 0);

See Also

Find uses the current filters.

Find can look for records where the key value is equal to, greater than, or smaller than the search string.

Find can find the first or the last record, depending on the sort order defined by the current key.

When you are developing applications in a relational database, there are often one-to-many relationships defined
between tables. An example could be the relationship between an Item table, which registers items, and a Sales
Line table, which registers the detailed lines from sales orders. One record in the Sales Line table can only be
related to one item, but each item can be related to any number of sales line records. You would not want an item
record to be deleted as long as there are still open sales orders that include the item. You can use Find to check for
open sales orders.

The OnDelete trigger of the Item table includes the following code that illustrates using Find.

If you want to find the first record in a table or set, then use the FindFirst Method (Record). If you want to find the
last record in a table or set, then use the FindLast Method (Record).

The Next Method (Record) is often used with FIND to step through the records of a table.

Next has the following syntax.

In the following example, Find is used to go to the first record of the table. Next is used to step through every
record, until there are no more. When there are no more records, Next returns 0 (zero).

AL Methods

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-findfirst-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-findlast-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-next-method

Retaining table data after publishing
3/31/2019 • 3 minutes to read

How data synchronization works

 {
 "type": "al",
 "request": "launch",
 "name": "your own server",
 "server": "http://localhost",
 "serverInstance": "Nav",
 "authentcation": "UserPassword",
 "startupobjectId": 22,
 "schemaUpdateMode": "Recreate"
 }

Recreate mode

ForceSync mode

NOTE

When developing an extension, you debug several times using the F5 shortcut key, and you also test your app by
adding some sample data every time. To simplify the extension development process in Dynamics 365 Business
Central, you can synchronize the sample data specified in the extension when you do subsequent publishing from
Visual Studio Code.

The data synchronization between each publish is controlled by the schemaUpdateMode setting, which is specified in
the launch.json file. This setting consists of three options; Synchronize, Recreate, and ForceSync.

The default value for schemaUpdateMode is set to the Synchronize mode, which means that every time you publish
an extension to the development server, the data you entered previously stays. If you do not want to synchronize
the sample data with each publish, you can change the schemaUpdateMode setting from Synchronize to, for
example, Recreate with the syntax shown in the example below.

When you set the schema update mode to Recreate, all the tables and table extensions are recreated at every
publish, which means that all the data in those tables are lost. This means that you will get empty records when
you publish your extension.

ForceSync is similar to the existing Synchronize schema update mode, but contains more freedom to make
schema changes while retaining data. To enable this mode, set schemaUpdateMode to "ForceSync" and then set the
"version" parameter in the app.json file to a fixed number. Data will be preserved in almost all cases with the

exception of changing the main table's primary key, in which case the data from the extension tables will be lost.
Field renames are allowed and supported in this mode, but the data can only be preserved if you maintain the
same ID for the field. If you change both the name and the ID of the field then the data will be lost.

This schema update mode is only meant for testing and development and should never be used in production.

In addition to the launch.json file setting, the ForceSync switch is available through the PowerShell cmdlet
Sync-NavApp –Mode ForceSync .

Things to be aware of

See Also

Synchronize is the default schema update mode for syncing the database and the extension. There are some key
factors to consider when you work with the Synchronize mode.

After publishing, the field data and the primary key information synchronizes with all the tables and the
table extensions. This means that you can do additions easily, but not deletions. Breaking changes are never
supported in synchronize mode. For example, you can add a field and sync that with the extension just by
pressing the F5 shortcut key, but if a field is removed then the table data cannot be synchronized. If you,
during development, for example, discover that you no longer want field X, and you then mark field X as
obsolete, you may still want to write an upgrade codeunit to move the data from the obsolete field to a new
field Y that you introduce. Later, the obsoleted field will not be available. But if you do not want the data,
you can choose to use the Recreate mode instead.

When you make changes to the data types, you can only enlarge the unit size, and not decrease the unit
size. For example, you can set a text type from Code[20] to Code[50] or Text[32] to Text[87] , and you
cannot set a text type from Code[50] to Code[30] or Text[87] to Text[40] .

Making major table structural changes could lead to compilation errors. For example, if you want to update
a primary key. In this case, the table data cannot be synchronized, and if you want to publish the extension,
you must change the schemaUpdateMode to Recreate .

AL Development Environment
Upgrading Extensions
Debugging

Classifying Data in Dynamics 365
4/24/2019 • 5 minutes to read

About Data Classification

IMPORTANT

What are the different data classifications?

DATA CLASSIFICATION DESCRIPTION EXAMPLE

CustomerContent Content directly provided/created by
admins and users.

EndUserIdentifiableInformation (EUII) Data that identifies or could be
used to identify the user of a Microsoft
service. EUII does not contain Customer
content.

AccountData Customer billing information and
payment instrument information,
including administrator contact
information, such as tenant
administrator’s name, address, or
phone number.

Dynamics 365 includes development features for tagging business data with specific classifications. Specifically,
this includes data that is stored in table fields of the database and telemetry data that is emitted from the
application.

Classifying data serves different purposes. It can make data easier and more efficient to locate and retrieve, and
also help to add another layer of protection and security for handling private and sensitive data. It can supplement
your process for making the application compliant with legislative and regulatory requirements for collecting,
storing, and using personal information.

You should consider the data classification features offered in Dynamics 365 as the first layer of classification - done by
developers (Dynamics 365 and partners) on customizations, add-ons, and extensions. The second layer is to classify the
sensitivity of the data itself. For more information, see Classifying Data Sensitivity. It is also important to consider end-users,
and how they handle data they provide and that is made available to them.

The following table describes the different classifications that you can apply to data:

Customer generated BLOB or
structured storage data
Customer-owned/provided
secrets (passwords, certificates,
encryption keys, storage keys)

User name or display name
(DOMAIN\UserName)
User principle name
(name@company.com)
User-specific IP address

Tenant administrator contact
information (for example, tenant
administrator’s name, address,
e-mail address, phone number)
Customer’s provisioning
information

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-classifying-data-sensitivity

EndUsePseudonymousIdentifiers (EUPI) An identifier created by Microsoft
tied to the user of a Microsoft service.
When EUPI is combined with other
information, such as a mapping table, it
identifies the end user. EUPI does not
contain information uploaded or
created by the customer (Customer
content or EUII)

OrganizationIdentifiableInformation (OII) Data that can be used to identify a
tenant, generally config or usage data.
This data is not linkable to a user and
does not contain Customer content.

SystemMetadata Data generated while running the
service or program that is not linkable
to a user or tenant.

DATA CLASSIFICATION DESCRIPTION EXAMPLE

Classifying data in tables and fields

IMPORTANT

Data classification on upgrade

User GUIDs, PUIDs, or SIDs
Session IDs

Tenant ID (non-GUID)
Domain name in e-mail address
(xxx@contoso.com) or other
tenant-specific domain
information

Database table names, database
column names, entity names

Table objects and field controls include the DataClassification property that you can use to tag data with one of
the classifications previously described.

Dynamics 365operates with some standard rules for classification:

When you add a new field to a table, the field is assigned an initial value of ToBeClassified.
FlowField and FlowFilter fields are automatically set to the SystemMetadata data classification. This cannot be
changed.
Existing tables and fields (except for FlowFields and FlowFilters) in an application that has been upgraded from
a Dynamics 365 version without the DataClassification property, will automatically be assigned the
CustomerContent classification.

Microsoft is providing this DataClassification property as a matter of convenience only. It is your responsibility to
classify the data appropriately and comply with any laws and regulations that are applicable to you. Microsoft disclaims all
responsibility towards any claims related to your classification of the data.

For more information about this property, see DataClassification Property.

When you upgrade an application from a Dynamics 365 version that does not contain the DataClassification

property, existing tables and fields (except for FlowFields and FlowFilters) will automatically be assigned the
CustomerContent classification. You can then access the DataClassification property on these tables and fields,
and change the classification as needed. FlowFields and FlowFilters will be assigned the SystemMetadata
classification automatically.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-dataclassification-property

IMPORTANT

Invoke-NAVCodeunit -Tenant <TenantID> -CompanyName <CompanyName> -CodeunitID 1750 -MethodNAme ‘SyncAllFields’
-ServerIntance <ServerInstance>

Bulk-classifying data

Import-Module WindowsPowerShellScripts\DataClassification\DataClassification.psm1

Set-FieldDataClassificationFromExcelFile -ExcelFilePath "C:\NAV\W1 Fields (Main).xlsx" -SheetName 'Field Data
Classification' -RTCFolder "<FilePath>" -DBName Navision_NAV2 -OutputFolder C:\Nav2\Classifications

Viewing current field classifications

Classifying data in custom telemetry trace events

See Also

After upgrade or import of objects, using fob files, that introduce new tables and/or fields, make sure to synchronize new
tables and/or fields to enable Data Sensitivity Classification by running SynchAllFields function in Data Classification Mgt.
Codeunit (Codeunit 1750). No action is needed when extensions are installed, as installation of extension automatically
triggers SynchAllFields function. See example below

Run the script below from Developer Shell:

The Field Data Classification report, which is described in the Viewing current field classifications section in this
topic, provides an overview of the data classifications for fields. The report also lets you assign data classifications
for more than one field. For example, this is useful if you are assigning classifications for the first time, or have
changed several fields and want to update their classifications. You can bulk-edit classifications only for fields in
CSIDE. The script does not update fields in extensions.

To bulk-edit classifications, export the report to Excel, update the classifications, and then save your changes. Then,
in Windows PowerShell, run the following commands to run the Import-Module script and set the classifications
on the fields.

To run the script from the default folder on the DVD, run:

To update the DataClassification property, run the following command. Replace <FilePath> with the full path to
the client files. For example, C:\Program Files\Microsoft Dynamics NAV\110\RoleTailored Client.

To view the data classification on all fields, you can do one of the following:

From Dynamics NAV Development Environment, in the Tools menu, select Show Field Data Classification.
From the client, search for and open the Field Data Classification page.
Create a page that has the virtual table Field (ID 2000000041) as its source, and open the page in the client.

Custom telemetry trace events are defined by calls to the SENDTRACETAG function/method in the application
code. The SENDTRACETAG function/method includes an optional parameter called DataClassification that you
can use to tag the telemetry trace event with a data classification.

For more information, see SendTraceTag and Instrumenting an Application for Telemetry.

Data Classification

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-classifying-data-sensitivity
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/session/session-sendtracetag-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-dataclassification-property

Classifying Data Sensitivity

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-classifying-data-sensitivity

Integrating Dynamics 365 for Sales for Extension
Development
3/31/2019 • 2 minutes to read

IMPORTANT

Associated table and field properties

PROPERTIES APPLIES TO DESCRIPTION

TableType Property Tables Specifies the table type. This enables the
table to integrate with the external
database. For example, CRM .

ExternalName Property Tables, Fields Specifies the name of the original table
in the external database when used as a
table property.

Specifies the field name of the
corresponding field specified in the
external table when used as a field
property.

ExternalAccess Property Fields Specifies the access to the underlying
CRM entity when CRM tables are
generated using the cmdlet.

ExternalType Property Fields Specifies the data type of the
corresponding field in Dynamics 365 for
Sales table.

OptionMembers Property Fields Sets the option values for a field, text
box or variable.

OptionOrdinalValues Property Fields Specifies the list of option values. You
can set this property, if the ExternalType
is set to Picklist.

Enabling the entity

Develop extensions and streamline the workflow by synchronizing the Sales data from Microsoft Dynamics 365 for
Sales with Dynamics 365 Business Central.

For developing extensions to integrate with sales data, you simply enable the tables used in Dynamics 365 for
Sales. The extension development process includes the following set of properties to enable field mapping. You can
enable the field mapping by using the following properties.

Extending tables from Dynamics 365 for Sales is currently not supported.

The following properties are used for integrating with Microsoft Dynamics 365 for Sales:

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-tabletype-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-externalname-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-externalaccess-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-externaltype-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-optionstring-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-optionordinalvalues-property

Snippet support

Example

table 50100 SalesIntegration
{
 TableType = CRM;
 ExternalName = 'Sales';

 fields
 {
 field(1; ActualSales; Integer)
 {
 ExternalName = 'ActualSale';
 ExternalAccess = Full;
 ExternalType = 'String';
 }

 field(2; SalesCategories; Option)
 {
 ExternalName='SalesCategory';
 ExternalAccess = Read;
 ExternalType = 'Picklist';
 OptionMembers = Manufacturing, Marketing, Support;
 OptionOrdinalValues = -1, 1, 2;
 }
 }
}

See Also

Typically in Dynamics 365 for Sales, entities handle the internal processes. In order to access to the underlying
CRM entity, you use the TableType property and select the value called CRM. This enables the table as an
integration table for integrating Dynamics 365 Business Central with Dynamics 365 for Sales. The table is mainly
based on an entity in Dynamics 365 for Sales, such as the Accounts entity.

Typing the shortcut ttable will create the basic layout for a table object when using the AL Language extension in
Visual Studio Code.

In the following example, the SalesIntegration table uses the TableType and ExternalName properties to link the
underlying CRM entity for mapping the fields from the Sales table with the specified fields.

Table Properties
TableType Property

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-tabletype-property

Pages Overview
3/31/2019 • 9 minutes to read

Page Metadata

page 50102 PageName
{
 PageType = List;
 SourceTable = TableName;
 Editable = true;
 ContextSensitiveHelpPage = 'feature-overview';
 ...
}

Types of Pages

PAGE TYPE DESCRIPTION

RoleCenter The Role Center page is the main page.

Card A Card page is used to view and edit one record or entity
from a table.

In Dynamics 365 Business Central, pages are the main way to display and organize data. Pages are the primary
object that a user will interact with and have a different behavior based on the type of page that you choose.
Pages are designed independently of the device they are to be rendered on, and in this way the same page can be
reused across phone, tablet, and web clients.

A page is defined in code as an object composed of controls, properties, actions, and triggers. You can also use
Designer in Dynamics 365 Business Central to create a page. For more information, see Using Designer.

Whether you are creating a new page, or extending an existing page, you will add a new .al file to your project
and describe the page object in code. The difference is basically that for a new page, you need to define the entire
page, whereas when modifying an existing page, you only add the extra functionality or modify the existing.

The structure of a page is hierarchical and breaks down in to three sections. The first block contains metadata for
the overall page. The metadata describes the page type and the source table it is showing data from. The next
section; the layout, describes the visual parts on the page. The final section details the actions that are published
on the page.

Furthermore, the page has properties. Properties work in the same way for pages as they do for other Dynamics
365 Business Central objects. For more information, see Page Properties.

For a new page object, you must at least specify the type of page; PageType and the data source; SourceTable of
the page. And you can also set other metadata at the beginning of the declaration of the page object.

Which page type you choose depends on the application task that you want to support, the content that you want
to display, and how you want to display it. The Role Center page is the main or home page and it helps the user
focus on the most important daily tasks and activities. Other types of pages, such as list pages or card pages are
typically linked from the home page for easy access. The following page types are available:

CardPart A Card Part page is used in a FactBox on another page to
view or edit additional fields associated with a selected entity
in the page.

List A List page displays content from a table in a list format.

ListPart Similar to a List page, a List Part page displays content from a
table in a list format. The difference is that you use the List
part page as another page in a FactBox or as a part of the
Role Center page.

ListPlus Similar to a List page, a List Plus page displays content from a
table in a list format. The difference is that the List Plus page
type can contain two lists in one page, and can be used as a
two-dimensional matrix.

Document A Document page usually consists of two separate pages
combined into one, with one page nested in the other. A
Document page is suitable for use when you want to display
data from two tables that are linked together.

WorkSheet You use a Worksheet page type for creating worksheet or
journal task pages.

ConfirmationDialog You use the ConfirmationDialog page to display messages or
prompt users with a confirmation before they continue with
the task that they are working on.

StandardDialog The StandardDialog is a simple page type that you use when
users only need to input data and do not need to perform
other actions from the page.

NavigatePage You use a Navigate page type to create a wizard that leads
the user through a sequence of steps for completing a task.

HeadlinePart You use a HeadlinePart page type to display a set of
changing headlines on a Role Center. For more information,
see Creating a Role Center Headline

API Pages of this type are used to generate web service
endpoints and cannot be shown in the user interface. This
page type should not be extended by creating a page
extension object. Instead, create a new API by adding a page
object.

PAGE TYPE DESCRIPTION

NOTE

Page Layout

For backwards compatibility we continue to support adding non-part pages as parts. We do, however, recommend that
you redesign your page to only use Card part or List part, as we may remove support in a future update.

The page layout of the page object determines what the page will look like and is specified in the layout section.
The layout contains one or more area sections that define a certain placement on the page.

AREA TYPE PLACEMENT ON THE PAGE

Content The content area displays the content of a RoleCenter or a
List page.

FactBoxes The factbox area is placed to the right-most side of a page.
Displays content related to an item on the main content
page.

RoleCenter The RoleCenter is the main page of the application and is
used for quick access to frequently used information and
tasks.

Using Keywords to place Actions and Controls

KEYWORDS SYNTAX APPLIES TO

addfirst addfirst(Anchor) Anchor: areas and groups

addlast addlast(Anchor) Anchor: areas and groups

addafter addafter(Anchor) Anchor: controls, actions and groups

addbefore addbefore(Anchor) Anchor: controls, actions and groups

movefirst movefirst(Anchor; Target1,
Target2)

Anchor: area, group
Target: list of actions or list of controls

movelast movelast(Anchor; Target1,
Target2)

Anchor: area, group
Target: list of actions or list of controls

You can choose between the following area categories:

Page Actions
All pages contain menu items and navigation controls called actions. In Dynamics 365 Business Central, actions
are displayed at the top of each page in the ribbon or in the navigation pane. The actions section of the page
describes what the user is able to do on a page and must be designed with the user's need for process support in
mind.

Actions can be displayed in the ribbon of all pages and grouped together under the following actions tabs:

Home
Actions
Navigate
Report

Creating actions can include adding activity buttons/cues to a page, configuring navigation items on a user role
center, or adding Reports to a page. To learn how you can enable users to quickly locate the actions they want to
use, see Actions.

You can use the following keywords in the layout section to place and move fields and groups on the page.
Similarly, in the actions section, you use these keywords to place actions in the ribbon.

moveafter moveafter(Anchor; Target1,
Target2)

Anchor: controls, actions and groups
Target: list of actions or list of controls

movebefore movebefore(Anchor; Target1,
Target2)

Anchor: controls, actions and groups
Target: list of actions or list of controls

modify modify(Target) Target: controls, actions and groups

KEYWORDS SYNTAX APPLIES TO

Example
To modify the existing fields and groups on a page, you use the modify keyword. See the code snippet below for
addlast , modify and action syntax. In the following example, action creates a new group in the ribbon and

places it last in the Creation group.

pageextension 70000020 CustomerCardExtension extends "Customer Card"
{
 layout
 {
 // Adding a new control field 'ShoeSize' in the group 'General'
 addlast(General)
 {
 field("Shoe Size"; ShoeSize)
 {
 Caption = 'Shoe size';

 trigger OnValidate();
 begin
 if ShoeSize < 10 then
 Error('Feet too small');
 end;
 }
 }

 // Modifying the caption of the field 'Address 2'
 modify("Address 2")
 {
 Caption = 'New Address 2';
 }

 // Moving the two fields 'CreditLimit' and 'CalcCreditLimitLCYExpendedPct'
 // to be the first ones in the 'Balance' group.
 movefirst(Balance; CreditLimit, CalcCreditLimitLCYExpendedPct)
 }
 actions
 {
 // Adding a new action group 'MyNewActionGroup' in the 'Creation' area
 addlast(Creation)
 {
 group(MyNewActionGroup)
 {
 action(MyNewAction)
 {
 Caption = 'My New Action';

 trigger OnAction();
 begin
 Message('My message');
 end;
 }
 }
 }
 }
}

tableextension 70000020 CustomerTableExtension extends Customer
{
 fields
 {
 // Adding a new table field in the 'Customer' table
 field(50100; ShoeSize; Integer) { }
 }
}

Adding Help to the page objects

Context-sensitive Help

The Business Central user assistance model expects your solution to include tooltips and links to context-
sensitive Help. For more information, see User Assistance Model.

Tooltips

Instructional text

Example

page 50101 "Reward Card"
{
 PageType = Card;
 SourceTable = Reward;
 ContextSensitiveHelpPage = 'sales-rewards';

 layout
 {
 area(content)
 {
 group(Reward)
 {
 InstructionalText = 'Fill in the fields so that you can reward customers with discounts.';
 field("Reward Id"; "Reward ID")
 {
 ApplicationArea = All;
 ToolTip = 'Specifies the unique ID of the reward.';
 }

 field(Description; Description)
 {
 ApplicationArea = All;
 ToolTip = 'Specifies what this type of reward is used for.';
 }

 field("Discount Percentage"; "Discount Percentage")
 {
 ApplicationArea = All;
 ToolTip = 'Specifies the impact of the reward on the customer''s price.';
 }
 }
 }
 }
}

To apply context-sensitive Help to your app, you specify a URL to your Help library in the app.json file, and you
then set the relevant target Help files as property values for each of your page objects and page extension
objects. Between them, these two settings then give users access to context-sensitive Help for the features in your
app at runtime. For more information, see Configure Context-Sensitive Help.

In combination with descriptive captions and instructional text, tooltips are our current implementation of
embedded user assistance, which is an important principle in today’s world of software design. The tooltips are
there to help users unblock themselves by providing an answer to the most likely questions the users might have,
such as “What data can I input here?” or “What is the data used for?”.

The base application has set the Tooltip property for all controls on (almost) all page objects. Most system actions
also include tooltips so that users get a consistent experience. Your extensions are expected to also include
tooltips for the same reason. For more information, see ToolTip Property.

The base application has applied instructional text to setup guides and certain other types of page objects. Your
extensions are expected to also include instructional text to setup guides for the same reason. For more
information, see InstructionalText Property.

The following example shows how you can apply user assistance and link to Help in a page object:

In this example, the app.json file has specified a link to where the sales-rewards target file is published, such as
"contextSensitiveHelpUrl": "https://mysite.com/documentation" .

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-tooltip-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-instructionaltext-property

Best practices for designing pages

See Also

We recommend that you simplify the user experience by reducing what users see by default. You can promote
the information that the users most frequently need to see and hide the less important information. For example:

Place common tasks in the ribbon

Organize information pages under FastTabs and, by default, hide the FastTabs that are infrequently visited.

Use one to three FactBoxes on a page to provide supplementary information and a place for adding notes

Add a target Help file for context-sensitive Help for the feature that the page object supports

Page Properties Overview
Actions Overview
Using Designer
Adding a Factbox to a Page
Designing Role Centers
Configure Context-Sensitive Help

Page Object
3/31/2019 • 2 minutes to read

NOTE

Snippet support

Card page syntax

Pages are the main way to display and organize visual data in Dynamics 365 Business Central. They are the
primary object that a user will interact with and have a different behavior based on the type that you choose. Pages
are designed independently of the device they are to be rendered on, and in this way the same page can be reused
across phone, tablet, and web clients.

The structure of a page is hierarchical and breaks down in to three sections. The first block contains metadata for
the overall page; the type of the page and the source table it is showing data from. The next section; the layout,
describes the visual parts on the page. The final section details the actions that are published on the page.

When developing a solution for Dynamics 365 Business Central, you will follow the code layout for a page as
shown in the page example below, but for more details on the individual controls and properties that are available,
see Page Property Overview.

Extension objects can have a name with a maximum length of 30 characters.

Typing the shortcut tpage will create the basic layout for a page object when using the AL Language extension in
Visual Studio Code.

page Id MyPage
{
 PageType = Card;
 ApplicationArea = All;
 UsageCategory = Administration;
 SourceTable = TableName;
 ContextSensitiveHelpPage = 'my-feature';

 layout
 {
 area(Content)
 {
 group(GroupName)
 {
 field(Name; NameSource)
 {
 ApplicationArea = All;

 }
 }
 }
 }

 actions
 {
 area(Processing)
 {
 action(ActionName)
 {
 ApplicationArea = All;

 trigger OnAction()
 begin

 end;
 }
 }
 }

 var
 myInt: Integer;
}

List page syntax

page Id PageName
{
 PageType = List;
 ApplicationArea = All;
 SourceTable = TableName;

 layout
 {
 area(Content)
 {
 repeater(Group)
 {
 field(Name; NameSource)
 {
 ApplicationArea = All;

 }
 }
 }
 area(Factboxes)
 {

 }
 }

 actions
 {
 area(Processing)
 {
 action(ActionName)
 {
 ApplicationArea = All;

 trigger OnAction();
 begin

 end;
 }
 }
 }
}

Page example

page 50101 SimpleCustomerCard
{
 PageType = Card;
 SourceTable = Customer;
 ContextSensitiveHelpPage = 'my-feature';

 layout
 {
 area(content)
 {
 group(General)
 {
 field("No."; "No.")
 {
 ApplicationArea = All;
 CaptionML = ENU = 'Hello';

 trigger OnValidate()
 begin
 if "No." < '' then
 Message('Number too small')
 end;
 }

 field(Name; Name)
 {
 ApplicationArea = All;
 }
 field(Address; Address)
 {
 ApplicationArea = All;
 }
 }
 }
 }
 actions
 {
 area(Navigation)
 {
 action(NewAction)
 {
 ApplicationArea = All;
 RunObject = codeunit "Document Totals";
 }
 }
 }
}

See Also
AL Development Environment
Adding Help Links from Pages, Reports, and XMLports
Page Extension Object
Page and Page Extension Properties Overview
Page Properties
Developing Extensions
Configure Context-Sensitive Help

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-page-properties

Page Extension Object
3/31/2019 • 2 minutes to read

NOTE

IMPORTANT

Snippet support

Page extension syntax
pageextension Id MyExtension extends MyTargetPage
{
 layout
 {
 // Add changes to page layout here
 }

 actions
 {
 // Add changes to page actions here
 }

 var
 myInt: Integer;
}

Page extension examples

The page extension object extends a Dynamics 365 Business Central page object and adds or overrides the
functionality.

The structure of a page is hierarchical and breaks down into three sections. The first block contains metadata for the
overall page; the type of the page and the source table it is showing data from. The next section; the layout,
describes the visual parts on the page. The final section details the actions that are published on the page.

For more information about the Page and Page Extension objects, see Pages Overview.

Extension objects can have a name with a maximum length of 30 characters.

The API page type should not be extended by creating a page extension object. Instead, create a new API by adding a page
object.

Typing the shortcut tpageext will create the basic layout for a table object when using the AL Language extension
in Visual Studio Code.

The following page extension object extends the Customer Card page object by adding a field control ShoeSize to
the General group on the page. The field control is added as the last control in the group using the addlast

method. In the actions area, you can see what the syntax looks like for actions that execute triggers and actions that
run objects.

pageextension 50110 CustomerCardExtension extends "Customer Card"
{
 layout
 {
 addlast(General)
 {
 field("Shoe Size"; ShoeSize)
 {
 ApplicationArea = All;
 Caption = 'ShoeSize';

 trigger OnValidate();
 begin
 if ShoeSize < 10 then
 Error('Feet too small');
 end;
 }
 }

 modify("Address 2")
 {
 Caption = 'New Address 2';
 }
 }

 actions
 {
 addlast(Creation)
 {
 group(MyActionGroup)
 {
 Action(MyAction1)
 {
 ApplicationArea = All;
 Caption = 'Hello!';

 trigger OnAction();
 begin
 Message('My message');
 end;
 }

 Action(MyAction2)
 {
 ApplicationArea = All;
 RunObject = codeunit "Activities Mgt.";
 }
 }
 }
 }

 var
 Msg: TextConst = 'Hello from my method';

 trigger OnOpenPage();
 begin
 Message(Msg);
 end;
}

You can reference Report and XMLPort objects and use these objects in the RunObject property, as well as, declare
variables of the types Report and XMLPort and call AL methods on them. This page extension object extends the
Customer List page object by adding two actions; the first action calls the Customer - List report, the second action
calls the Export Contact xmlport.

pageextension 50114 AddCustomerReport extends "Customer List"
{
 actions
 {
 AddLast("&Customer")
 {
 action("Customer List Report")
 {
 trigger OnAction();
 var
 rep : Report "Customer - List";
 begin
 rep.Run;
 end;
 }

 action("Export Contact List")
 {
 trigger OnAction();
 var
 xml : XmlPort "Export Contact";
 begin
 xml.Run;
 end;
 }
 }
 }
}

Applies To

See Also

Pages

Page Object
Page and Page Extension Properties
Developing Extensions
AL Development Environment

Page Customization Object
3/31/2019 • 2 minutes to read

NOTE

Snippet support

Page customization syntax
pagecustomization MyCustomization customizes MyTargetPage
{
 layout
 {
 // Add changes to page layout here
 }

 actions
 {
 // Add changes to page actions here
 }

 //Variables, procedures and triggers are not allowed on Page Customizations
}

Page customization example

pagecustomization MyCustomization customizes "Customer List"
{
 actions
 {
 moveafter("Blanket Orders"; "Aged Accounts Receivable")

 modify(NewSalesBlanketOrder)
 {
 Visible = false;
 }

 }
}

The page customization object in Dynamics 365 Business Central allows you to add changes to the page layout and
actions. The page customization object has more restrictions than the page extension object; when you define a new
page customization object, you cannot add variables, procedures, or triggers.

Extension objects can have a name with a maximum length of 30 characters.

Typing the shortcut tpagecust will create the basic layout for a page customization object when using the AL
Language extension in Visual Studio Code.

The following page customization example MyCustomization is intialized to perform changes to Customer List. By
using the moveafter method, Blanket Orders is moved next to the Aged Accounts Receivable action item. And the
modify method is used to hide the NewSalesBlanketOrder action item.

See Also
Developing Extensions
AL Development Environment
Page Object
Page Extension Object
Page Extension Properties

API Page Type
6/17/2019 • 2 minutes to read

Naming conventions

Example of the API page type

Pages of the type API are used to create versioned, webhook-supported, OData v4 enabled REST web services.
This type of page cannot be displayed in the user interface, but is intended for building reliable integration services.
When creating this page type, you must specify a number of properties that provide information for the web
service endpoint. Use the snippet tpage - Page of type API to get the right template and the list of these
properties automatically filled in. This page type cannot be extended by creating a page extension object. Instead,
you must create a new API by adding a page object.

For the API page type, the following naming conventions exist:

camelCase for naming attributes, tables, as well as APIPublisher, APIGroup, EntityName, and EntitySetName.
Alphanumeric characters allowed (A-Z+a-z+0-9) in above elements.
APIVersion follows the pattern vX.Y or beta.

At design time, the compiler will show warnings on casing violations and errors on naming violations. Once an API
page is deployed, the corresponding $metadata is exposed on the endpoint of the page.

The following page example publishes an API available at: ../contoso/app1/v2.0/companies({id})/customers . The
APIVersion can be specified as one version, or a list of versions, if the API is supported through multiple versions.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-connect-apps-tips

page 50120 MyCustomerApi
{
 PageType = API;
 Caption = 'My Customer API';
 APIPublisher = 'contoso';
 APIGroup = 'app1';
 APIVersion = 'v2.0';
 EntityName = 'customer';
 EntitySetName = 'customers';
 SourceTable = Customer;
 DelayedInsert = true;

 layout
 {
 area(Content)
 {
 repeater(GroupName)
 {
 field(id; Id)
 {
 Caption = 'ID';
 }
 field(name; Name)
 {
 Caption = 'Name';
 }
 }
 }
 }
}

See Also
AL Development Environment
API Query Type
Page Extension Object
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-api-querytype

Designing Role Centers
5/3/2019 • 8 minutes to read

About the Role Center

Customizing a Role Center from the client

Role Center structure

The strength of Dynamics 365 is its role-tailored experience that helps users focus on the work that is important
to them. The Role Center is an integral part of the role-tailored experience. And as a developer, role-tailoring
should be the foundation for your Role Center design.

The Role Center is the user's entry point and home page for Dynamics 365. You can develop several different Role
Centers, where each Role Center is customized to the profile of the intended users. For example, you could have
Role Centers that target the different levels within an organization, such business owners, department leads, and
information workers.

Role Centers are based on a user-centric design model. You should design a Role Center to give users quick access
to the information that is most important to them in their daily work - displaying information that is pertinent to
their role in the company and enabling them to easily navigate to relavant pages for viewing data and performing
tasks.

In the client, users who work across multiple roles can easily switch Role Centers to shift their focus to different
tasks. Users can also personalize their Role Centers by rearranging or hiding content as they like. For more
information, see Personalizing Your Workspace.

As a developer or administrator, you can use Designer to customize a Role Center the same way that individual
users personalize their own workspaces. The difference is that changes you make are applied to all users assigned
to the Role Center. For more information, see Using Designer.

A Role Center is defined by page that has the PageType property set to RoleCenter . The Role Center page is
divided into two main areas: navigation/actions area and content area. The following figure illustrates the general
layout and elements of a Role Center page.

https://docs.microsoft.com/en-us/dynamics365/business-central/ui-personalization-user
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-pagetype-property

Navigation and Actions area

AREA DESCRIPTION USAGE GUIDELINES

1 Navigation menus The top-level navigation
consists of one or more root
items that expand to display
a sub-menu of links to other
pages. The pages targeted
by the sub-menus will open
in the content area of the
Role Center.

You define this area with an
area(sections) control in

the page code.

The top-level navigation
should provide access to
relevant entity lists for the
role's areas of business. For
example, typical root items
for a business manager
could be finance, sales, and
purchasing. You should
place the root items in order
of importance, starting from
the left.

The navigation and actions area appears at the top of the Role Center page, and provides links to other objects,
such as pages, reports, and codeunits. You define the navigation area by adding actions to the Role Center page
code, under the actions control in the page code. The navigation and actions area is subdivided into smaller
areas by using different area() controls as described in the following table:

2 Navigation bar The second-level navigation
displays a flat list of links to
other pages. The pages
targeted by the links will
open in the content area of
the Role Center.

You define this area with an
area(embedding) control

in the page code.

You should use these items
to link to users’ most useful
entity lists in their business
process. For example, with a
business manager, these
could be links to customers,
sales orders, and bank
accounts. You should place
items in the order that
reflects the business process
sequence. Try to limit the
number of second-level
items, and consider placing
items in the top-level
navigation instead, if the
number gets too large.

3 Actions The actions area provides
links to pages, reports, and
codeunits. The links can be
displayed on the root-level
or grouped in a sub-menu.
The objects targeted by
these links will open in a
separate window in front of
the Role Center page.

You can define the actions
by using the three different
area() controls that are

described below:

The action area is designed
for running the most
important or most often
used tasks and operations
required by users. Actions
will typically target card type
pages that enable users to
create new entities, such as
customers, invoices, and
sales orders, or run reports.
Place the most important
action at the root-level, and
group closely related actions
in a sub-menu.

area(creation) - Actions
in this control will appear
first in the action area, and
will display with a plus (+)
icon.

Use this control to target
pages that enable the user
to create new entities.

area(processing) -
Actions in this control will
appear after the
area(creation) items.

You can group actions in
sub-menus by using a
group control.

Use this control to target
pages that are associated
with the work flow for
processing documents, such
as payments or sales orders.
Use the group control to
organize similar actions
under a common parent.

area(reporting) - Actions
in this control will appear
last in the action area. They
display with a default report
icon.

Use this control to target
report objects.

AREA DESCRIPTION USAGE GUIDELINES

Behavioral points of interest

For more information about navigation, see Adding to Navigation.

The order of the area() controls in the page code is not important. However, the order of the individual
actions and groups is important because they will appear in the order in which they appear in page code.

Content area

ELEMENT DESCRIPTION MORE INFORMATION

4 Headline Displays a series of
automatically
changing headlines
that provide users
with up-to-date
information and
insight into the
business and daily
work. This is created
by a HeadlinePart

page type.

Creating Role Center
Headlines

5 Wide data cues A set of cues for
displaying large
numbers, like
monetary values. This
is created by using a
cuegroup control on

a CardPart page
type, where the
Layout property is set
to wide .

Wide Cues

6 Data cues Provide a visual
representation of
aggregated business
data, such as the
number of open sales
invoices or the total
sales for the month.
These are created by
using a cuegroup

control on a
CardPart page

type.

Creating Cues

In page code, if the first part in the content area is a Headline part, then in the client, the actions area will be
automatically positioned either to the right of the Headline part or after the Headline part, depending on the
browser window size. If the first part is not a Headline, the actions area will appear directly after the navigation
area, and extend the width of the workspace.

The content area consists of one or more parts that display content from other pages. Unlike the navigation and
actions area that is completely defined in the Role Center page code, the content area consists of self-contained,
independent page part objects that can be used across Role Centers and in other pages. You define the content
area by adding a layout control in the page code, and then a part control for each individual part to display.

The following table describes some of the most common parts for Role Centers, as illustrated in the previous
figure.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-layout-property

7 Action cues Tiles that link to tasks
or operations, like
opening another
page, starting a
video, targeting
another URL, or
running code. These
are created by using a
cuegroup control on

a CardPart page
type

Action Tiles

8 Chart A graphical and
interactive
representation of
your business data
that can be sourced
by a custom business
chart control add-in
or an embedded
Power BI report.

9 CardPart or ListPart
page

Displays data fields in
a form or tabular
layout.

Page Object

10 Control add-in Displays custom
content by using
HTML-based control
add-in.

Control Add-in
Object

ELEMENT DESCRIPTION MORE INFORMATION

Behavioral points of interest

Development tips for overall page design

Design for all display targets

In general, the parts will appear in the client according to the order in which they are defined in the Role Center
page code and will automatically rearrange horizontally and vertically to fill the available workspace.
However, in the Web client, page parts that contain cues are automatically grouped under a common
Activities section, no matter where they are placed in the code. All other page parts are grouped under the
Business Assistance section. Within Activities and Business Assistance sections, the parts will arrange
according to the order in which they are defined in the page code.

Do not apply grouping to parts in the content area because this prevents parts from flowing to fill the available
space. This gives the best experience to users with different screen resolutions or those on mobile devices.
To achieve the best readability and discoverability, place Headlines first, followed by cues, and then the
remaining parts.
You cannot add custom logic directly to a Role Center page code. Code is limited to defining navigation,
actions, and parts. All other code is ignored.
Role Centers can be highly specialized, in the fact that all navigation, actions, and content is optional. For
example, you could have a single part that fills the entire workspace.

Role Center pages are also the primary entry point on mobile devices. Mobile devices will display the same
content as the Web client, but is presented in a different way to suit how users hold and interact with their

Using the Role Center in the client

See Also

mobile device.
You can preview how your Role Center will look on mobile devices directly in Designer.
Some limitations on mobile devices include the following:

On tablets, there is a limit on the number of cues that can be displayed.
On phones, there is a limit on the number of parts in the content area that can be displayed.
Role Center pages cannot be displayed when they are embedded in Outlook or SharePoint.

To use or test the new Role Center in the client, you must first associate the Role Center page with a profile.
Profiles define user roles and each profile is associated with a single Role Center page. Create a new profile object
that references your page. Then, go to My Settings and select the new profile.

AL Development Environment
Page Extension Object
Actions Overview
Adding Pages and Reports to Tell Me
Personalizing Your Workspace
Using Designer

https://docs.microsoft.com/en-us/dynamics365/business-central/ui-personalization-user

Simple Role Center Code Example
5/21/2019 • 2 minutes to read

page 50125 MyRoleCenter
{
 PageType = RoleCenter;
 Caption = 'My Role Center';

 layout
 {
 area(RoleCenter)
 {
 group(Group1)
 {
 part(Part1; RoleCenterHeadline)
 {
 ApplicationArea = All;
 }

 part(Part2; SalesInvoiceCuePage)
 {
 Caption = 'Invoices';
 }
 }
 }
 }

 actions
 {
 area(Sections)
 {
 group(PostedInvoices)
 {

The AL code in this article creates a simple Role Center customized for users assigned to a new profile.

For a more detailed explanation of Role Centers, see Designing Role Centers.

This example uses the RoleCenterHeadline page code example to display the headline and the
SalesInvoiceCuePage page and the following code example for the Cue and Action tile.

 Caption = 'Posted Invoices';
 Image = RegisteredDocs;
 action(PostedServiceInvoices)
 {
 Caption = 'Posted Service Invoices';
 RunObject = Page "Posted Service Invoices";
 ApplicationArea = All;
 }

 action(PostedSalesInvoices)
 {
 Caption = 'Posted Sales Invoices';
 RunObject = Page "Posted Sales Invoices";
 ApplicationArea = All;
 }
 }
 }

 area(Embedding)
 {
 action(Sales)
 {
 Caption = 'Sales lists';
 RunObject = Page "Sales list";
 ApplicationArea = All;
 }

 action(Services)
 {
 Caption = 'Service lists';
 RunObject = Page "Service list";
 ApplicationArea = All;

 }

 }

 area(Processing)
 {
 action(SeeSalesInvoices)
 {
 Caption = 'See Sales Invoices';
 RunObject = Page "Posted Sales Invoices";
 }

 }

 area(Creation)
 {
 action(AddSalesInvoice)
 {
 Caption = 'Add Sales Invoice';
 Image = NewInvoice;
 RunObject = Page "Sales Invoice";
 RunPageMode = Create;
 }
 }

 area(Reporting)
 {
 action(SalesInvoicesReport)
 {
 Caption = 'Sales Invoices Report';
 Image = "Report";
 RunObject = Report "Sales - Invoice";
 }
 }
 }
}

See Also
AL Development Environment
Page Extension Object
Actions Overview
Adding Pages and Reports to Tell Me
Personalizing Your Workspace
Using Designer

https://docs.microsoft.com/en-us/dynamics365/business-central/ui-personalization-user

Adding Menus to the Navigation and Actions Area
5/3/2019 • 3 minutes to read

Adding to the top-level navigation

Example

pageextension 50120 ExtendNavigationArea extends "Order Processor Role Center"
{

 actions
 {
 addlast(Sections)
 {
 group("My Customers")
 {
 action("Customer Bank Account List")
 {
 RunObject = page "Customer Bank Account List";
 ApplicationArea = All;
 }
 action("Customer Ledger Entries")
 {
 RunObject = page "Customer Ledger Entries";
 ApplicationArea = All;
 }
 }
 }
 }
}

Adding to the secondary-level navigation

The navigation area appears at the top of the Dynamics 365 Business Central window, and contains multiple
sections that enable users to quickly navigate and perform actions in Dynamics 365 Business Central. A single
section in the navigation area can be defined as a menu group that contains multiple sub-menu items.

The top-level navigation area displays the Home menu items by default; the other menu items can be accessed by
clicking on the small drop-down arrow placed next to the selected menu category in Dynamics 365 Business
Central. For users, the menu groups that display in the navigation area could change depending on the Role
Center page that they access.

The example below explains how to add the menu group called My Customers to the top-level navigation area. The
sub-menu items for My Customers contain the Customer Bank Account List and Customer Ledger Entries actions,
each opening the corresponding page object. In this example, the My Customers menu will appear in the
navigation area for the Sales Order Processor Role Center.

You can also enable pages and reports to appear in the Dynamics 365 Business Central search for a quick
navigational support. For more information, see Adding Pages and Reports to Tell Me.

The second-level navigation offers a flat list of links to other pages. These should be the most relevant pages
needed for a user's business process. We recommend to have only the most important items on this level and to
place the others in the top-level navigation instead.

Example

...
addlast(Embedding)
{
 action("Sales Cycles")
 {
 RunObject = page "Sales Cycles";
 ApplicationArea = All;
 }
}

Adding to actions

Example

...
addlast(Creation)
{
 action("Sales Journal")
 {
 ApplicationArea = All;
 RunObject = page "Sales Journal";
 }
}

Example

The following code adds a new link to the secondary-level navigation by defining this area with an
area(Embedding) control in the page code. The object targeted in this case is the Sales Cycles page and it will

appear as the last one.

The actions area displays the most important or most often used tasks and operations required by users. It
contains links to pages, reports, and codeunits. The links are placed on the root-level, and they can be grouped in a
submenu.

You can define the actions by using three different area() controls. The first action area that appears at the top of
the Role Center page is area(Creation) . The following example adds the item last, and it allows opening the
Sales Journal page.

The actions in the area(Processing) control appears after the area(Creation) items. The example below shows
how you can use the group control to organize similar actions under a common parent. The created group is
placed at the end of this action area, and it targets pages needed for processing sales documents.

...
addlast(Processing)
{
 group(Documents)
 {
 action("Sales Document Entity")
 {
 ApplicationArea = All;
 RunObject = page "Sales Document Entity";
 }
 action("Sales Document Line Entity")
 {
 ApplicationArea = All;
 RunObject = page "Sales Document Line Entity";
 }
 }
}

Example

...
addlast(Reporting)
{
 action("Customer Statistics")
 {
 ApplicationArea = All;
 RunObject = report "Customer Sales Statistics";
 }
}

See Also

The actions in the area(Reporting) control will appear last in the action area and they display with a default report
icon. This control's purpose is to target report objects and the following example opens the
Customer Sales Statistics report.

AL Development Environment
Page Extension Object
Actions Overview
Adding Pages and Reports to Tell Me

Creating a Role Center Headline
3/31/2019 • 5 minutes to read

IMPORTANT

Design concept
In development

You can set up a Role Center to display a series of headlines, where headlines appear one at a time for a
predefined period of time before displaying the next.

The headlines can provide users with up-to-date information and insight into the business and daily work. Typical
categories of headlines might include:

My performance
My workday
Organizational health
Productivity tips
Cross-tenant insights (performance relative to peers)
Getting started information

Headlines will only appear in Web client; they will not be shown on other client types.

In short, the Headline is basically a page that contains one or more fields. The page must be the HeadlinePart
type page. Each field defines an individual headline to be displayed. The source for a field can be an expression or
a field in an underlying table.

The HeadlinePart page is designed for Role Centers, that is, pages that have the type RoleCenter. If you
use a HeadlinePart page on another page type, the part will not render in the client.

Using the OnDrillDown trigger, headlines can be made interactive, meaning that users can select the
headline to dig deeper into numbers or values that are shown in the headline or link to another page or
URL.

You can dynamically toggle visibility of a specific headline, for example based its relevancy, by setting the

In the client

Creating a HeadlinePart page

Visible property on the field.

There are only a few field properties that apply to fields that are used on a HeadlinePart type page,
including Expression, Visible, ApplicationArea, Drilldown, and DrillDownPageID. All other properties are
ignored.

The Role Center will start by displaying the first visible headline that is defined on the HeadlinePart page. The
headline will appear for 5 seconds, then the next headline will appear for 5 seconds, and so on. When all the
headlines have been displayed, it will cycle back to the first headline, and continue from there.

If a headline is interactive, users can select the headline to open the target defined in the headline.

Users can pause on a headline by pointing to it.

Users can manually switch among headlines by selecting a corresponding dot that is displayed under the
headlines.

Users can personalize their Role Center to show or hide the Headline part as they like.

1. Implement the logic that resolves field expressions for the headlines that you will use on the page.

You can apply more flexible and complex patterns, such as having data tables drive the text, drill-down and
relevance engine for headlines.

2. Create a page that has the PageType property set to HeadlinePart .

3. For each headline, add a field, and set the Expression property. The order of the fields, determines the order
in which they appear.

The following example shows the AL code for a simple HeadlinePart page that consists of four fields that
display static text.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-pagetype-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-sourceexpr-property

Constructing Headlines with the Expression property

'<qualifier>Title</qualifier><payload>This is the <emphasize>Headline</emphasize>.</payload>'

TAG DESCRIPTION

<qualifier></qualifier> Specifies the title that appears above the headline. If you omit
this tag, the text HEADLINE will be used by default.

<payload></payload> Specifies the actual headline text.

<emphasize></emphasize> Applies the style to the text.

text001: TextConst ENU='<qualifier>The first headline</qualifier><payload>This is the <emphasize>Headline
1</emphasize>.</payload>';

page 50100 RoleCenterHeadline
{
PageType = HeadLinePart;

layout
{
 area(content)
 {
 field(Headline1; text001)
 {

 }
 field(Headline2; text002)
 {

 }
 field(Headline3; text003)
 {

 }
 field(Headline4; text004)
 {

 }
 }
}

var
 text001: TextConst ENU='This is headline 1';
 text002: TextConst ENU='This is headline 2';
 text003: TextConst ENU='This is headline 3';
 text004: TextConst ENU='This is headline 4';
}

4. You can now add the HeadlinePart page to the RoleCenter page.

The Expression property supports the following syntax that enables you to specify a title for the headline, the
headline text itself, and emphasize a string of text in the headline:

The Expression property must evaluate to the correct syntax. For example, looking back at the previous example,
the text constant text001 could be:

Making headlines interactive

field(Headline1; text001)
{
 trigger OnDrillDown()
 var
 DrillDownURL: TextConst ENU='https://go.microsoft.com/fwlink/?linkid=867580';
 begin
 Hyperlink(DrillDownURL)
 end;
}

Changing the visibility of headlines

Static visibility

{
 field(Headline1; text001)
 {

 }
 field(Headline2; text002)
 {

 }
 field(Headline3; text003)
 {
 Visible=false;
 }
 field(Headline4; text004)
 {

 }
}

You can use the OnDrillDown trigger of a headline field to link the headline to more details or relevant
information about what is shown in the headlines. For example, if the headline announced the largest sales order
for the month, you could set up the headline to open a page that shows a sorted list of sales order for the month.

The following code uses the OnDrillDown trigger to link Headline1 to the Dynamics 365 online help.

You can use the Visible property to show or hide headlines that are defined on the HeadlinePart page. With the
Visible property, you can show or hide the control either statically by setting the property to true or false, or

dynamically by using a Boolean variable.

With static visibility, you can simply set the Visible property on specific fields. For example, following code hides
Headline3 :

By adding fields under Group controls, you can hide or show more than one headline by setting the Visible

property on the Group control. For example, the following code hides headings Headline3 and Headline4 :

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-ondrilldown-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-visible-property

group(Group1)
{
 field(Headline1; text001)
 {

 }
 field(Headline2; text002)
 {

 }
 }
group(Group2)
{
 Visible=false;
 field(Headline3; text003)
 {

 }
 field(Headline4; text004)
 {

 }
}

IMPORTANT

Dynamic visibility

On HeadlinePart type pages, the group control has no effect on the UI, like with other page types. Its primary purpose is
to enable developers to group headlines for controlling visibility.

With dynamic visibility, you can show or hide a headline based on a condition that evaluates to true or false .

To dynamically show or hide a headline when the HeadlinePart page opens, the headline field must be in
group control, and you set the Visible property on the group control to the Boolean variable that

determines the visibility. For example, you could add code on the page's OnAfterGetRecord trigger that
evaluates the relevance of displaying Headline3 and results in a Boolean variable being set to true or
false .

To dynamically show or hide a headline while a page is open, you set the Visible property on the field

control to the Boolean variable that determines the visibility.

group(Group1)
{
 field(Headline1; text001)
 {

 }
 field(Headline2; text002)
 {

 }
 }
group(Group2)
{
 // Determines visibility when the page opens
 Visible=ShowHeadline3;
 field(Headline3; text003)
 {
 // Determines visibility while the page is open
 Visible=ShowHeadline3;
 }
 field(Headline4; text004)
 {

 }
}

See Also
Pages Overview
Page Object

Creating Cues and Action Tiles on Role Centers
3/31/2019 • 9 minutes to read

Designing Cues

Normal and wide layout

NOTE

Supported data types

This article provides an overview of Cues and Action tiles, and the tasks involved in creating and customizing them
for displaying on Role Centers, as illustrated in the following figure:

A Cue provides a visual representation of aggregated business data, such as the number of open sales invoices or
the total sales for the month. Cues are interactive, meaning that you can select the Cue to drill down to data or
open another page, run code, and more. Cues display data that is contained in a table field. This can be raw data or
calculated data.

There are two layout options that influence how Cues appear in the client: normal and wide.

The normal layout displays Cues as tiles. With this layout, Cue groups are automatically arranged to fill in
the width of the workspace, which means there can be more than one group horizontally across the
workspace.

The wide layout is designed to display large values, such as monetary values. The wide layout gives you a
way emphasize a group of Cues. Wide and normal Cue groups can be interleaved. However, wide groups
that precede all normal groups will appear in their own section of the workspace, spanning the entire width
- providing space for the large values. Wide groups that are placed after normal groups will behave just like
the normal layout groups. With this in mind, it is good practice to place Cue groups that use the wide layout,
above those that use the normal layout. The wide layout is specified by setting the CuegroupLayout
property to wide .

The wide layout is only supported in the Web client.

The Caption and CaptionML properties of the cuegroup control are ignored when the layout is wide.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-cuegrouplayout-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-caption-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-captionml-property

FlowFields versus normal fields

Creating a Cue

NOTE

Create a table for Cue data

Example

You can only base Cues on integer and decimal data types. Other data types are not supported and will not display
in a Cue.

A Cue can be based on a FlowField or Normal field. If you base the Cue on a FlowField, then you add the logic that
calculates the data for the Cue to the CalcFormula property of the FlowField. If you use a Normal field, then you
will typically add the logic that calculates the Cue data to an AL trigger or method. Unlike a FlowField, where data
is extracted from tables, a Normal field enables you to extract data from other objects such as queries.

The implementation of a Cue involves the following elements:

A table object with a field that holds the data that is contained in the Cue at runtime.

A page object that contains the table field and displays the Cue in the client.

Logic that calculates the data to display in the Cue at runtime.

The logic can consist of a combination of AL code and objects, such as tables, queries, and codeunits. How and
where you implement the logic will depend on whether the Cue is based on a FlowField or Normal field and what
you want to achieve.

The examples in this section will set up a Cue that extracts the number of open sales invoices from the Sales Header table.

The first thing that you must do is to create a table that contains fields that will hold the calculated data to display
in the Cues at runtime.

1. Create a table object or use an existing one.

2. Add fields for the Cue data.

For each Cue that you want to display on the page, you must add a Field control in the table object. When
you add the Field control, specify the following properties:

Set the Data Type property to Decimal, Integer, or Text, depending on the type of data the Cue will
display.

Set the FieldClass property to FlowField or Normal.

If field is a FlowField, then set the CalcFormula property to calculate the Cue data. For more
information, see Calculation Formulas and the CalcFormula Property.

3. Add a primary key field for FlowFields.

A table must have at least one data field. Because a FlowField is based on a calculation, it not considered an
actual data field. Therefore, if the Cue table only includes FlowFields, you must add "dummy" primary key
field that does not yield any data.

To add primary key, for example, add a field with the name Primary Key, and then set its data type to Code.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-calcformula-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-data-type-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-fieldclass-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-calculation-formulas-and-the-calcformula-property

table 50100 SalesInvoiceCueTable
{
 DataClassification = ToBeClassified;

 fields
 {
 field(1;PrimaryKey; Code[250])
 {

 DataClassification = ToBeClassified;
 }
 field(2; SalesInvoicesOpen ; Integer)
 {
 FieldClass = FlowField;
 CalcFormula = count("Sales Header" where("Document Type"=Filter(Invoice), Status=FILTER(Open)));

 }
 }

 keys
 {
 key(PK; PrimaryKey)
 {
 Clustered = true;
 }
 }
}

Add Cues to a Page object

Example

After you have a table for holding the Cue data, you create a page that you associate the table, and then add Cue
fields on the page. Typically, you will create Card Part type page that will be part of the Role Center page. Cues are
arranged into one or more groups on the page. Each group will have its own caption.

 RESET;
 if not get then begin
 INIT;
 INSERT;
 end;

1. Create a page object that has the SourceTable property set to the Cue data table.

2. Add a cuegroup control.

3. Under the cuegroup control, for each Cue that you want to display, add a field control.

4. If you want to set the cuegroup to use the wide layout, set the CuegroupLayout property to wide .

Repeat steps 2-4 to add additional Cue groups.

5. Initialize the Cue fields.

You must initialize the Cue fields on the page. To do this, for example, you can add the following AL code to
the OnOpenPage Trigger.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-sourcetable-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onopenpage-trigger

page 50105 SalesInvoiceCuePage
{
 PageType = CardPart;
 SourceTable = SalesInvoiceCueTable;

 layout
 {
 area(content)
 {
 cuegroup(SalesCueContainer)
 {
 Caption='Sales Invoices';
 // CuegroupLayout=Wide;
 field(SalesCue; SalesInvoicesOpen)
 {
 Caption='Open';
 DrillDownPageId="Sales Invoice List";
 }
 }
 }
 }

 trigger OnOpenPage();
 begin
 RESET;
 if not get then begin
 INIT;
 INSERT;
 end;
 end;
}

Designing Action tiles

Create an Action tile

Example

Action tiles promote an action or operation to the user on the Role Center. Action tiles act as links that perform a
task or operation, like opening another page, starting a video, targeting an another resource or URL, or running
code. They will arrange on the workspace just like that use the normal layout.

Similar to Cues, Actions tile can be grouped together, under a common caption, by using the cuegroup control. The
difference is that instead adding field controls under the cuegroup control, you create Action tiles by adding
actions to the cuegroup control.

1. Develop or locate the functionality that you want to Action tile to perform.

For example, create the page object that you want the Action tile to open, add AL code that you want the Action tile
to run, find the URL to the video.

2. Open the page on which you want to display the Action tiles. For example, this could be the page that you
created in the previous task.

3. In the location where you want the Action group, add a cuegroup control.

4. Configure the control to the desired operation.

For example, if it should open a page, set the control's RunObject property to the appropriate page. Or, set it
to call a function or method.

The following code adds an Action tile that opens Sales Invoice page.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-runobject-property

cuegroup(SalesActionontainer)
{
 Caption='New Sales Invoice';

 actions
 {

 action(ActionName)
 {
 RunObject=page "Sales Invoice";
 Image=TileNew;

 trigger OnAction()
 begin

 end;
 }
 }
}

Styling an Action tile

NOTE

See Also

You can use the Image property on an action control to change the look of the Action tile. For Action tiles, the
Image property supports several standard values that start with the text Tile , such as TileNew and TileYellow .

These values change the Action's background color and icon as follows:

A value that has the format Tile[color] will set the Action tile to use the circle icon and a background that
is specified by [color] . For example, TileBlue will display a circle icon in a blue background.

A value that has the format Tile[picture] will set the Action tile to use an icon that is specified by
[picture] and a neutral background color. For example, TileCamera will display a camera icon on the

neutral background.

If you use a value that is not valid or recognized, the Action tile will default to display the circle icon on the neutral
background.

FlowFields
Page Object
Pages Overview
Table Object

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-image-property

Designing List Pages
6/25/2019 • 8 minutes to read

Customizing a list pages from the client

The List page type displays records from an underlying table, either as rows and columns or as individual tiles.

Overview
Structure
Behavior points
Developer tips
Designing for devices

You design list pages when you want to provide users with a collection of data, enabling them to get an overview
of and find entities to work with, such as customers, vendors, or sales orders. Typically, a list page will link to an
associated card page that lets users view or modify specific entities in the list.

There are different ways to incorporate a list page into that application:

Make the list page available from the navigation of a Role Center page.

This gives users quick access to the page. With this implementation, the list page opens in the content area
of the Role Center page, where the Role Center's navigation area is still present and accessible at the top of
the page. For more information about Role Centers, see Designing Role Centers.

Make the list page available from an action on another page.

With this implementation, the list page opens in a separate window in front of the current page.

Make the list page searchable from the Tell me what you want to do feature.

With this implementation, the list page also opens in a separate window. For more information, see Adding
Pages and Reports to Search.

In the client, users can personalize list pages by rearranging or hiding records or FactBoxes as they like. For more
information, see Personalizing Your Workspace.

As a developer or administrator, you can use Designer to customize the list page the same way that individual
users personalize their own work spaces. The difference is that changes you make are applied to all users. For
more information, see Using Designer.

https://docs.microsoft.com/en-us/dynamics365/business-central/ui-personalization-user

Simple List Page Code Example
5/3/2019 • 2 minutes to read

page 50111 SampleCustomerList
{
 PageType = List;
 ApplicationArea = All;

 // Specifies the page to display records from the Customer table.
 SourceTable = Customer;

 // Makes the page searchable from the Tell me what you want to do feature.
 UsageCategory = Lists;

 // Specifies the card page Sample Customers to be uses for modifying or creating new customer records.
 CardPageId = 50112;

 // Sets the title of the page to Sample Customers.
 Caption = 'Sample Customers';

 layout
 {
 area(Content)
 {
 // Sets the No., Name, Contact, and Phone No. fields in the Customer table to be displayed as
columns in the list.
 repeater(Group)
 {
 field("No."; "No.")
 {
 ApplicationArea = All;

 }
 field(Name; Name)
 {
 ApplicationArea = All;

 }
 field(Contact; Contact)
 {
 ApplicationArea = All;
 }

The AL code in this article creates a simple list page that displays records from an existing table.

For a more detailed explanation of the list page, see Designing List Pages.

 }

 field(Phone; "Phone No.")
 {
 ApplicationArea = All;

 }
 }
 }

 }

 actions
 {
 // Adds an action on the Actions menu of the action bar that opens the page Customer Ledger Entries.
 area(Processing)
 {
 action("Ledger Entries")
 {
 ApplicationArea = All;
 RunObject = page "Customer Ledger Entries";
 trigger OnAction();
 begin

 end;
 }
 }

 // Promotes an action for creating a sales quote to promoted action menu called New.
 area(Creation)
 {
 action("New Sales Quote")
 {
 ApplicationArea = All;
 RunObject = page "Sales Quote";
 Promoted = true;
 PromotedCategory = New;
 Image = NewSalesQuote;
 trigger OnAction();
 begin

 end;
 }
 }

 // Adds an action on the Report menu that opens the Top 10 List report.
 area(Reporting)
 {
 action("Top 10 List")
 {
 ApplicationArea = All;
 RunObject = report "Customer - Top 10 List";
 trigger OnAction();
 begin

 end;
 }
 }
 }
}

See Also
AL Development Environment
Page Extension Object

Actions Overview
Adding Pages and Reports to Tell Me
Personalizing Your Workspace
Using Designer

https://docs.microsoft.com/en-us/dynamics365/business-central/ui-personalization-user

Displaying Data as Tiles
6/25/2019 • 4 minutes to read

Tile view in the client

Customizing the tile view in AL

 fieldgroups
 {
 fieldgroup(Brick; <field 1>, <field 2>, <field 3>, <field 4>, <field 5>, <field 6>)
 {

 }
 }

IMPORTANT

Field layout in tiles

In the client, on list type pages (such as List , ListPart , and ListPlus), users have the option to view the page in
the tile view. The tile view shows records as tiles (or bricks) instead of as rows. Tiles optimize space and readability
of data, and is especially useful for images, like on a page that show items, customers, and contacts. The tile view
compresses up to six columns of data. By default, the tile view will display the first six fields of the page's source
table. This article describes how you can customize the tile view for list type pages.

Users switch between the list and tile view by selecting the View layout options icon in the action bar at the top
right-hand corner of the page. If tiles contain a media field type, then there are two tile view options: Tiles and Tall
Tiles. The same information is displayed except with Tall Tiles, images are larger and display at the top of the tiles.

Tiles are interactive. A context menu is available in the upper right corner. The context menu contains the actions
that are defined for the record, just as in the list view. To drill down to a card page for a record, the user selects the
tile.

You specify the data that you want shown in the tile view in the source table of the page by adding a Field Group

that has the name Brick :

You can specify up to six fields.

By default, the Field Group named DropDown is interpreted as Brick when a Brick definition has not been set. The
DropDown is typically set on entities such as customer, vendor, and items. For more information, see Field Groups (Drop-

Down Controls).

The order of the fields determines how they appear in the layout of the tile, regardless of the order the fields
appear in the page object definition. Depending on the number of columns that you define in the Field Group , the
layout will dynamically change. Up to 6 fields can be displayed in a tile, and therefore, there are six possible layouts
as shown in this illustration:

Including images in tiles

Styling text in tiles

Example

Table 50100 MyTable
{

 fields
 {
 field(1; Number; Integer)
 {
 }

 field(2; Description; Text[50])
 {
 }
 field(3; Inventory; Integer)
 {
 }
 field(4; Image; Media)
 {
 }
 }

 keys
 {
 key(PK; Number)
 {
 }
 }

 fieldgroups
 {
 fieldgroup(Brick; Number, Description, Inventory, Image)
 {
 }
 }
}

page 50100 MyListPage
{
 PageType = List;
 ApplicationArea = All;
 UsageCategory = Lists;
 SourceTable = BrickTableTest;
 Editable = true;

The fields 2 and 3 are shown in a large font and should contain data that identifies the brick, for example, the
Customer Name and Balance as you can see in the Customer list in, for example, the Business Central Web client.

To display an image in the brick, you include a Media data type field in the Field Group definition. You do not
have to include a field control for the media field in the page object, because the image will be shown in the tile
view automatically.

The image will be displayed on the left side of the tile (or at the top in the Tall Tiles view), regardless of its position
in the Field Group definition. If an image does not exist for a certain record, a default picture is displayed instead.

For information including media on records, see Working With Media on Records.

Just as in the list view, the tile view supports the Style Property and StyleExpr Property that you apply on the page
field controls. These properties, for example, let you mark numbers as favorable or unfavorable.

The following code is a simple example of a table that includes Field Group control for displaying data in the tile
view of a list page.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-working-with-media-on-records
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-style-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-styleexpr-property

 Editable = true;
 CardPageId = MyCardPage;

 layout
 {
 area(Content)
 {
 repeater(GroupName)
 {
 field(Number; Number)
 {
 ApplicationArea = All;
 }
 field(Description; Description)
 {
 ApplicationArea = All;
 }
 field(Inventory; Inventory)
 {
 ApplicationArea = All;
 Style = Attention;
 }
 }
 }
 }
}

See Also
Designing List Pages
Working With Media on Records

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-working-with-media-on-records

Views
5/21/2019 • 2 minutes to read

Snippet support

Filtering and sorting

Filters = where ("Balance (LCY)" = filter (> 500), Name = filter ('G*'));

OrderBy = ascending ("Balance (LCY)", Name);

NOTE

View example

Views in Dynamics 365 Business Central are used on list pages to define a different view of the data on a given
page. Views can be defined for Pages, Page Extensions, and Page Customization. Views are defined on page
extension objects to provide an alternative view of data and/or layout on an existing page, and in views on page
customization objects, they can be used to provide an alternative view for a certain profile.

A view offers:

Filtering on multiple table fields on the source table defined for the page.
Sorting of the data on multiple table fields, but only in one direction; either ascending or descending.
Layout changes, modifying page columns, moving them, etc.

Views are defined directly in code, on the list page that they modify. The defined view or views are available to the
user through Filter Pane on a page and appear in the sequence that they are defined in code.

Typing the shortcut tview will create the basic layout for a view when using the AL Language extension in Visual
Studio Code.

You can filter on the data in a view by using the Filters property. The following is an example of the syntax:

For more information, see Filters.

You can sort on the data in a view by using the OrderBy property. The following is an example of the syntax:

For more information, see OrderBy.

All filters are applied to the table field(s), not the page field(s), which allows filtering on a table field not shown on the page.

The following example shows a page customization of the Customer List page, which is available for a specific
role center only; the My Role Center. Change the role center view under My Settings. The definition of the view
adds a caption which is displayed on the left side in the UI. The view sorts the customer balance in ascending mode
and the view modifies the layout by moving the customer balance first and adding a freeze column after it.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-filters-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-orderby-property

profile MyProfile
{
 Description = 'My Role Center';
 RoleCenter = "Order Processor Role Center";
 Customizations = MyCustomization;
}

pagecustomization MyCustomization customizes "Customer List"
{
 views
 {
 addfirst
 {
 view(BalanceLCY)
 {
 Caption = 'Ordered Balance LCY';
 OrderBy = ascending ("Balance (LCY)");

 layout
 {
 movefirst(Control1; "Balance (LCY)")

 modify(Control1)
 {
 FreezeColumn = "Balance (LCY)";

 }
 }
 }
 }
 }
}

Limitations

See Also

In general, views can in several ways be compared to page customizations. These are the limitations of views:

For views you can modify the same control properties as for page customization objects independently of
where the view has been defined (page, page extension, or page customization level). This is validated by the
compiler.
It is not possible to use variables or methods in a view. When writing client-side expressions for properties like
Visibility, it will only be possible to use constant values or table field references. This is validated by the
compiler.
It is not possible to create new controls for a page from a view.

AL Development Environment
Developing Extensions
Page Object
Page Extension Object
Page Customization Object

Adding Filter Tokens
3/31/2019 • 2 minutes to read

Defining the token word and the handler

TIP

Example

NOTE

In the client, when filtering lists using the filter pane, users can enter filter tokens, which are special words that
resolve to one or more values. This powerful feature makes filtering easier by reducing the need to navigate to
other pages to look up values to enter as filter criteria.

There are several useful filter tokens available in Business Central. For example, entering %mycustomers in a
Customer No. field will resolve to the set of customers in the user's My Customers list such as 1001|1002 ,
making it easy to find relevant sales orders for customers 1001 and 1002.

You can add custom filter tokens and make these available in any language and across the application. To add your
custom filter token, you need to define the token word that users will enter as filter criteria, and define a handler
that resolves the token to a concrete value at runtime.

To create the desired token word, start by defining a multi-language text string for your word. Subscribe to the
OnBeforeMakeTextFilter or OnAfterMakeTextFilter events associated with the MakeTextFilter method from the
TextManagement codeunit.

In the event subscriber, if the value of the TextFilterText parameter contains the token string proceed to process
its value and construct the final filter string. If the filter string must contain multiple values, you must handle the
operators that join them together, by inserting the | filter symbol (OR operation). Complete the operation by
setting the value of the TextFilterText parameter to the value of the final filter string.

Filter criteria will often contain symbols along with filter tokens. It is recommended that you only modify the filter token you
have introduced and preserve the rest of the filter string.

This example shows how you can use the guidelines above to create the %MYTOKEN filter token. This will return
a filter with the accounts marked as favorite by the user.

To keep this sample short and simple, the entire filter string is overwritten.

codeunit 50101 MyAccountFilterTokenSimple
{
 [EventSubscriber(ObjectType::Codeunit, Codeunit::TextManagement, 'OnAfterMakeTextFilter', '', true, true)]
 local procedure FilterMyAccountsOnAfterMakeTextFilter(var Position: Integer; var TextFilterText: Text)
 var
 MyAccountTxt: Label 'MYTOKEN';
 MyAccount: Record "My Account";
 MaxCount: Integer;
 begin
 if StrLen(TextFilterText) < 3 then
 exit;
 if StrPos(UpperCase(MyAccountTxt), UpperCase(TextFilterText)) = 0 then
 exit;

 MaxCount := 2000;
 MyAccount.SetRange("User ID", UserId);
 if MyAccount.FindSet() then begin
 MaxCount -= 1;
 TextFilterText := MyAccount."Account No.";
 if MyAccount.next <> 0 then
 repeat
 MaxCount -= 1;
 TextFilterText += '|' + MyAccount."Account No."
 until (MyAccount.Next = 0) or (MaxCount <= 0);
 end;
 end;
}

See Also

To try it out in the client, open the Charts of Accounts page, filter on No. field, and type in a substring that starts
the same way with the chosen token word, like %MYTO.

Sorting, Searching and Filtering Lists

https://docs.microsoft.com/en-us/dynamics365/business-central/ui-enter-criteria-filters

Designing Card and Document Pages
3/31/2019 • 7 minutes to read

Card pages

Document pages

Associate with a list page

Customizing a card and document pages from the client

The card page type displays selected fields from an underlying table. The document page type is very similar in
structure to the card page, but in addition to fields, it also includes a part that includes another page, called a sub-
page.

Overview
Structure
Behavior points
Developer tips
Designing for devices

You design card pages when you want to enable users to view, create, and modify records (master and reference
data) in a table, such as a customer, vendor, or item.

Design document pages when you want to represent a transaction or other important event in the domain of
business. Document pages are the computerized counterpart to paper-based documents, such as quotes, invoices,
orders, and so on. As such, document pages often have associated workflow or audit trail requirements.

Both page types are typically associated with list pages (like the customers or sales orders list) that uses the same
table as their source. From the list page, users can select a record and open it the card or document page for
viewing and editing.

In the client, users can personalize card pages by rearranging or hiding content as they like. For more information,
see Personalizing Your Workspace.

As a developer or administrator, you can use Designer to customize a card and document page the same way that
individual users personalize their own work spaces. The difference is that changes you make are applied to all
users. For more information, see Using Designer.

https://docs.microsoft.com/en-us/dynamics365/business-central/ui-personalization-user

Simple Card Page Code Example
4/4/2019 • 2 minutes to read

page 50112 SampleCustomerCard
{
 PageType = Card;
 ApplicationArea = All;
 UsageCategory = Administration;
 SourceTable = Customer;

 //Defines the names for promoted categories for actions.
 PromotedActionCategories = 'New,Process,Report,Manage,New Document,Request Approval,Customer';

 layout
 {
 area(Content)
 {
 //Defines a FastTab that has the heading 'General'.
 group(General)
 {
 field("No."; "No.")
 {
 ApplicationArea = All;

 }
 field(Customer; Name)
 {
 ApplicationArea = All;

 }
 }

 //Defines a FastTab that has the heading 'Contact'.
 group(Contact)
 {
 field(Name; Contact)
 {
 ApplicationArea = All;

 }
 field(Phone; "Phone No.")
 {
 ApplicationArea = All;

The AL code in this article creates a simple card page that displays records from an existing table.

For a more detailed explanation of the list page, see Designing Card and Document Pages.

 }
 }
 }
 }

 actions
 {
 area(Processing)
 {

 //Defines action that display under the 'Actions' menu.
 action("New Sales Quote")
 {
 ApplicationArea = All;
 RunObject = page "Sales Quote";
 Promoted = true;
 PromotedCategory = New;
 Image = NewSalesQuote;
 trigger OnAction();
 begin

 end;
 }
 action("Banks Account")
 {
 ApplicationArea = All;
 RunObject = page "Customer Bank Account List";
 Promoted = true;

 //Promotes the action to the category named 'Customer'.
 PromotedCategory = Category7;
 Image = BankAccount;
 trigger OnAction();
 begin

 end;
 }

 }
 area(Reporting)
 {

 //Defines action that display under the 'Report' menu.
 action("Statement")
 {
 ApplicationArea = All;
 RunObject = codeunit "Customer Layout - Statement";
 trigger OnAction();
 begin

 end;
 }
 }
 }
 var
 myInt: Integer;
}

See Also
AL Development Environment
Page Extension Object
Actions Overview
Adding Pages and Reports to Search

Personalizing Your Workspace
Using Designer

https://docs.microsoft.com/en-us/dynamics365/business-central/ui-personalization-user

Adding a FactBox to a Page
6/4/2019 • 2 minutes to read

Adding a FactBox area to a page

A FactBox is the area that is located on the right-most side of a page and it is divided into one or more parts that
are arranged vertically. This area is used to display content including other pages, charts, and system parts such as
Microsoft Outlook, Notes, and Record Links. Typically, you can use a FactBox to display information that is related
to an item on the main content page. For example, on a page that shows a sales order list, you can use a FactBox to
show sell-to customer sales history for a selected sales order in the list as shown below.

The following list highlights a few categories of FactBoxes:

Show related records/fields which are modeled as ListParts or CardParts.
Show related KPIs which are modeled as CardParts with charts or Cues. For more information, see Designing
Role Centers.
Visualize related data or display from external sources which are modeled as CardParts containing a Client
AddIn. For example, Bing maps, PowerBI, Microsoft Social Engagement, and more.

You define the FactBox by adding a FactBox area container control to the page. The FactBox area control acts as a
placeholder to which you can add different parts for the FactBox. You can add a FactBox area control on the
following page types.

Card

NOTE

WARNING

Example

page 50100 "Simple Customercard Page"
{
 PageType = Card;

 layout
 {
 area(FactBoxes)
 {
 part(MyPart; "Acc. Sched. KPI Web Srv. Lines")
 {
 ApplicationArea = All;
 SubPageView = SORTING ("Acc. Schedule Name");
 }
 systempart(Links; Links)
 {
 ApplicationArea = All;
 }
 systempart(Notes; Notes)
 {
 ApplicationArea = All;
 }
 }
 }
}

TIP

Filtering data that is displayed on a page in a FactBox

Document

List

ListPlus

Navigate

Worksheet

Only one FactBox area control is allowed on a page.

You can add a part to the FactBox area that displays an existing page of the CardPart or ListPart type only. If you attempt to
use another page type, you will get an error.

When used on Lists, Factboxes can be used to show information about the entire list, or more contextually about the user’s
current selection; the currently selected rows. You can control the filter which gets passed to the FactBox that determines its
contextual contents.

In many cases, you want to change the content that is displayed on the page in the FactBox based on the content
of the main page. For example, if the main page is a Customer List, you can have a FactBox that includes the
Customer Details page that shows information about a customer. When a user selects a customer in the Customer
List, the Customer Details page displays information about the selected customer. To implement this functionality,

Example

page 50101 "Simple Customerlist Page"
{
 PageType = List;
 SourceTable = Customer;

 layout
 {
 area(content)
 {
 repeater(Control)
 {
 field("No."; "No.")
 {
 ApplicationArea = All;
 }
 }

 }

 area(FactBoxes)
 {
 part(CustomerList; "Customer Details FactBox")
 {
 ApplicationArea = All;
 SubPageLink = "No." = FIELD ("No.");
 }
 }
 }
}

See Also

you set up a table filter that associates a field in the table that is used by the Customer Details page with a field in
the table that is used by the Customer List page, as shown in the example below. You can also filter on a constant
value or set of conditions.

 Arranging Rows and Columns on a Fasttab

Pages Overview
Page and Page Extension Properties Overview
Designing Role Centers
Using Designer

Actions Overview

Adding Pages and Reports to Tell me
3/31/2019 • 3 minutes to read

The Business Central client includes the Tell me feature that lets users find objects and online help articles by
entering search terms. When you have added a page or a report in your extension, you most likely want it to be
discoverable to users in Tell me. In AL, you make a page or report searchable from Tell me by setting the
UsageCategory property in code. The UsageCategory setting will make the page or report searchable, and the
value chosen for the setting will further sub categorize the item.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-usagecategory-property

Working with the UsageCategory property

UsageCategory property values

VALUE DESCRIPTION

None The page or report is not included in search.

Lists The page or report is listed as Lists under the Pages and
Tasks category.

Tasks The page or report is listed as Tasks under the Pages and
Tasks category.

ReportsAndAnalysis The page or report is listed as Reports and Analysis under
the Reports and Analysis category.

Documents The page or report is listed as Documents under the Reports
and Analysis category.

History The page or report is listed as Archive under the Reports
and Analysis category.

Administration The page or report is listed as Administration under the
Pages and Tasks category.

Adding additional search terms

NOTE

Example

Tell me finds pages and reports by searching the captions that are specified on page and report objects by the
CaptionML property.

When you create a Page or a Report, you add the UsageCategory Property. If the UsageCategory is set to None,
or if you do not specify UsageCategory, the page or report will not show up when you search in Dynamics 365
Business Central.

The values for the UsageCategory property are listed below. The sub category will help the user navigate through
the search results and it is a best practice to be consistent when categorizing the pages and the reports that you
add. A consistent approach will help guiding the user and improve productivity.

You can specify other words or phrases that can help users find a page or report by using the
AdditionalSearchTerms and AdditionalSearchTermsML properties. If the page or report is searchable by Tell me
(that is, th UsageCategory property is set a value other than None), the search terms specified by these properties
are used in addition to the caption of the page or report. These properties are useful when the caption does not
always reflect what users will look for. A good example of this in Business Central is pages and reports associated
with Item. Users unfamiliar with Business Central might look for 'product' or 'merchandise' instead of 'item'.

For Business Central on-premises, the Business Central Web Server configuration file (navsettings.json) includes a setting
called UseAdditionalSearchTerms that enables or disables the use of additional search terms by the Tell me. For more
information, see Configuring Business Central Web Server Instances.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-caption-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-usagecategory-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-additionalsearchterms-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-additionalsearchtermsml-property

page 50210 SimpleItemList
{
 PageType = List;
 SourceTable = Item;
 UsageCategory = Lists;
 AccessByPermission = page SimpleItemList = X;
 ApplicationArea = All;
 AdditionalSearchTerms = 'product, merchandise';

 layout
 {
 area(content)
 {
 group(General)
 {
 field("No.";"No.") {}
 field(Name;Name) {}
 field(Description;Description) {}
 }
 }
 }
}

Optional settings

Working in the Dynamics NAV Development Environment

See Also

The following example creates a SimpleItemList page and sets a UsageCategory property to the page, so that the
SimpleItemList page is discoverable through search using the Tell me feature. Also, the example sets the
AdditionalSearchTerms property to add two search terms for the page.

In addition to making a page or report searchable, you can control the access of an object by providing Read,
Insert, Modify, Delete, and Execute (RIMDX) permissions by adding the AccessByPermission property. Likewise,
control the application area access on the specified object by adding the ApplicationArea Property.

The AccessByPermission property and ApplicationArea property are the optional settings, which can be applied
with the UsageCategory property. These settings are used to set restrictions on an object when you enable the
Search functionality.

If you are using the Dynamics NAV Development Environment, you can also set UsageCategory,
AdditionalSearchTerms, AccessByPermission, and ApplicationArea properties on pages and reports to control their
search.

After you change these properties by using the Dynamics NAV Development Environment, before the changes take
effect in the client, you must run Build Object Search Index from the Tools menu.

Adding Menus to the Navigation Pane
UsageCategory Property
Page Object
Report Object
AL Development Environment

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-accessbypermission-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-applicationarea-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-usagecategory-property

Field Arrangement on FastTabs
3/31/2019 • 2 minutes to read

How fields are arranged on a FastTab of a page

Grouping fields on a FastTab

Manually arranging fields in multiple rows and columns

FastTabs in Dynamics 365 Business Central allow users to find key information on a page by displaying the data in
separate groups. This topic describes how individual fields are arranged on a FastTab and ways that you can
change the layout.

By default, a FastTab is divided into two columns for containing fields. Fields are automatically distributed between
the left and right columns based on their order in Page Layout and height on the rendered page. Starting with the
first field in the Page Layout and working downward, fields are positioned in the left column and then in the right
column so that the area that is occupied by the fields in each column is as equal as possible. Field captions are
positioned to the left of fields.

By using the Group subtype control in a FastTab, you can include fields on a FastTab in separate groups. This gives
you control over how fields are distributed between the left and right columns. When you group fields on a
FastTab, the groups and not the individual fields are distributed evenly between the left and right columns.

FastTabs replace tabs and enable you to place data in groups on card or task pages. If a group is expanded you see
all the fields in a group. If it is collapsed you just see the summary line. The summary line is the header that
displays a name for the group, such as 'Communication' and can include promoted fields such as 'E-mail'.
Promoting fields to the summary line enables you to present key information to the user, even if the control is
collapsed. You can also specify fields that only appear when the users selects the Show more action on the
FastTab. Promoting a field or displaying it only when Show more is selected is specified by the Importance
property of the field.

Organizing data using FastTabs helps users to find key information quickly, while at the same time giving an
overview of areas that otherwise would remain hidden. For example, the customer card page displays customer
information in the following categories: General, Communication, Invoicing, Payments, Shipping, and Foreign
Trade. Each category is a separate group that can be expanded or collapsed, making it easier for users to focus on
one area at a time. On task pages, a FastTab typically represents a single step in a task.

Using the GridLayout or FixedLayout controls, you can arrange fields in multiple rows and columns in a grid-like

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-importance-property

See Also

format. For more information, see Arranging Fields Using Grid and Fixed Controls.

Arranging Fields Using Grid and Fixed Controls
Pages Overview
Using Designer
Table in Dynamics 365 Business Central

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-arranging-fields-using-grid-and-fixed-controls
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-arranging-fields-using-grid-and-fixed-controls

Arranging Fields in Rows and Columns Using the Grid
Control
4/24/2019 • 2 minutes to read

NOTE

Setting-up fields in rows and columns in a FastTab

Example

By default, fields in a FastTab are arranged automatically in two columns that are based on the number of fields.
For more information, see Field Arrangement on a Fasttab. You can use a Grid control or a Fixed control to arrange
fields in rows and columns on a page and design it to look like a grid-like format or a matrix-like format. To
understand the differences between the two controls to help you determine which control to use, see Comparing
Grid and Fixed controls.

Grid control for arranging page fields is partially supported.

Using the Grid control, you can arrange the fields manually in one or more rows and columns. The Grid control
gives you the following options:

Set up your grid row-by-row or column-by-column.

Span a field across multiple rows and columns.

Show or hide field captions.

To set up a grid in row-by-row or column-by-column format, you define the Grid control in a FastTab of a page.
You must define the Grid control in a group and specify how you want to arrange the fields by using the
GridLayout property. For more information, see GridLayout Property.

The following example demonstrates how to structure a page in a grid-like format.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-arranging-fields-using-grid-and-fixed-controls
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-gridlayout-property

page 50113 "Customers Page"
{
 PageType = Card;
 SourceTable = Customer;
 layout
 {
 area(content)
 {
 group(General)
 {
 grid(MyGrid)
 {
 group("General Info")
 {
 field("No."; "No.")
 {
 ApplicationArea = All;
 }
 field(Name; Name)
 {
 ApplicationArea = All;
 }
 field("E-Mail"; "E-Mail")
 {
 ShowCaption = false;
 ApplicationArea = All;
 }
 }
 group("Address Details")
 {
 grid(Grid2)
 {
 group(GridForm)
 {
 field(Address; Address)
 {
 ApplicationArea = All;
 }
 field("Post Code"; "Post Code")
 {
 ApplicationArea = All;
 }
 }
 }
 }
 }
 }
 }
 }
}

Setting fields to span multiple rows and columns

IMPORTANT

You can set a field to span multiple rows or columns. When you set a field to span multiple rows, the field occupies
the cells in the rows below it, and existing fields in the occupied cells are moved to the right. When you set a field to
span multiple columns, the field occupies the cells in the columns to the right, and existing fields in the occupied
cells are moved to the right. You can also set a field to span multiple rows and columns.

The Dynamics 365 Business Central web client does not support row and column spanning for fields. If the page displays in
the Dynamics 365 Business Central web client, the fields appear without spanning.

To set a field to span rows and columns

NOTE

Hiding field captions

See Also

When you set the Grid control, the fields of that group can be set to span rows or columns.

To set a field to span one or more rows, set the value of the RowSpan property to the number of rows. For
more information, see RowSpan Property.

To set a field to span one or more columns, set the value of the ColumnSpan property to the number of
columns. For more information, see ColumnSpan Property.

The RowSpan and ColumnSpan properties on fields in the grid layout are not supported in the Dynamics 365 Business
Central web client. The Rows layout on the grid control itself is not supported.

You can hide the caption of a group or a field. To hide the caption of a field, set the value of the ShowCaption
property to false. For more information, see ShowCaption Property.

Field Arrangement on FastTabs
Arranging Fields Using Grid and Fixed Controls
Arranging Fields in Rows and Columns Using the Fixed Control.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-rowspan-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-columnspan-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-showcaption-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-arranging-fields-using-grid-and-fixed-controls

Arranging Fields in Rows and Columns Using the
Fixed Control
3/31/2019 • 3 minutes to read

How Fixed control works

Adding fields

Grouping fields in a Fixed control

Example

By default, fields on a FastTab are arranged automatically in two columns based on the number of fields. For more
information on how the fields are placed on a page, see Field Arrangement on a Fasttab. To manually arrange
fields, you can either use a Grid control to design the page to look like a grid-like format, or a Fixed control to
design the page to look like a matrix-like format. To understand the differences between the two controls to help
you determine which control to use, see Comparing Grid and Fixed controls.

You use the Fixed control to arrange page fields in rows and columns to form a matrix-like layout except that the
Fixed control contains a specific number of fields, and a matrix can contain an unspecified number of fields. A Fixed
group control is typically used to display statistical data. The following illustration shows an example of a page that
uses a Fixed control to show sales totals for different time periods.

You can also use a Fixed control to display information in the details section of a Worksheet page. If you are using
the CRONUS International Ltd. demonstration database, then you can see examples of these uses in page 151,
Customer Statistics, and page 40, Item Journal.

You can add fields directly in the Fixed control. However, when you add fields directly in the Fixed control, all the
fields will display in an equal size and the larger fields will get compressed. The following illustration shows the
resulting field layout on a page.

By placing the fields in a Fixed control throughout a group control, you can define separate rows and columns to
create a matrix-like arrangement. The group control caption appears as the column header, and the field control
captions appear as the row headers. If you add two more group controls that contain fields, then the layout on the
page will display like a table format.

The following AL code uses Fixed control to display four fields on a page inside the group called Fixed Layout.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-arranging-fields-using-grid-and-fixed-controls

page 50114 "Fixed Control Example"
{
 layout
 {
 area(content)
 {
 group("Fixed Layout")
 {
 fixed(DefiningFixedControl)
 {
 group("Group Caption")
 {
 field("Field 1"; "Field 1")
 {
 ApplicationArea = All;
 }
 field("Field 2"; "Field 2")
 {
 ApplicationArea = All;
 }
 field("Field 3"; "Field 3")
 {
 ApplicationArea = All;
 }
 field("Field 4"; "Field 4")
 {
 ApplicationArea = All;
 }
 }
 }
 }
 }
 }
 var
 "Field 1": Integer;
 "Field 2": Integer;
 "Field 3": Integer;
 "Field 4": Integer;
}

NOTE

The following illustration shows the resulting field layout on a page.

The group control caption appears as the column header, and the field control captions appear as the row headers.
If you add two more group controls that contain fields, then the layout on the page will resemble the following
illustration.

Only the captions of fields in the first column define the row headings. Therefore, only the field captions for the first group
control appear. The field captions in other group controls are ignored.

Using multiple Fixed controls

NOTE

IMPORTANT

Editing fields in a Fixed control

See Also

You can also set up more than one Fixed control in a group control. The page area will then divide the fields into
two columns that contain the separate Fixed fields. For example, the following illustration shows the page layout if
you have four Fixed controls.

The fields in the Fixed controls in the illustration are not in a group control. If they were in a group control, then they would
follow the same principle as described in the previous section about how to group fields.

In previous versions, having a Fixed control directly under a content area was supported. However, in Dynamics 365 Business
Central, you must make sure that the Fixed control is nested in a Group control. For more information, see Supported
Structure for Using the Grid and Fixed Controls.

Fields in a fixed layout are not editable even if the Editable property is set to true. However, if the field drills down
to a page where the field source is defined, then you can modify the field. For more information, see Editable
Property.

Field Arrangement on a FastTab
Pages Overview
Arranging Fields Using Grid and Fixed Controls
Arranging Fields in Rows and Columns Using the GridLayout Control

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-arranging-fields-using-grid-and-fixed-controls
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-editable-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-arranging-fields-using-grid-and-fixed-controls

Field Groups (Drop-Down Controls)
6/25/2019 • 2 minutes to read

NOTE

fieldgroups
{
 fieldgroup(Dropdown; Field1, Field2)
 {

 }
 fieldgroup(Brick; Field1, Field2)
 {

 }
}

NOTE

WARNING

Define fields for a drop-down control

A field group in table or table extension objects defines the fields to display in a drop-down control on pages that
use the table.

A field group can also be used to specify fields that display when list type pages are shown in the tile view. For more
information, see Displaying Data as Tiles.

In a table object, you define field groups by first adding a fieldgroups control, and then adding one or more
fieldgroup(<Name>; <Field> keyword for each group, where:

<Name> can be either DropDown , for adding fields to the drop-down control.
<Field> is a comma-separated list of the fields, by name, to include in the group.

The fieldgroups keyword cannot be inserted before the key control.

In a table extension object, the fieldgroups control allows you to add more fields to a field group defined for the
table object. This can be done by using the addlast(<name>; <field>) keyword.

The server will remove the duplicates, if multiple extensions attempt to add the same field more than once. A field can only
be added to the field group once.

You define a field to include in a drop-down control by using the DropDown field group name in the keyword.

The following example illustrates how to add the field

tableextension 50100 CustomerExercise extends Customer
{
 fields
 {
 field(50100); "V02Max"; Decimal) { }
 }

 fieldgroups
 {
 addlast(DropDown; V02Max) { }
 }
}

See Also
Debugging in AL
Developing Extensions
Microsoft .NET Interoperability from AL

CalcFields, CalcSums, FieldError, FieldName, Init,
TestField, and Validate Methods
5/3/2019 • 5 minutes to read

CalcFields method

[Ok :=] Record.CalcFields(Field1, [Field2],...)

VARIABLE DATA TYPE SUBTYPE

Customer Record Customer

Customer.Get('01454545');
Customer.SetRange("Date Filter",0D,TODAY);
Customer.CalcFields(Balance,"Balance Due");
Message('The Balance is %1 and your Balance Due is %2',Customer.Balance,Customer."Balance Due");

CalcSums method

The following methods perform various actions on fields:

CalcFields
CalcSums
FieldError
FieldName
Init
TestField
Validate

CalcFields updates FlowFields. FlowFields are automatically updated when they are the direct source expressions
of controls, but they must be explicitly calculated when they are part of a more complex expression. For more
information about Flowfields, see FlowFields.

CalcFields has the following syntax.

When you use FlowFields in AL methods, you must use the CalcFields method to update them.

In the following example, the SETRANGE method sets a filter and then the CalcFields method calculates the
Balance and Balance Due fields by using the current filter and performing the calculations that are defined as the
CalcFormula properties of the FlowFields. This example requires that you create the following variable.

The following message is displayed:

The Balance is 342,529.44 and your Balance Due is 342,529.44

CalcSums calculates the sum of one or more fields that are SumIndexFields in the record.

CalcSums has the following syntax.

[Ok :=] Record.CalcSums (Field1, [Field2],...)

VARIABLE DATA TYPE SUBTYPE

custledgerentry Record Cust. Ledger Entry

custledgerentry.SetCurrentKey("Customer No.");
custledgerentry.SetRange("Customer No.",'10000','50000');
custledgerentry.SetRange("Posting Date",0D,TODAY);
custledgerentry.CalcSums("Sales (LCY)");
Message('%1 calculated sales',custledgerentry."Sales (LCY)")

FieldError method

Record.FieldError(Field, [Text])

VARIABLE DATE TYPE SUBTYPE

Item Record Item

Item.Get('70000');
IF Item.Class <> 'HARDWARE' THEN
 Item.FieldError(Class);

For CalcSums, a key that contains the SumIndexFields must be selected as the current key. Similar to CalcFields,
CalcSums uses the current filter settings when it performs the calculation.

In the following example, an appropriate key is selected, some filters are set, the calculation is performed and then
a message is displayed. This example requires that you create the following variable.

FieldError triggers a run-time error after it displays a field-related error message.

FieldError has the following syntax.

This method is very similar to the Error method. However, in the FieldError method, if the name of a field is
changed, for example, translated to another language, in the Table Designer, the message from the FieldError
method will reflect the current name of the field.

The following examples show how to use the FieldError method. These examples require that you create the
following variable.

If item 70000 has a Class other than HARDWARE, then you receive the following error message:

Class must not be OTHER in Item No. ='70000'.

If the text or code field contains the empty string, then you receive the following error message:

You must specify Class in Item No.='70000'.

If the field is a numeric field and is empty, it is treated as if it contains the value 0 (zero), and then you receive the
following error message:

Class must not be 0 in Item No.='70000'.

You can change the default text that is displayed in the error message. The following example shows how to use the

VARIABLE DATA TYPE

Class Code

if Item.Class < '4711' then
 Item.FieldError(Class,'must be greater than 4711');

FieldName

Name := Record.FieldName(Field)

FieldError(
 Quantity,'must not be less than ' + FieldName("Quantity Shipped"));

Init

Record.Init()

NOTE

TestField method

Record.TestField(Field, [Value])

FieldError method and change the default text. This example requires that you create the following variable.

The following error message is displayed:

Class must be greater than 4711 in Item No.='70000'.

FieldName returns the name of a field. It has the following syntax.

You could just use the name of the field. However, using FieldName lets you create messages that always contain
the name of the field, even if the name of the field is changed.

This example shows how to use FieldName together with FieldError.

Init initializes a record. It has the following syntax.

If a default value for a field has been defined by using the InitValue property, this value is used for the
initialization. Otherwise, the default value of each data type is used.

Init does not initialize the fields of the primary key.

TestField tests whether a field contains a specific value. It has the following syntax.

If the test fails, that is, if the field does not contain the specified value, an error message is displayed and a run-time
error is triggered. This means that any changes that were made to the record are discarded. If the value that you
test against is an empty string, the field must have a value other than blank or 0 (zero).

The following example tests the Language Code field for customer number 10000 in the Customer table and tests

VARIABLE DATA TYPE SUBTYPE

customer Record Customer

customer.Get('10000')
customer.TestField("Language Code",'ZX');

Validate method

Record.Validate(Field [, NewValue])

VARIABLE DATA TYPE SUBTYPE

GeneralLedgerEntry Record G/L Entry

GeneralLedgerEntry.Validate("G/L AccountNo", '100');

GeneralLedgerEntry."G/L AccountNo" := '100';
GeneralLedgerEntry.Validate("G/L AccountNo");

See Also

whether the Language Code is ZX. This example requires that you create the following variable.

Validate calls the OnValidate trigger of a field. It has the following syntax.

When you enter an account number in a ledger, code in a table trigger is executed to transfer the name of the
account from the chart of accounts. If you enter an account number in a batch job, the code which transfers the
name of the account is not automatically executed. The following example executes the appropriate field-level
trigger code. This example requires that you create the following variable.

This corresponds to the following code.

The Validate method is useful for centralizing processing, which makes your application easier to maintain.

For example, if the OnValidate trigger of the Total Amount field performs a calculation that uses values from three
other fields as operands, the calculation must be performed again if the contents of any one of these fields changes.
You should avoid entering the calculation formula in the OnValidate triggers of each field because this can create
errors if the calculation formula has to be changed later and you have to update the code in all the triggers. Instead,
you should enter the calculation formula in the OnValidate trigger of only one of the fields and call this trigger code
from the OnValidate triggers of the other fields.

AL Methods

Actions Overview
5/21/2019 • 7 minutes to read

AREA SYNTAX USED ON DESCRIPTION EXAMPLE

Actions menu area(processing) Role Center, list, card,
and task pages

User tasks Post a sales order

New document
group in Actions
menu

area(creation) List, card, Role Center
pages, and task
pages

Actions that appear
under the New
group. Opens a new
Dynamics 365
document.

New sales invoice

Navigate menu area(navigation) List, card, and task
pages

Links to other pages
in Dynamics 365
Business Central.

Prices

Report menu area(reporting) Role Center, list, card,
and task pages

A list of available
reports.

Customer Top 10 List

AREA SYNTAX USED ON DESCRIPTION EXAMPLE

Navigation menus area(sections) Role Center pages The top-level
navigation consists of
one or more root
items that expand to
display a submenu of
links to other pages.

Posted sales invoices

Navigation bar area(embedding) Role Center pages The second-level
navigation displays a
flat list of links to
other pages.

Customers

In Dynamics 365 Business Central, actions are displayed at the top of each page, referred to as the action bar. In
this topic, you learn about different types of actions, and how you can enable users to quickly locate the actions
they want to use.

The actions can be displayed in different menus on the action bar.

You can choose from the following action menus to place the actions in the specified area.

The following Actions are related to the Role Center page.

TIP

Types of Actions

Actions menu

New Document menu

For more information about actions used on the role center page, see Designing Role Centers.

If you used to work in Microsoft Dynamics NAV, you can get an overview of the mapping between actions in the
Differences in the Development Environments topic.

Each page has a different set of actions depending on the page type, and the processes that the page supports.
In order to create the appropriate set of actions for a particular page, you should have a good understanding of
your customer's business processes.

Each process in an organization has several actions associated with it. You should try to create a full set of
actions that mirror all tasks and processes that are performed.

Example: The Sales Orders list page at CRONUS International contains all actions related to processing sales
orders. During user configuration and personalization, some of these actions may be hidden or promoted to the
ribbon. Therefore, you must create a full set of actions for the customer.
Pages can have the following actions as described in each section below.

The Actions menu is a displayed in the action bar on all page types, and contains relevant tasks for the current
page. Typically, you add processing tasks and creation tasks in the Actions menu. To add processing actions such
as posting a sale order, you must use the processing action area. They are regular daily tasks. Therefore, they
must be on the Actions menu. For examples on how to add actions to the Actions menu, see Adding Actions to
a Page.

Some examples from the Customer page are as follows:

Sales Invoice

Sales Quote

Sales Credit Memo

Ledger Entries

Invoice Discounts

Prices

Line Discounts

You can add actions to the Actions menu, group actions together under action sub menus, or promote them to
the ribbon. For examples of how to use actions, see Page Object and Page Extension Object.

The New Document menu is often displayed both as a top-level menu in the actions bar and as a sub menu in
the Actions menu. You can use this menu to open new documents within Dynamics 365. You can add an action
to create a new document such as creating a new sales invoice. This action displays in a separate menu called
New document in the Actions menu. To add to the New document menu, you must use the creation action
area.

Example: On the Customers page, if the order processor wants to create a new invoice, she can open the new
page directly from the Actions menu. This is useful as she creates new sales invoices daily.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-differences

Navigate menu

NOTE

Report menu

Promoted Actions

Actions at runtime

if confirm('Are you sure you want to call this codeunit?', true) then begin
 CurrPage.SetSelectionFilter(Rec);
 codeunit.Run(50000, Rec);
end;

See Also

The Navigate menu is displayed after the Actions menu in the action bar. Rather than providing tasks for the
user, this menu provides additional information by taking the user to a specific page in Dynamics 365. To add a
page link in the Navigate menu, you must use the navigation action area. These actions act like a bookmark to
enable quick access to view a page.

You should not add a Navigation action to a Role Center page.

The Report menu is displayed after the Navigate menu in the action bar. The Reports menu lists the reports
most relevant to a page. If a user does not require a Report menu, then the menu is hidden. Sometimes it is
relevant to promote the most important reports to the top-level in the action bar to save the user from too
many clicks. To create an action in the Report menu, you must use the reporting action area.

Promoted actions are actions that are set up on the Actions, Navigate, or Reports menus in the action bar, but
are also configured to display in custom menus in the action bar. Although the actions are set up on the Actions,
Navigate, or Report menus, you can choose to hide them on these menus and only show them in custom menus
. For more information on how to add promoted actions, promoted categories and example, see Promoted
Actions.

An action can trigger code to run, such as posting a document or otherwise modifying a record in a table. When
a user chooses an action, one of the following pieces of logic will happen in addition to the code that the action
itself triggers:

If the page is empty and no longer shows any records, the page is re-initialized with default values.

If the page does show records, and the current state is within the page filters boundary, the
OnAfterGetRecord trigger is executed on the page.

If the current record that the page showed is now outside the filter but there are other records within the
filter, the OnFindRecord trigger is called and the OnAfterGetRecord trigger is run on the next record
with the given filters.

The logic runs in the transaction that the action triggered. This can cause the application code to result in users
locking the whole table when they thought they were only modifying one record.

To avoid users accidentally locking tables, you can use the SetSelectionFilter method before your code passes
the record variable to the processing codeunit, for example. The following code example illustrates the code on
the OnAction trigger on an action on a page.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/page/page-setselectionfilter-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onaction-trigger

AL Development Environment
Developing Extensions in AL
Pages Overview

Adding Actions to a Page
3/31/2019 • 4 minutes to read

TIP

To add Actions to a Page

NOTE

Set an icon to an action

Example

This topic shows how to create new actions, how to add actions to a page, and how to preview them in the
Dynamics 365 web client. In Dynamics 365, actions can be displayed in the action bar of all pages and grouped
together under the following actions menus:

Promoted action categories
Actions
Navigate
Report

Before putting an action on a page you should think about the business processes that the action supports. For
example, on page 42, the Sales Orders list page, the Actions button contains actions for all tasks related to
processing sales orders. Creating these actions can make it easier for the order processor to perform their daily
tasks, such as posting sales orders and creating new customer orders.

For more information about different types of actions and where to use them, see Actions Overview.

After you have added actions to a page, you can use Designer to alter the actions, like moving an action to or from a
promoted category, hiding and action or action group, and more. For more information, see Using Designer.

The page actions are displayed on the header section. There are multiple tabs to help navigate to the right item.

In order to add actions to the action bar, you must use the keywords with Anchors or Targets. These keywords are
used to place and move the actions around in the tab groups. For more information about adding, moving, and
modifying actions, see Using Keywords to Place Actions and Controls.

Actions can only be linked to a page, or to a group control. Actions cannot be linked to fields, or parts on a page.

Dynamics 365 Business Central includes images that you can use on actions in command bar menus and
promoted actions on the ribbon. To add an image to an action, you add the Image property and you must provide
the name of the image you that want to use from the Dynamics 365 Business Central Action icon library. By
default, the size of images is 16 pixels high by 16 pixels wide. For promoted actions, you can choose to display
larger images that are 32 pixels high and 32 pixels wide. For more information, see Image Property.

The following example shows how to use different action areas on a page object of the PageType Card. These
actions will display in the following menus in the action bar.

1. Actions menu: The area(Processing) action area is used to display the action in the Actions menu. This action
uses the Promoted and PromotedCategory properties in order to display the action in the promoted actions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-image-property

menu called Process.
2. New Document group: The area(Creation) action area is used to display the action in the New document

group in the Actions menu. Also, this action uses the Image property to display a form icon instead of a
default icon.

3. Navigate menu: The area(Navigation) action area is used to display the action in the Navigate tab. This action
and other actions in this example uses the RunObject property to assign a page to the action.

4. Report menu: The area(Reporting) action area is used to display this action in the Report menu, and also a
Group control is added as a submenu to this menu. It sets the Caption property to make the action group
visible in the Reports menu.

page 50110 PageName
{
 PageType = Card;

 actions
 {
 // Adds the action called "My Actions" to the Action menu
 area(Processing)
 {
 action("My Actions")
 {
 Promoted = true;
 PromotedCategory = Process;
 ApplicationArea = All;
 trigger OnAction()
 begin
 Message('Hello World');
 end;
 }
 }

 area(Creation)
 {
 // Adds the action "My New document" to the New Document group in the Actions menu.
 action("My New document")
 {
 ApplicationArea = All;
 RunObject = page "Customer Card";
 Image = "1099Form";
 }
 }

 area(Navigation)
 {
 // Adds the action called "My Navigate" to the Navigate menu.
 action("My Navigate")
 {
 ApplicationArea = All;
 RunObject = page "Customer Card";
 }
 }

 area(Reporting)
 {
 // Adds a submenu called "My Label" to the Report menu.
 group(NewSubGroup)
 {
 Caption = 'My label';
 group(MyGroup)
 {
 // Adds the action "My Report" to the My Label submenu.
 action("My Report")
 {
 ApplicationArea = All;
 RunObject = page "Customer Card";
 }
 }
 }
 }
 }
}

NOTE

See Also

Actions can be assigned to a page by setting the RunObject property, or by adding a trigger to a Codeunit. For more
information, see RunObject Property and Codeunit Triggers.

The promoted action menus are always displayed first so the promoted actions provide quick access to common
tasks, and users do not have to browse through a menu to access them. Add the Promoted property to add
actions to the a promoted action menu. For more information on how to add promoted actions, promoted
categories, and examples, see Promoted Actions.

You can assign different icons for your actions from the Dynamics 365 image library. For more information, see
Image Property.

Actions Overview
Pages Overview
Promoted Actions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-runobject-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-image-property

Promoted Actions
3/31/2019 • 4 minutes to read

ACTION TYPE USED ON DESCRIPTION EXAMPLE

Promoted Actions List, card, Role Center
pages, and task pages

Provide quick access to
common tasks that appear
under the Home tab.

Post and print a sales order

Promote actions by category

PromotedActionCategories =
'New_caption,Process_caption,report_caption,category4_caption,category5_caption,category6_caption,category7_c
aption,category8_caption,category9_caption,category10_caption';

Promoted actions are actions that are set up on the Actions, Navigate, or Report menus in the action bar, but are
also configured to display on the Home tab. Although the actions are set up on the Actions, Navigate, or Report
tabs, you can choose to hide them on these menus and only show them on the Home tab.

The following table describes where you can use promoted actions.

You can promote any command from the existing actions menus to the ribbon. If there are no promoted actions,
the ribbon remains hidden. To promote an action on the Home tab, you set the Promoted property of the action.
If you want to display the action only on the Home tab, then you add an additional step to set the
PromotedOnly property. For more information, see Promoted Property and PromotedOnly Property.

Promoted actions can be grouped. You can add promoted actions by different grouped categories. Typically,
promoted actions are displayed in the ribbon of the role center client. You can organize promoted actions into
different categories, where each category is indicated by a caption in the ribbon. You define up to 10 categories
for a page. The following figure illustrates a page that has promoted actions under the following categories.

New Document
Request Approval
Customer

You assign a promoted action to a category by setting the PromotedCategory property of the action. By
default, these category names correspond to the captions that are displayed for the category on the page in
Dynamics 365 Business Central. You will typically want to change the captions, especially the Category4 through
Category10 captions. See the table below for the default PromotedCategory values. To change the default
captions, set the PromotedActionCategories property. You type the values of the
PromotedActionCategories where each caption is separated with a comma as shown below:

The position of the caption in the list determines its corresponding category setting in the PromotedCategory

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-promoted-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-promotedonly-property

PROMOTEDACTIONCATEGORIES CAPTION
POSITION DEFAULT PROMOTEDCATEGORY VALUES EXAMPLE

First New New_caption

Second Process Process_caption

Third Report Report_caption

Fourth Category4 Category4_caption

Fifth Category5 Category5_caption

Sixth Category6 Category6_caption

Seventh Category7 Category7_caption

Eighth Category8 Category8_caption

Ninth Category9 Category9_caption

Tenth Category10 Category10_caption

Assigning an icon to the promoted actions

Example

page 50103 Customers
{
 PageType = Card;
 SourceTable = Customer;

property for the actions as described in the table below.

You can change category captions on a page-by-page basis and for each Dynamics 365 Business Central
Windows client language.

For more information about these properties, see PromotedCategory Property and PromotedActionCategories
Property.

Each promoted action has an icon associated with it. You can accept a default icon, or choose your own from the
Dynamics 365 Business Central image library by using the Image property, where each promoted action has an
icon associated with it. Also, you can use a larger icon that makes it more prominent to the user by using the
PromotedIsBig property. For more information, see Image Property and PromotedIsBig Property.

The example shows how to promote actions on a Customers page using different properties:

1. The actions in the example are promoted to display in the New Document, Request Approval and
Customer groups on the Home tab.

2. The Sales Quote and Sales Invoice actions are promoted to the ribbon and grouped in a category called
New Document.

3. The PromotedCategory value; Category5 corresponds the caption position in the PromotedActionCateogories

value with the New Document caption.
4. Each promoted action in the example is assigned to a unique icon. Additionally, to display bigger icons, the

Sales Quote and Contact actions are set with the PromotedIsBig property.
5. The Sales Quote and Send Approval Request actions are set to appear only on the Home tab.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-promotedcategory-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-promotedactioncategories-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-image-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-promotedisbig-property

 SourceTable = Customer;
 PromotedActionCategories = 'New,Process,Report,Manage,New Document,Request Approval,Customer,Page';

 actions
 {
 area(Creation)
 {
 action("Sales Quote")
 {
 Promoted = true;
 PromotedCategory = Category5; // PromotedActionCategories = New Document
 PromotedOnly = true;
 PromotedIsBig = true;
 Image = NewSalesQuote;
 ApplicationArea = All;
 trigger OnAction()
 begin
 Message('Create sales quote');
 end;
 }
 action("Sales Invoice")
 {
 Promoted = true;
 PromotedCategory = Category5; // PromotedActionCategories = New Document
 Image = SalesInvoice;
 ApplicationArea = All;
 trigger OnAction()
 begin
 end;
 }
 }
 area(Processing)
 {
 action("Send Approval Request")
 {
 Promoted = true;
 PromotedOnly = true;
 PromotedCategory = Category6; // PromotedActionCategories = Request Approval
 Image = SendApprovalRequest;
 ApplicationArea = All;
 trigger OnAction()
 begin
 end;
 }
 action("Cancel Approval Request")
 {
 Promoted = true;
 PromotedCategory = Category6; // PromotedActionCategories = Request Approval
 Image = CancelApprovalRequest;
 ApplicationArea = All;
 trigger OnAction()
 begin
 end;
 }
 }
 area(Navigation)
 {
 action(Contact)
 {
 Promoted = true;
 PromotedCategory = Category7; // PromotedActionCategories = Customer
 PromotedIsBig = true;
 Image = CustomerContact;
 ApplicationArea = All;
 trigger OnAction()
 begin
 end;
 }
 action("Account Details")
 {

 {
 Promoted = true;
 PromotedCategory = Category7; // PromotedActionCategories = Customer
 Image = Account;
 ApplicationArea = All;
 trigger OnAction()
 begin
 end;
 }
 }
 }
}

See Also

For more examples of how to use actions, see Page Object and Page Extension Object.

Actions Overview
Adding Actions to a Page
AL Development Environment
Developing Extensions in AL
Pages Overview

Inspecting and Troubleshooting Pages
5/3/2019 • 5 minutes to read

Working with Page Inspection

The Business Central Web client includes a page inspection feature that lets you get details about a page, providing
insight into the page design, the different elements that comprise the page, and the source behind the data it
displays. Page inspection helps you:

Learn the data model behind a page.
Discover pages and parts that can be reused in your application design.
Troubleshoot data issues without having to perform tasks like copying the production database, viewing the
entire source table, or digging into SQL.
Debug the application, complementing Designer.

You start page inspection from the Help & Support page. Choose the question mark in the top right corner,
choose Help & Support, and then choose Inspect pages and data. Or, you can just use the keyboard shortcut
Ctrl+Alt+F1.

The Page inspection pane opens on the side. The following figure illustrates the Page Inspection pane on the
Sales Order page.

When the Page Inspection pane first opens, it shows information that pertains to the main page object.

Use the keyboard or pointing device to move focus to different elements on the page. When you select a FactBox
or a part on the main page, the bounding area is highlighted by a border, and the Page Inspection pane shows
information about the selected element. For example, the previous figure shows information about the list part in

What Page Inspection Shows

NOTE

Elements shown with limited information

the Sales Order page.

As you navigate to other pages in the application, the Page Inspection pane will automatically update with page
information as you move along.

In short, the page inspection pane shows the information for the main page or sub-page in a part, the page's
source table (if any) and fields, extensions that affect the page, and current filters applied to the page. The following
sections describe details about what is shown.

If you do not see all details described below, you might not have the required permissions. For more information, see
Controlling Access to Page Inspection Details.

Page
Table
Table Fields
Extensions
Page Filters

The Page field shows information about the main page or a selected (highlighted) sub-page in a part. The field
shows the following information:

The name, as specified by its Name property
The ID as specified by the ID property.
The type, as specified by the PageType property.

Role Center pages

If a page has the type Role Center, the Table field does not appear. Because the Role Center consists of
several parts, there is no more information shown. To see more details, select the different parts that make
up the Role Center.

Report request pages and previews

If you open a report request page or preview for inspection, the only information that is shown in the Page
Inspection pane is the report's name and ID.

System parts, such as Links or Notes, and parts containing charts.

https://docs.microsoft.com/dynamics365/business-central/across-inspect-page?#controlling-access-to-page-inspection
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-name-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-id-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-pagetype-property

Control Add-in Style Guide
3/31/2019 • 5 minutes to read

Introduction

IMPORTANT

Colors

Main colors

COLOR NAME USE HEX VALUE

Primary color Prominent UI elements and
areas.

#00B7C3

Secondary color UI elements and areas in
default or subdued state.

#505C6D

Style colors

This article offers a variety of stylistic definitions that are used throughout Dynamics 365, which you can apply to
your control add-ins to create an experience that complements Dynamics 365.

Control add-ins for Dynamics 365 extend a business solution by surfacing contextual functionality alongside
business data. Control add-ins empower users to get more done without costly context switching, no matter which
device they access Dynamics 365 from. Typical uses of control add-ins include unique data visualizations, surfacing
controls from a third party service, or displaying related content from another data source.

Apart from the functionality, an important aspect of creating a control add-in is making sure the control add-in
looks good and blends seamlessly into Dynamics 365. To achieve this, you should follow these basic principles:

Apply similar patterns for command, navigation and presentation of data.
Favor content over chrome
Design for all platforms and input methods.
Make it accessible to all users.
Make it enjoyable and keep users in control.

Dynamics 365 uses a set of specific colors and fonts. You can employ these colors and fonts in your control add-ins
to give it a style that matches the rest of client's user interface.

This article is currently in progress and contents will change.

Choosing the right color gives the interface visual continuity. Color can be used to convey information to users,
indicate interactivity, give feedback, and more. The following sections describe the colors used in Dynamics 365.
The colors can be used on all aspects of a UI element, such background, border, text, and more.

The following colors represent the Dynamics 365 theme main palette.

The following colors are used to express or accent conditions or user activity in the UI. For example, these colors

COLOR DESCRIPTION HEX VALUE

Standard #212121

Accent #00B7C3

Strong #212121

Favorable #35AB22

Ambiguous #9F9700

Unfavorable #EB6965

Attention #EB6965

Subordinate #A7ADB6

More palette colors

COLOR DESCRIPTION HEX VALUE

Yellow #C9C472

Green #88CE81

are used as sentiments, or color indication, on Cues.

The following table includes additional colors that you can use in the UI.

Red #E97768

Blue #75B5E7

Light green #59CCB4

Sky 75D8E7

Egg EEEA86

Orange #E89E63

Violet #DBBDEB

Teal #39B294

Grass #73BA5A

Scarlet #E65E6D

COLOR DESCRIPTION HEX VALUE

Chart colors
The following table describes the colors used in charts.

COLOR DESCRIPTION HEX VALUE

- #505C6D

- #008089

Primary color #00B7C3

Yellow #C9C472

Red #E97768

Blue #75B5E7

Light green #59CCB4

Sky 75D8E7

Egg EEEA86

Violet #DBBDEB

Teal #39B294

Grass #73BA5A

Applying colors

PROPERTY DESCRIPTION

color Specifies font color.

background-color Specifies background colors.

border-color Specifies Border colors.

.my-ui-part {
 background-color: #505C6D;
}

.my-caption {
 color: #00B7C3;
}

Typography

Font Families

EXAMPLE NAME VALUE

Segoe UI "Segoe UI", "Segoe WP", Segoe,
device-segoe, Tahoma, Helvetica,
Arial, sans-serif

Segoe UI Light "Segoe UI Light", "Segoe WP
Light", device-segoe-light,
"Segoe WP Semilight", "Segoe UI",
"Segoe WP", Segoe, Tahoma,
Helvetica, Arial, sans-serif

Segoe UI Semilight "Segoe UI Semilight", "Segoe WP
Semilight", device-segoe-
semilight, "Segoe UI", "Segoe
WP", Segoe, Tahoma, Helvetica,
Arial, sans-serif

Segoe UI Semibold "Segoe UI Semibold", "Segoe WP
Semibold", device-segoe-semibold,
"Segoe UI", "Segoe WP", Segoe,
Tahoma, Helvetica, Arial, sans-
serif

To apply a color scheme to the control add-in, you specify CSS rule-sets that use the following properties:

For example, to change the background of a part of your UI to use the Secondary (#505C6D) color, write the
following CSS:

If you want to change the text color of a caption to the Primary (#00B7C3) color, use the following CSS:

The main goal of typography is to provide clean and readable text in the user interface. Similar to colors, typgraphy
can also be used to convey or communicate conditions to the user.

Dynamics 365 uses the following font families to specify the typeface and weight for text elements, such as
headings, captions, messages, and so on:

Bahnschrift webclient-standard, device-
standard, "Segoe UI", "Segoe WP",
Segoe, Tahoma, Helvetica, Arial,
sans-serif

EXAMPLE NAME VALUE

Sizes

EXAMPLE NAME VALUE

largest-plus-font-size 37.5pt

largest-font-size 30pt

large-plus-font-size 22.5pt

large-font-size 18pt

medium-plus-font-size 15pt

medium-font-size 13.5pt

small-plus-font-size 12pt

small-font-size 10.5pt

smallest-font-size 9pt

Applying Font Families and Sizes

Dynamics 365 uses the following font sizes for text. The same font family on different clients may apply different
sizes.

To apply fonts and sizes to text elements in the UI, you need specify the following CSS properties:

Font family. use property font-family .
Font size. use property font-size .

For example, to change a UI element for the Web client to use the font family Segoe UI Light and the size Small

.my-ui-part {
 font-family: "Segoe UI Light", "Segoe WP Light", device-segoe-light, "Segoe WP Semilight", "Segoe UI",
"Segoe WP", Segoe, Tahoma, Helvetica, Arial, sans-serif;
 font-size: 10.5pt;
}

IMPORTANT

Example

<div class="addin">
 <div class="control">
 <div class="caption">Name:</div>
 <div class="value">
 <input type="text" name="name">
 </div>
 </div>

 <div class="control">
 <div class="caption">Surname:</div>
 <div class="value">
 <input type="text" name="name">
 </div>
 </div>

 <div class="control">
 <div class="submit">Submit</div>
 </div>
</div>

(10.5pt), write the following CSS:

To ensure that the correct fonts are used on devices, do not omit fonts or change the order of the fonts.

This examples illustrates how to use CSS to style a simple HTML UI part of a control add-in. The example includes
three UI controls, as shown in the following HTML code:

The following is CSS code for styling the controls, including padding, background colors, and fonts:

.addin {
 padding: 1em;
 background-color: #505C6D; /* Sets the background color to "Secondary" */
}

.addin .control {
 border-color: #00B7C3; /* Sets the border color to "Primary" */
}

.addin .control .caption {
 color: #00B7C3; /* Sets the captions to "Primary" */

 /* Segoe UI Light, small */
 font-family: "Segoe UI Light", "Segoe WP Light", device-segoe-light, "Segoe WP Semilight", "Segoe UI",
"Segoe WP", Segoe, Tahoma, Helvetica, Arial, sans-serif; /* Sets the font of the caption to ""Segoe UI Light"
*/
 font-size: 10.5pt;
}

.addin .control .value {
 color: #008089; /* Tertiary shade 2 */

 /* Segoe UI, medium */
 font-family: "Segoe UI", "Segoe WP", Segoe, device-segoe, Tahoma, Helvetica, Arial, sans-serif;
 font-size: 12pt;
}

.addin .control .submit {
 color: white; /* Sets the caption text to "white" */
 background-color: #00B7C3; /* Sets the background to "Primary */

 /* Segoe UI Semibold, medium */
 font-family: "Segoe UI Semibold", "Segoe WP Semibold", device-segoe-semibold, "Segoe UI", "Segoe WP",
Segoe, Tahoma, Helvetica, Arial, sans-serif;
 font-size: 12pt;
 text-transform: uppercase; /* Sets the caption to use all uppercase letters */
}

Reports Overview
3/31/2019 • 2 minutes to read

Creating reports

Getting started

TO SEE

Learn the overview of the report design process Report Design Overview

Understand the report structure and designing the layout for
a report.

Report Object

Understanding the data model and dataset of a report Defining a Report Dataset

Learn how to create a report using a word layout Creating a Word Layout Report

Learn how to create a report using an RDL layout report. Creating an RDL Layout Report

See Also

You can use reports to print or display information from a database. Use reports to structure and summarize
information to print documents, such as invoices. For example, create a report that lists all customers and orders
that have been added by each customer. Also, create a report that is automatically filled with the relevant
information for an invoice.

Reports can also be used to process data without printing or displaying content. For example, use a report to
automate updating all prices in an item list. It can be easier to create a report to process data instead of a codeunit
to do the same processing because you can use:

Request page functionality to select options and filters for data items, which are available in a report but are
difficult to add to a codeunit. For more information, see Request Pages.

Report data items instead of writing code to open tables and retrieve records.

Data modeling, which is available when you design reports.

Creating a report involves two primary tasks. First, you create a report object and design the dataset. The dataset
determines the data that is extracted or calculated from the Dynamics 365 Business Central database tables that
can be used in a report. After the dataset has been designed, you design the visual layout of the report. There are
two types of report layouts that you can create: layouts using report definition language (RDL) and Word report
layouts.

The following table includes links to help you get started with designing the reports.

Report Object
Creating a Report
Creating an RDL Layout Report

Report Design Overview
3/31/2019 • 2 minutes to read

Report object

Report dataset

Report layouts

RDL layout

IMPORTANT

Word report layout

A report is composed of the following items:

A report object

A report dataset

A report layout

A request page

Properties, triggers, and code

You design a report by first defining the dataset, and then designing the visual layout.

You create a report object in the AL Language development environment to define the data model, or dataset of a
report. You can structure and summarize information in a report and print documents, such as sales quotes and
invoices. For more information, see Report Object.

In order to define the underlying data model, you use the report dataset. A report dataset determines the data that
is extracted or calculated from the Dynamics 365 Business Central database tables that can be used in a report.
You build the report dataset by adding data items and columns. For more information, see Report Dataset.

The visual layout determines the content and format of a report when it is viewed and printed. You build the layout
of a report by arranging data items and columns and specifying the general format, such as text font and size. A
report that is viewed, printed, or saved from a Dynamics 365 Business Central client must have a report layout.
There are two types of report layouts: layouts using report definition language (RDL) and Word layouts.

To create an RDL layout report, you use Visual Studio Report Designer or Microsoft SQL Server Reporting
Services Report Builder. For more information, see Creating an RDL Layout Report.

RDL layouts can result in slower performance with document reports, regarding actions that are related to the user interface
(for example. like sending emails) compared to Word layouts. When developing layouts for document reports, we
recommend that you design Word layouts instead of RDL. With Word layouts, reports are not impacted by the security
constraints on sandbox appdomains like they are with RDL layouts. From a service perspective, RDL layouts are not trusted,
so they will run in a sandbox appdomain that only lives for the current report invocation.

You create Word layouts by using a Word Document. Word layouts are based on a Word document that includes a
custom XML parts that represents the report dataset. For more information, see Creating a Word Layout Report.

See Also
Reports
Report Object
Report Data Type

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/datatypes/devenv-report-data-type

Report Object
3/31/2019 • 3 minutes to read

NOTE

Snippet support

Report syntax

Reports are used to print or display information from a database. You can use a report to structure and summarize
information, and to print documents, such as sales quotes and invoices.

Creating a report consists of two primary tasks; the first task is to create the underlying data model and the next is
to define the visual layout that displays the data. The report object defines the underlying data model and specifies
which database tables and fields to pull data from. When the report is run, that data is displayed in a specified
layout; the visual layout, which determines the content and format of a report when it is viewed and printed.

For more information about defining database tables and fields, see Defining a Report Dataset.

You build the layout of a report by arranging data items and columns, and specifying the general format, such as
text font and size. There are two types of report layouts; client report definition, also called RDL layouts and Word
layouts. RDL layouts are defined in Visual Studio Report Designer or Microsoft SQL Server Reporting Services
Report Builder. Word layouts are created using Word. Word layouts are based on a Word document that includes a
custom XML part representing the report dataset.

Extension objects can have a name with a maximum length of 30 characters.

Typing the shortcut treport will create the basic layout for a report object when using the AL Language extension
in Visual Studio Code.

report Id MyReport
{
 UsageCategory = Administration;
 ApplicationArea = All;

 dataset
 {
 dataitem(DataItemName; SourceTableName)
 {
 column(ColumnName; SourceFieldName)
 {

 }
 }
 }

 requestpage
 {
 ContextSensitiveHelpPage = 'my-feature';
 layout
 {
 area(Content)
 {
 group(GroupName)
 {
 field(Name; SourceExpression)
 {
 ApplicationArea = All;

 }
 }
 }
 }

 actions
 {
 area(processing)
 {
 action(ActionName)
 {
 ApplicationArea = All;

 }
 }
 }
 }

 var
 myInt: Integer;
}

Report example

report 50103 "Customer List"
{
 CaptionML=ENU='Customer List';
 RDLCLayout = 'Customer List Report.rdlc'; // if Word use WordLayout property
 dataset
 {
 dataitem(Customer;Customer)
 {
 RequestFilterFields="No.","Search Name","Customer Posting Group";

The following example is a report that prints the list of customers. The report object defines a dataset of columns
from the Customer table. For more information on creating a Word Layout report, see Creating a Report.

 RequestFilterFields="No.","Search Name","Customer Posting Group";
 column(COMPANYNAME;COMPANYNAME)
 {
 }
 column(CurrReport_PAGENO;Customer."no.")
 {
 }
 column(Customer_TABLECAPTION_CustFilter;TABLECAPTION + ': ' + CustFilter)
 {
 }
 column(CustFilter;CustFilter)
 {
 }
 column(Customer_No;"No.")
 {
 }
 column(Customer_Customer_Posting_Group;"Customer Posting Group")
 {
 }
 column(Customer_Customer_Disc_Group;"Customer Disc. Group")
 {
 }
 column(Customer_Invoice_Disc_Code;"Invoice Disc. Code")
 {
 }
 column(Customer_Customer_Price_Group;"Customer Price Group")
 {
 }
 column(Customer_Fin_Charge_Terms_Code;"Fin. Charge Terms Code")
 {
 }
 column(Customer_Payment_Terms_Code;"Payment Terms Code")
 {
 }
 column(Customer_Salesperson_Code;"Salesperson Code")
 {
 }
 column(Customer_Currency_Code;"Currency Code")
 {
 }
 column(Customer_Credit_Limit_LCY;"Credit Limit (LCY)")
 {
 DecimalPlaces=0:0;
 }
 column(Customer_Balance_LCY;"Balance (LCY)")
 {
 }
 column(CustAddr_1;CustAddr[1])
 {
 }
 column(CustAddr_2;CustAddr[2])
 {
 }
 column(CustAddr_3;CustAddr[3])
 {
 }
 column(CustAddr_4;CustAddr[4])
 {
 }
 column(CustAddr_5;CustAddr[5])
 {
 }
 column(Customer_Contact;Contact)
 {
 }
 column(Customer_Phone_No;"Phone No.")
 {
 }
 column(CustAddr_6;CustAddr[6])
 {

 {
 }
 column(CustAddr_7;CustAddr[7])
 {
 }
 column(Customer_ListCaption;Customer_ListCaptionLbl)
 {
 }
 column(CurrReport_PAGENOCaption;CurrReport_PAGENOCaptionLbl)
 {
 }
 column(Customer_NoCaption;FIELDCAPTION("No."))
 {
 }
 column(Customer_Customer_Posting_GroupCaption;Customer_Customer_Posting_GroupCaptionLbl)
 {
 }
 column(Customer_Customer_Disc_GroupCaption;Customer_Customer_Disc_GroupCaptionLbl)
 {
 }
 column(Customer_Invoice_Disc_CodeCaption;Customer_Invoice_Disc_CodeCaptionLbl)
 {
 }
 column(Customer_Customer_Price_GroupCaption;Customer_Customer_Price_GroupCaptionLbl)
 {
 }
 column(Customer_Fin_Charge_Terms_CodeCaption;FIELDCAPTION("Fin. Charge Terms Code"))
 {
 }
 column(Customer_Payment_Terms_CodeCaption;Customer_Payment_Terms_CodeCaptionLbl)
 {
 }
 column(Customer_Salesperson_CodeCaption;FIELDCAPTION("Salesperson Code"))
 {
 }
 column(Customer_Currency_CodeCaption;Customer_Currency_CodeCaptionLbl)
 {
 }
 column(Customer_Credit_Limit_LCYCaption;FIELDCAPTION("Credit Limit (LCY)"))
 {
 }
 column(Customer_Balance_LCYCaption;FIELDCAPTION("Balance (LCY)"))
 {
 }
 column(Customer_ContactCaption;FIELDCAPTION(Contact))
 {
 }
 column(Customer_Phone_NoCaption;FIELDCAPTION("Phone No."))
 {
 }
 column(Total_LCY_Caption;Total_LCY_CaptionLbl)
 {
 }

 trigger OnAfterGetRecord();
 begin
 CALCFIELDS("Balance (LCY)");
 FormatAddr.FormatAddr(
 CustAddr,Name,"Name 2",'',Address,"Address 2",
 City,"Post Code",County,"Country/Region Code");
 end;

 }
 }

 requestpage
 {
 SaveValues=true;
 ContextSensitiveHelpPage = 'my-feature';
 layout

 layout
 {
 }

 actions
 {
 }
 }

 labels
 {
 LabelName = 'LabelText', Comment = 'Foo', MaxLength = 999, Locked = true;
 }

 trigger OnPreReport();
 var
 CaptionManagement : Codeunit 42;
 begin
 CustFilter := CaptionManagement.GetRecordFiltersWithCaptions(Customer);
 end;

 var
 FormatAddr : Codeunit 365;
 CustFilter : Text;
 CustAddr : ARRAY [8] OF Text[50];
 Customer_ListCaptionLbl : TextConst ENU='Customer - List';
 CurrReport_PAGENOCaptionLbl : TextConst ENU='Page';
 Customer_Customer_Posting_GroupCaptionLbl : TextConst ENU='Customer Posting Group';
 Customer_Customer_Disc_GroupCaptionLbl : TextConst ENU='Cust./Item Disc. Gr.';
 Customer_Invoice_Disc_CodeCaptionLbl : TextConst ENU='Invoice Disc. Code';
 Customer_Customer_Price_GroupCaptionLbl : TextConst ENU='Price Group Code';
 Customer_Payment_Terms_CodeCaptionLbl : TextConst ENU='Payment Terms Code';
 Customer_Currency_CodeCaptionLbl : TextConst ENU='Currency Code';
 Total_LCY_CaptionLbl : TextConst ENU='Total (LCY)';
}

See Also
Creating an RDL Layout Report
Creating a Word Layout Report
Adding Help Links from Pages, Reports, and XMLports
Page Extension Object
Page Properties
Developing Extensions
AL Development Environment

Defining a Report Dataset
3/31/2019 • 2 minutes to read

Snippet support

Example

dataset
{
 dataitem(Customer; Customer)
 {
 column(CustomerName; CustomerName)
 {
 }
 column(CompanyName; CompanyName)
 {
 }
 }
}

See Also

You use a report object in the AL Language development environment to define the data model, or dataset, of a
report. The dataset determines the data that is extracted or calculated from the Dynamics 365 Business Central
database tables that can be used in a report. For more information, see Report Object.

You build the report dataset from data items and columns. A data item is a table. A column can be:

A field in a table

A variable

An expression

A text constant

Typically, data items and columns correspond to fields in a table. When the report is run, each data item is iterated
for all records in the underlying table. Filters are applied and the dataset is created. When a report is based on
more than one table, you must set relations between the data items so that you can retrieve and organize the data.

Typing the shortcut treport will create the basic layout for a report object when using the AL Language
extension in Visual Studio Code.

The following example adds the Customer table as the data item and the CustomerName and CompanyName as fields
of a column to the report. For more information on creating a report, see Creating a Report.

Report Object
Reports Overview
Report Design Overview

Request Pages
3/31/2019 • 2 minutes to read

PROPERTY DESCRIPTION

RequestFilterHeading Property Sets a caption for the request page tab that is related to this
data item.

RequestFilterHeadingML Property Sets the text used as a RequestFilterHeading Property for a
request page tab.

RequestFilterFields Property Sets which fields are automatically included on the tab of the
request page that is related to this data item. The user can set
filters on these fields.

Filtering on request pages

report 50103 "Customer List"
{
 CaptionML = ENU = 'Customer List';
 RDLCLayout = 'Customer List Report.rdlc'; // if Word use WordLayout property
 dataset
 {
 dataitem(Customer; Customer)
 {
 RequestFilterFields = "No.", "Search Name", "Customer Posting Group";
...

NOTE

A request page is a page that is run before the report starts to execute. Request pages enable end users to specify
options and filters for a report. Request pages are defined as part of designing a report object. The syntax is shown
further down in this topic. You design the filters on request pages by using the following report properties:

In addition to specifying options and filters, users can choose from the following actions on a request page:

Print
Preview
Cancel
Help

The fields that you define as RequestFilterFields are shown on the request page. In addition, an end user can add
more fields on which to filter to the request page. Defining the RequestFilterFields property in dataitem() part
of the report code is done as illustrated in the example below:

For more information about the report object, see Report Object.

Set the SaveValues property to true in order to save the values that the end user enters on the request page.

We recommend that you add fields that the end users of the report will frequently set filters on.

By default, for every data item in the report, a FastTab for defining filters and sorting is created on the request

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-requestfilterheading-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-requestfilterheadingml-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-requestfilterfields-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-savevalues-property

See Also

page. To remove a FastTab from a request page, do not define any RequestFilterFields for the data item and set
the DataItemTableView property to define sorting. The request page is displayed, but there is no tab for this data
item.

If a DataItemTableView is not defined, then end users can select a sort field and sort order at runtime.

If you set the property UseRequestPage to No , then the report will start to print as soon as it is run. In this case,
end users cannot cancel the report run. It is still possible to cancel the report, but some pages may print.

In a complex report that uses data from several tables, the functionality may depend on a specific key and sort
order. Design your reports so that end users cannot change the sort order in a way that affects the functionality of
the report.

Report Object
Reports Overview
Report Design Overview
RequestFilterHeading Property|
RequestFilterHeadingML Property
RequestFilterFields Property
DataItemTableView

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-dataitemtableview-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-requestfilterheading-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-requestfilterheadingml-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-requestfilterfields-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-dataitemtableview-property

Adding Pages and Reports to Tell me
3/31/2019 • 3 minutes to read

The Business Central client includes the Tell me feature that lets users find objects and online help articles by
entering search terms. When you have added a page or a report in your extension, you most likely want it to be
discoverable to users in Tell me. In AL, you make a page or report searchable from Tell me by setting the
UsageCategory property in code. The UsageCategory setting will make the page or report searchable, and the
value chosen for the setting will further sub categorize the item.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-usagecategory-property

Working with the UsageCategory property

UsageCategory property values

VALUE DESCRIPTION

None The page or report is not included in search.

Lists The page or report is listed as Lists under the Pages and
Tasks category.

Tasks The page or report is listed as Tasks under the Pages and
Tasks category.

ReportsAndAnalysis The page or report is listed as Reports and Analysis under
the Reports and Analysis category.

Documents The page or report is listed as Documents under the
Reports and Analysis category.

History The page or report is listed as Archive under the Reports
and Analysis category.

Administration The page or report is listed as Administration under the
Pages and Tasks category.

Adding additional search terms

NOTE

Example

Tell me finds pages and reports by searching the captions that are specified on page and report objects by the
CaptionML property.

When you create a Page or a Report, you add the UsageCategory Property. If the UsageCategory is set to
None, or if you do not specify UsageCategory, the page or report will not show up when you search in
Dynamics 365 Business Central.

The values for the UsageCategory property are listed below. The sub category will help the user navigate
through the search results and it is a best practice to be consistent when categorizing the pages and the reports
that you add. A consistent approach will help guiding the user and improve productivity.

You can specify other words or phrases that can help users find a page or report by using the
AdditionalSearchTerms and AdditionalSearchTermsML properties. If the page or report is searchable by Tell
me (that is, th UsageCategory property is set a value other than None), the search terms specified by these
properties are used in addition to the caption of the page or report. These properties are useful when the
caption does not always reflect what users will look for. A good example of this in Business Central is pages and
reports associated with Item. Users unfamiliar with Business Central might look for 'product' or 'merchandise'
instead of 'item'.

For Business Central on-premises, the Business Central Web Server configuration file (navsettings.json) includes a setting
called UseAdditionalSearchTerms that enables or disables the use of additional search terms by the Tell me. For more
information, see Configuring Business Central Web Server Instances.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-caption-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-usagecategory-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-additionalsearchterms-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-additionalsearchtermsml-property

page 50210 SimpleItemList
{
 PageType = List;
 SourceTable = Item;
 UsageCategory = Lists;
 AccessByPermission = page SimpleItemList = X;
 ApplicationArea = All;
 AdditionalSearchTerms = 'product, merchandise';

 layout
 {
 area(content)
 {
 group(General)
 {
 field("No.";"No.") {}
 field(Name;Name) {}
 field(Description;Description) {}
 }
 }
 }
}

Optional settings

Working in the Dynamics NAV Development Environment

See Also

The following example creates a SimpleItemList page and sets a UsageCategory property to the page, so that
the SimpleItemList page is discoverable through search using the Tell me feature. Also, the example sets the
AdditionalSearchTerms property to add two search terms for the page.

In addition to making a page or report searchable, you can control the access of an object by providing Read,
Insert, Modify, Delete, and Execute (RIMDX) permissions by adding the AccessByPermission property.
Likewise, control the application area access on the specified object by adding the ApplicationArea Property.

The AccessByPermission property and ApplicationArea property are the optional settings, which can be
applied with the UsageCategory property. These settings are used to set restrictions on an object when you
enable the Search functionality.

If you are using the Dynamics NAV Development Environment, you can also set UsageCategory,
AdditionalSearchTerms, AccessByPermission, and ApplicationArea properties on pages and reports to control
their search.

After you change these properties by using the Dynamics NAV Development Environment, before the changes
take effect in the client, you must run Build Object Search Index from the Tools menu.

Adding Menus to the Navigation Pane
UsageCategory Property
Page Object
Report Object
AL Development Environment

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-accessbypermission-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-applicationarea-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-usagecategory-property

Testing Reports
3/31/2019 • 2 minutes to read

Example

TIP

codeunit 50105 MyReportTesting
{
 Subtype = Test;

 procedure TestingReports();
 var
 XmlParameters: Text;
 LibraryReportDataset: Codeunit "Library - Report Dataset";
 GenJournalLine: Record "Gen. Journal Line";
 begin
 // Run the Report Remittance Advice - Journal.
 XmlParameters := REPORT.RUNREQUESTPAGE(REPORT::"Remittance Advice - Journal");
 LibraryReportDataset.RunReportAndLoad(REPORT::"Remittance Advice - Journal", GenJournalLine,
XmlParameters);

 // Verifying Total Amount on Report.
 LibraryReportDataset.AssertElementWithValueExists('Amt_GenJournalLine', GenJournalLine.Amount);
 end;

 [RequestPageHandler]
 procedure RemittanceAdviceJournalRequestPageHandler(var RemittanceAdviceJournal: TestRequestPage 399);
 begin
 // Empty handler used to close the request page. We use default settings.
 end;
}

Testing your report requires you to run it and to verify the data output. This practice helps you ensure that your
customers are presented with complete and accurate data.

Before extensions, the output of a report was saved to a file, but extensions deployed to Dynamics 365 Business
Central cannot access the file system and therefore must save the output of a report to a stream. Codeunit 131007
Library - Report Dataset offers a high-level API for running and testing the output of reports that does not

require direct access to the file system.

The following example shows how to initialize the codeunit 131007 Library - Report Dataset by using the
RunReportAndLoad method. This method is preferred as it will run the report and initialize the
Library - Report DataSet codeunit. To verify the output, call either the AssertElementWithValueExists or the
AssertElementWithValueNotExist method. The other methods in the library should work as well if they do not

contain “Tag” in the name. RUNREQUESTPAGE and [RequestPageHandler] are optional and you can use them when you
want to open the request page.

If you want to run the report separately and load the data from the input stream manually, you can use the
LoadDataFromInstream method.

Any changes done in the handler above will result in the XmlParameters being changed and applied automatically
when the report runs. Examples of the implementation in the existing tests are in Codeunit 133770 and

Remarks

NOTE

See Also

Codeunit 134141 .

TestRequestPage.SaveAsXML uses a different format than REPORT.SAVEASXML or REPORT.SaveAs by
serializing the output of Report Previewer. This is a component that will be deprecated in the future and replaced
with the new methods that can be used for the new tests. Another difference is that TestRequestPage.SaveAsXML

requires files to be saved to disk and loaded, while other methods work in memory, making them more efficient.

The existing tests still need support and the codeunit solves this problem by supporting both formats for now.
TestRequestPage.SaveAsXML uses Tags for values, while the new format uses attributes. This means that you cannot use

any public method that contains "Tag" in the name to test the reports generated in the memory.

Reports Overview

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testrequestpage/testrequestpage-saveasxml-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/report-saveasxml-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/report-saveas-method

Creating a Word Layout Report
3/31/2019 • 2 minutes to read

Create a Word layout report

When you create a new report, there are two things you have to think about; defining the report dataset of data
items and columns, and then designing the report layout. These steps will show how to create a very simple
report based on a Word layout. For more information about the report object, see Report Object.

To facilitate testing your report layout, the following example extends the Customer List page with a trigger that
runs the report as soon as the Customer List page is opened.

1. Create a new extension to the Customer List page that contains code to run the report, as well as a simple
report object by adding the following lines of code:

pageextension 50100 MyExtension extends "Customer List"
{
 trigger OnOpenPage();
 begin
 report.Run(Report::MyWordReport);
 end;
}

report 50124 MyWordReport
{
 DefaultLayout = Word;
 WordLayout = 'MyWordReport.docx';
}

2. Build the extension (Ctrl+Shift+B) to generate the MyWordReport.docx file.
3. Add the Customer table as the data item and the Name field as a column to the report by adding the

following lines of code. For more information about defining a dataset, see Report Dataset.

dataset
{
 dataitem(Customer; Customer)
 {
 column(Name; Name)
 {

 }
 }
}

4. Build the extension (Ctrl+Shift+B).
5. Open the generated report layout file in Word.
6. In Word, edit the layout using the XML Mapping Pane on the Developer tab.

NOTE
If you do not see the Developer tab, go to Options, then Customize Ribbon, and in the Main tabs section, select
the Developer check box.

See Also

7. In Word, in the Custom XML part, locate the report, and then open the layout.
8. Right-click on the Customer table and select Repeating from Insert Content Control to add the repeater

data item.
9. Right-click on the Name field and select Plain Text from Insert Content Control to add the column as a

text box.
10. Save the report layout when you are done and close it.
11. Back in Visual Studio Code, press Shift+F5 to compile and run the report.

You will now see the generated report in preview mode.

Report Object
Creating an RDL Layout Report

Creating an RDL Layout Report
5/21/2019 • 2 minutes to read

IMPORTANT

Create an RDL layout report

When you create a new report for Dynamics 365 Business Central, there are two things you have to think about;
defining the report dataset of data items and columns, and then designing the report layout. These steps will
show you how to create a very simple report based on an RDL layout. For more information about the report
object, see Report Object.

RDL layouts can result in slower performance with document reports, regarding actions that are related to the user
interface (for example. like sending emails) compared to Word layouts. When developing layouts for document reports, we
recommend that you design Word layouts instead of RDL. With Word layouts, reports are not impacted by the security
constraints on sandbox appdomains like they are with RDL layouts. From a service perspective, RDL layouts are not trusted,
so they will run in a sandbox appdomain that only lives for the current report invocation.

To create and modify RDL report layouts, you use SQL Server Report Builder or Visual Studio Report Designer.
For information about required versions of these tools, see System Requirements.

To facilitate testing your report layout, the following example extends the Customer List page with a trigger that
runs the report as soon as the Customer List page is opened.

pageextension 50123 MyExtension extends "Customer List"
{
 trigger OnOpenPage();
 begin
 report.Run(Report::MyRdlReport);
 end;
}

report 50123 MyRdlReport
{
 DefaultLayout = RDLC;
 RDLCLayout = 'MyRDLCReport.rdl';

}

1. Create a new extension to the Customer List page that contains code to run the report, as well as a simple
report object by adding the following lines of code:

2. Build the extension (Ctrl+Shift+B) to generate the MyRDLCReport.rdl file.

3. Add the Customer table as the data item and the Name field as a column to the report by adding the
following lines of code:

See Also

dataset
{
 dataitem(Customer; Customer)
 {
 column(Name; Name)
 {
 }
 }
}

4. Build the extension (Ctrl+Shift+B). The file will be created in the root of the current project.

5. Open the generated report layout file in Microsoft SQL Server Report Builder.

6. Edit the layout by inserting a table.

7. Add the Name column from the datasets folder into the table and save the file.

8. Back in Visual Studio Code, press Shift+F5 to compile and run the report.

You will now see the generated report in preview mode.

Report Object
Creating a Word Layout Report

Web Client URL
3/31/2019 • 8 minutes to read

https://businesscentral.dynamics.com/?company=CRONUS%20International%20Ltd.&page=9305

http://businesscentral.dynamics.com/?company=CRONUS%20International%20Ltd.&report=5

IMPORTANT

URL Syntax

https://<hostname>[/<aadtenantid>][/sandbox]/?[company=<companyname>]&[page|report|table=<ID>]&[tenant=
<tenantID>]&[mode=<View|Edit|Create>]&[profile=<profileID>]&[bookmark=<bookmark>]&[captionhelpdisabled=<0|1>]&
[showribbon=<0|1>]&[shownavigation=<0|1>]&[showuiparts=<0|1>]&[redirect<0|1>]

Syntax Key

NOTATION DESCRIPTION

Text without brackets Parameters that you must type as shown.

<> A placeholder for values that you must supply. Do not include
the brackets in the address.

[] Optional parameters. Do not include the brackets in the
address.

| A set of values from which to choose. Use one of the options
and do not include | in the address.

There are several parameters that you can add to the Web client URL to manipulate what is displayed in the client,
such as opening a specific company, or targeting a specific page, report, or table. For example, the following URL
displays page 9305 Sales Order List for the CRONUS International Ltd. company:

The following URL opens report 5 Receivables – Payables for the same company:

This article describe how you can constuct URLs, which can be useful for including in other sources, such as emails
or Word documents, or sending as hyperlinks to other users.

Certain data in the URL, such as filters, could be considered sensitive information. Use discretion if you distribute URLs that
contain filters, or if it is possible, exclude this information from the address.

The Web client URL has the following syntax:

The URL consists of two parts, the hostname part and the query string. The hostname part includes the protocol
(https) and the hostname. The query string part includes everything after <hostname> . The query string
determines what content to target.

The following table describes the notation that is used to indicate the syntax.

Building the URL

URL Parameters

PARAMETER DESCRIPTION

https Specifies the Internet protocol to use. Only https is
supported.

hostname Specifies the hostname for Dynamics 365, for example,
businesscentral.dynamics.com .

aadtenantid Specifies the unique identifier for an Azure Active Directory
(AAD) tenant. The value can be formatted as a GUID or
domain name. This is useful to those who work across multiple
AAD organizations, such as delegated administrators, support
personnel or external accountants, because it allows explicitly
targeting an AAD tenant. If this is omitted, you will be directed
to the primary AAD tenant or the same AAD tenant that you
are currently signed in to.

sandbox Specifies that the URL should target the Dynamics 365
Business Central sandbox environment instead of a
production environment.

company The name of the company in Dynamics 365 which you want
to target.

If you only have one company, then you can omit this
parameter.

page Opens a page object.

report Opens a report object.

table Opens a table object. This requires special permissions. For
more information about opening a table, see Viewing Table
Data.

Use the following guidelines to write URL syntax and create a URL:

https://businesscentral.dynamics.com/?company=CRONUS%20International%20Ltd.&page=9305&mode=View

https://businesscentral.dynamics.com/?page=9305&mode=View&company=CRONUS%20International%20Ltd.

You can place parameters in any order after /? . For example, the following URLs will yield the same
results.

Separate parameters after /? with the ampersand symbol (&).

Use %20 for any spaces in values, or similar escape sequences for other characters which cannot be used in
URLs.

Enclose values in single quotation marks ('') if they are unescaped.

The following table describes the parameters of the URL for displaying a page.

ID The ID of the page, report, or table to open.

tenant (on-premises only) Specifies the ID of the tenant to connect
to. You must provide this parameter when Web client is
deployed in multitenant architecture. The tenant that you
specify must be mounted on the Dynamics 365 Business
Central service instance that the Web client connects to. For
more information, see Multitenant Deployment Architecture.

mode Specifies the mode in which to display the page.

- View

The page can only be viewed. The user cannot change data on
the page. Note: Worksheet page types only display in the edit
mode, even if the value is set to View .

- Edit

The user can change data on the page. Note: To use the edit
mode, the Editable Property of the page in Page Designer
must be set to Yes. This mode is not supported for pages of
the type List, RoleCenter, and CardPart. If you set the value to
Edit , pages of these types still display in the view mode. For

List type pages, the user can modify the list by choosing Edit
List on the page.

- Create

Opens a blank page that enables the user to create a new
item.

Note: The Create mode is not supported for pages of the
type CardPart, List, ListPart, RoleCenter, and Worksheet. For
pages of the type CardPart, List, and ListPart, the page
displays in the view mode. Do not use this mode for
Worksheet pages; otherwise you will get an error when you
try to open the page.

profile Specifies the ID of the profile to open.

bookmark Specifies a record in the underlying table of the page. The
value of a bookmark is an alphanumeric string of characters,
for example, 27%3bEgAAAAJ7CDAAMQA5ADAANQA4ADkAMw%3d%3 .

For the page types Card, CardPart, and Document, the
bookmark specifies the record that is shown in the page. For
page types List, ListPart, and Worksheet, the bookmark
specifies the record that is selected in the list on the page.

Important: Bookmarks are generated automatically. You can
only determine a value for the bookmark by displaying the
page in the Web client and looking at its address. Therefore, a
bookmark is only relevant when the address you are working
with has been copied from another instance of the page in the
Web client.

PARAMETER DESCRIPTION

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/deployment/Multitenant-Deployment-Architecture
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-editable-property

captionhelpdisabled Specifies that the ability to look up Help by selecting a field
caption is disabled.

If you want the Help look up from the field captions, either
omit this parameter or set its value to 0 , such as
captionhelpdisabled=0 .

If you do not want the Help lookup from field captions, set the
value to 1 , such as captionhelpdisabled=1 .

Note: The parameter needs to be added at the first request
when the user logs on to take effect, adding the parameter on
an existing session has no effect.

showribbon Specifies whether to show the Action bar on the specified
page when it opens.

If you want the Action bar, either omit this parameter or set
its value to 1 , such as showribbon=1 .

If you do not want the Action bar, set the value to 0 , such as
showribbon=0 .

Note: This parameter only works for pages of the list page
type.

shownavigation Specifies whether to show the navigation bar when the
specified page opens.

If you want the navigation bar, either omit this parameter or
set its value to 1 , such as shownavigation=1 .

If you do not want the navigation bar, set the value to 0 ,
such as shownavigation=0 .

Note: This parameter only works for pages of the list page
type.

showuiparts Specifies whether to show UI parts when the specified page
opens. The default value, if the parameter is not specified, is
1 which displays the UI parts. Use the value 0 to not show

UI parts.

If you want the UI parts, either omit this parameter or set its
value to 1 , such as showuiparts=1 .

If you do not want the UI parts, set the value to 0 , such as
showuiparts=0 .

Note: This parameter only works for pages of the list page
type.

PARAMETER DESCRIPTION

redirect Specifies whether users are presented with an option to
download the Business Central App when they open the Web
client in a mobile browser in order to improve the user
experience.

If you do not want to give users this option, set the value to
0 , such as redirect=0 .

extension Specifies the unique identifier (ID) of an extension that is
deployed on the tenant. This parameter is mainly used during
the development of the specified extension in a non-
production environment. When this parameter is set, only the
specifed extension is available in the client; all other extensions
are ignored and not visible. This enables you to isolate and
focus on the behavior of the specified extension only.

An extension ID is a 32-digit GUID, such as
72CC5E27-BD97-4271-AF55-F77E4471E493 . You set this

parameter using the format extension={GUID} , for example:

&extension={72CC5E27-BD97-4271-AF55-F77E4471E493}

You can determine an extension ID by opening the extension
in Visual Studio Code and looking in the app.json file, or by
running the Get-NAVAppManifest cmdlet on the extension
package.

PARAMETER DESCRIPTION

Filtering Data on the Page

Example

https://businesscentral.dynamics.com/?company=CRONUS%20International%20Ltd.&page=9305&filter='Sell-to Customer
No.' IS '10000' AND 'Location Code' IS 'BLUE'

Filter Syntax

&filter='<field>' IS '<value>'[AND '<field>' IS '<value>']

Filter Parameters

You can filter the data that is displayed in the page by using the filter parameter in the address. The filter parameter
enables you to display only records from the underlying table of the page that have specific values for one or more
fields.

The following address displays data in page 9305 only for the customer who has the Sell-to Customer
No.=10000 and the Location Code=Blue.

The filter has the following syntax.

You must include a space or %20 before and after the IS and AND operators. You can add the filter anywhere in
the address after /? .

The following table describes the filter parameters.

https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.apps.tools/Get-NAVAppManifest

PARAMETER DESCRIPTION

field The name of the table field on which to filter.

IS Specifies the equal operator.

value The value of the table field on which to filter.

AND Use this parameter to specify more than one filter. It specifies
an “and” operator for adding additional filters. Place AND

between each additional filter.

To be included in the page data, the table record must match
values for all fields in the filter.

See Also
Viewing Table Data

Linking to the Dynamics 365 Business Central App
3/31/2019 • 4 minutes to read

Constructing the URL

ms-businesscentral://[<hostname>][/<aadtenantid>][/sandbox]/[?<parameter>=<value>[&<parameter>=<value>]]

Parameters

PARAMETER DESCRIPTION EXAMPLE

hostname Domain name for the Dynamics 365 Business Central
solution or IP address of the computer/server that hosts
it. This is required for an ISV Embed solution. For
standard Business Central, you use
businesscentral.dynamics.com or you can omit this

parameter.

ms-
businesscentral://businesscentral.dynamics.com/

ms-businesscentral:///

ms-
businesscentral://businesscentral.mysolution.com/

aadtenantid The unique identifier for an Azure Active Directory (AAD)
tenant. The value can be formatted as a GUID or domain
name. This is useful to those who work across multiple
AAD organizations, such as delegated administrators,
support personnel or external accountants, because it
allows explicitly targeting an AAD tenant. If this is
omitted, you will be directed to the primary AAD tenant
or the same AAD tenant that you are currently signed in
to.

ms-
businesscentral://businesscentral.mysolution.com/mysolutionaadtenant.onmicrosoft.com

sandbox Specifies that the URL should target the Dynamics 365
Business Central sandbox environment instead of a
production environment.

ms-
businesscentral:/businesscentral.dynamics.com/sandbox/

ms-
businesscentral://businesscentral.mysolution.com/sandbox/

PARAMETER DESCRIPTION EXAMPLE

page The ID of the page that you want to open directly. ms-businesscentral:///?page=21

ms-
businesscentral://businesscentral.mysolution.com/?
page=21

The protocol handler for the Business Central App lets you construct a URL for starting the app on a device, such as a phone or tablet. You can then distribute
this URL by e-mail or from a Web page to the users.

The Business Central App URL is based on the ms-businesscentral URI scheme, which is registered automatically when the app is installed. Invoking a URL
based on this scheme will start the app with the provided parameters.

To construct a URL, start with ms-businesscentral scheme, and then add additional parameters as needed. Some parameters are required and others are
optional.

The structure of a Business Central App link is very similar to links for the Web client, and has the following syntax:

[] indicates an optional parameter ; all other parameters are required.

<> indicate values that you must supply. Do not include the brackets in the address.

The following table describes the parameters for the main part of the URL, which are the parameters up to and including [/sandbox]/ .

The following table describes the optional parameters that are indicated by [?<parameter>=<value>[&<parameter>=<value>]] in the syntax. These parameters are
referred to as the query parameters.

bookmark The bookmark of the record you want to open. The value
of a bookmark is an alphanumeric string of characters,
for example, 19%3bGwAAAAJ7BDEAMAAwADA%3d .

For the page types Card, CardPart, and Document, the
bookmark specifies the record that is shown in the page.
For page types List, ListPart, and Worksheet, the
bookmark specifies the record that is selected in the list
on the page.

Important: Bookmarks are generated automatically. You
can only determine a value for the bookmark by
displaying the page in the client and looking at its
address. Therefore, a bookmark is only relevant when the
address you are working with has been copied from
another instance of the page.

ms-businesscentral:///?
bookmark=19%3bGwAAAAJ7BDEAMAAwADA%3d

ms-
businesscentral://businesscentral.mysolution.com/?
bookmark=19%3bGwAAAAJ7BDEAMAAwADA%3d

filter The filter you want to apply to the page.

The filter parameter enables you to display only records
from the underlying table of the page that have specific
values for one or more fields. For more information
about filters, see Filtering Data on the Page.

ms-businesscentral:///?
page9305&filter='No.'%20IS%20'1001'

ms-businesscentral:///?page9305&filter='Sell-to-
Customer-No.'%20IS%20'10000'%20AND%20'Location-
Code'%20IS%20'BLUE'

ms-
businesscentral://businesscentral.mysolution.com/?
page9305&filter='No.'%20IS%20'1001'

ms-
businesscentral://businesscentral.mysolution.com/?
page9305&filter='Sell-to-Customer-
No.'%20IS%20'10000'%20AND%20'Location-
Code'%20IS%20'BLUE'

profile The name of the profile that you want to use in the
client. This determines the Role Center that is opened. If
not provided, the default profile is used. Business
Manager

ms-businesscentral:///?
profile=BUSINESS%20%MANAGER

ms-
businesscentral://businesscentral.mysolution.com/?
profile=BUSINESS%20%MANAGER

company The company that you want to open in the client. If not
provided, the default company is used.
CRONUS%20International%20Ltd.

ms-
businesscentral:///?'company=CRONUS%20International%20Ltd.'

ms-
businesscentral://businesscentral.mysolution.com/?'company=CRONUS%20International%20Ltd.'

mode Whether the page opens in view, edit, or create mode.
view only lets you see the data on the page, not

modify data. edit lets you to modify data on the page.
create lets you to modify data on the page and add

new entities.

ms-businesscentral:///?page=21&mode=create

ms-
businesscentral://businesscentral.mysolution.com/?
page=21&mode=create

PARAMETER DESCRIPTION EXAMPLE

See Also

The query parameters can be in any order. However, the first parameter must be preceded by the ? symbol, and any additional parameters must be preceded
by the & symbol.

Web Client URL

Working with Translation Files
5/21/2019 • 3 minutes to read

NOTE

IMPORTANT

Translation and Localization apps

Generating the XLIFF file

 "features": ["TranslationFile"]

IMPORTANT

Label syntax

Dynamics 365 Business Central is multilanguage enabled, which means that you can display the user interface
(UI) in different languages. To add a new language to the extension you have built, you must first enable the
generation of XLIFF files. The XLIFF file extension is .xlf. The generated XLIFF file contains the strings that are
specified in properties such as Caption and Tooltip.

To submit an app to AppSource, you must use .xliff translation files.

You can use the .xlf translation files approach only for objects from your extension. For translating the base application you
still need to use the .txt files approach. For more information, see the Translation and Localization apps section below.

The .xlf files approach cannot be used for translating the base application. If you are working on a translation or
localization app (for example for a country/region localization), you must take the .txt file containing the base
application translation, and place the file in the root folder of your extension. When the extension is compiled, the
.txt file is then packaged with the extension.

We recommend that you use only one .txt file per language. There is no enforced naming on the .txt files, but a
suggested good practice is to name it <extensionname>.<language>.txt .

For more information about importing and exporting .txt files, see How to: Add Translated Strings By Importing
and Exporting Multilanguage Files in Dynamics NAV.

To enable generation of the translation file, you must add a setting in the manifest. In the app.json file of your
extension, add the following line:

Now, when you run the build command (Ctrl+Shift+B) in Visual Studio Code, a \Translations folder will be
generated and populated with the .xlf file that contains all the labels, label properties, and report labels that you
are using in the extension. The generated .xlf file can now be translated.

Make sure to rename the translated file to avoid that the file is overwritten next time the extension is built.

The label syntax is shown in the example below for the Caption property:

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-develop-localization
https://docs.microsoft.com/en-us/dynamics-nav/how-to--add-translated-strings-by-importing-and-exporting-multilanguage-files

Caption = 'Developer translation for %1', Comment = '%1 is extension name', locked = false, MaxLength=999;

NOTE

labels
{
 LabelName='LabelText',Comment='Foo',MaxLength=999,Locked=true;
}

var
a:Label'LabelText',Comment='Foo',MaxLength=999,Locked=true;

The XLIFF file

The comment , locked , and maxLength attributes are optional and the order is not enforced. For more information, see
Label Data Type.

Use the same syntax for report labels:

And the following is the syntax for Label data types:

The ML versions of properties are not included in the .xlf file:

CaptionML
ConstValueML
InstructionalTextML
OptionCaptionML
PromotedActionCategoriesML
ReqFilterHeadingML
RequestFilterHeadingML
ToolTipML

The TextConst Data Type is not included in the .xlf file either.

In the generated .xlf file, you can see a <source> element for each label. For the translation, you will now have to
add the target-language and a <target> element per label. This is illustrated in the example below.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-captionml-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-constvalueml-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-instructionaltextml-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-optioncaptionml-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-promotedactioncategoriesml-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-reqfilterheadingml-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-requestfilterheadingml-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-tooltipml-property

<ding="utf-8"?>
<xliff version="1.2" xmlns="urn:oasis:names:tc:xliff:document:1.2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:oasis:names:tc:xliff:document:1.2 xliff-core-1.2-transitional.xsd">
 <file datatype="xml" source-language="en-US" target-language=”da-DK” original="ALProject16">
 <body>
 <group id="body">
 <trans-unit id="PageExtension 1255613137 - Property 2879900210" maxWidth="999" size-unit="char"
translate="yes" xml:space="preserve">
 <source>Developer translation for %1</source>
 <target>Udvikleroversættelse for %1</target>
 <note from="Developer" annotates="general" priority="2">%1 is extension name</note>
 <note from="Xliff Generator" annotates="general" priority="3">PageExtension - PageExtension</note>
 </trans-unit>
 </group>
 </body>
 </file>
</xliff>

NOTE

See Also

You can have only one .xlf file per language. If you translate your extension to multiple languages, you must have a
translation file per language. There is no enforced naming on the file, but a suggested good practice is to name it
<extensionname>.<language>.xlf .

When the extension is built and published, you change the language of Dynamics 365 Business Central to view
the UI in the translated language.

How to: Add Translated Strings By Importing and Exporting Multilanguage Files in Dynamics NAV

https://docs.microsoft.com/dynamics-nav/how-to--add-translated-strings-by-importing-and-exporting-multilanguage-files

Getting Started Developing Connect Apps for
Dynamics 365 Business Central
5/3/2019 • 7 minutes to read

Setting up basic authentication

Setting up Azure Active Directory (AAD) based authentication

A Connect app establishes a point-to-point connection between Dynamics 365 Business Central and a 3rd party
solution or service and is typically created using standard REST API to interchange data. Any coding language
capable of calling REST APIs can be used to develop your Connect app. In the following section you can read
about how you get started exploring the available APIs for Dynamics 365 Business Central.

To explore and develop against APIs in Dynamics 365 Business Central, you must first sign up for a trial tenant and
then you have to connect and authenticate. To do that, follow the steps below.

1. Sign up for Dynamics 365 Business Central.
When you have your tenant, you can sign into the UI to play with the product, as well as explore the APIs

2. There are two different ways to connect to and authenticate against the APIs.
Use Azure Active Directory (AAD) based authentication against the common API endpoint:
https://api.businesscentral.dynamics.com/v1.0/api/v1.0
Use basic authentication with username and password (a so-called web service access key) against the
common API endpoint that includes the user domain, for example
https://api.businesscentral.dynamics.com/v1.0/cronus.com/api/v1.0.

IMPORTANT
When going into production, you must use Azure Active Directory (AAD)/OAuth v2 authentication and the
common endpoint https://api.businesscentral.dynamics.com/v1.0/api/v1.0. For exploring and initial
development, you can use basic authentication.

In the following sections you can read more about setting up the two types of authentication and using both
authentication methods in Postman.

If you prefer to set up an environment with basic authentication just to explore the APIs, you can skip setting up
the AAD based authentication for now and proceed with the steps below. If you, however, want to go into
production, you must use AAD/Oauth v2 authentication, see the section Setting up Azure Active Directory (AAD)
based authentication.

1. To set up basic authentication, log into your tenant, and in the Search field, enter Users and then select the
relevant link.

2. Select the user to add access for, and on the User Card page, in the Web Service Access Key field, generate a
key.

3. Copy the generated key and use it as the password for the username.

Now that we have the username and password, we can connect and authenticate. You can do this from code, or
API explorers such as Postman or Fiddler. In the Exploring the APIs with Postman and basic authentication section
we will use Postman.

https://signup.microsoft.com/signup?sku=6a4a1628-9b9a-424d-bed5-4118f0ede3fd&ru=https%3A%2F%2Fbusinesscentral.dynamics.com%2FSandbox%2F%3FredirectedFromSignup%3D1
https://docs.microsoft.com/dynamics-nav/api-reference/v1.0
https://api.businesscentral.dynamics.com/v1.0/api/v1.0
https://api.businesscentral.dynamics.com/v1.0/cronus.com/api/v1.0
https://api.businesscentral.dynamics.com/v1.0/api/v1.0

 Exploring the APIs with Postman and basic authentication

Sign in to the Azure Portal to register Dynamics 365 Business Central as an app and thereby provide access to
Dynamics 365 Business Central for users in the directory.

NOTE

NOTE

1. Follow the instructions in the Integrating applications with Azure Active Directory article. The next steps
elaborate on some of the specific settings you must enable.

2. On the API permissions page for your app, click the Add a permission button.

3. Make sure the Microsoft APIs tab is selected. In the Commonly used Microsoft APIs section, click on the
Dynamics 365 Business Central and select Delegated permissions.

4. Ensure that the right permission is checked: user_impersonation. Use the search box if necessary.

5. Click the Add permissions button.

If Dynamics 365 does not show up in search, it's because the tenant does not have any knowledge of Dynamics 365.
To make it visible, an easy way is to register for a free trial for Dynamics 365 Business Central with a user from the
directory.

6. From the Certificates & secrets page, in the Client secrets section, choose New client secret:

Type a key description (of instance app secret),
Select a key duration of either In 1 year, In 2 years, or Never Expires.
When you press the Add button, the key value will be displayed, copy, and save the value in a safe
location.

You'll need this key later to configure the project in Visual Studio. This key value will not be displayed again, nor
retrievable by any other means, so record it as soon as it is visible from the Azure portal.

You have now set up the AAD based authentication. Next, you can go exploring the APIs, see the Exploring the
APIs with Postman and AAD authentication section below.

In this Hello World example, we are going over the basic steps required to retrieve the list of customers in our trial
tenant. This example is based on running with basic authentication.

1. First, in Postman, set up a GET call to the base API URL.

NOTE

When you call the base API URL, you will get a list of all the available APIs. You can append
$metadata to the URL to also get information about the fields in the APIs. The list of supported APIs

and fields information can also be found in the API documentation.

Since we are using basic authentication, we need to include the users domain in the URL, for
example, call GET https://api.businesscentral.dynamics.com/v1.0/<your tenant domain>/api/v1.0 .

The parameter <your tenant domain> is your default Azure Active Directory GUID.

2. On the Authorization tab in Postman select Basic Auth in the Type and provide the Username and Web
Service Access Key from above as password.

https://portal.azure.com
https://docs.microsoft.com/azure/active-directory/develop/quickstart-register-app
https://signup.microsoft.com/signup?sku=6a4a1628-9b9a-424d-bed5-4118f0ede3fd&ru=https%3A%2F%2Fbusinesscentral.dynamics.com%2FSandbox%2F%3FredirectedFromSignup%3D1

 Exploring the APIs with Postman and AAD authentication

Calling the API

3. Choose Send in Postman to execute the call, and inspect the returned body, which should include a list of
the APIs.

In this Hello World example, we are going over the basic steps required to retrieve the list of customers in our trial
tenant. This example is based on running with AAD authentication.

1. First, in Postman, set up a GET call to the base API URL.

2. On the Authorization tab in Postman select OAuth 2.0 in the Type and then choose Get New Access Token.
3. In the GET NEW ACCESS TOKEN window, enter the following information as specified below:

4. Choose the Request token button. The first time you log in, you will get prompted for consent.
5. Scroll down and choose Use token button.

An Authorization request header is now added containing the Bearer token.
6. Choose Send in Postman to execute the call, and inspect the returned body, which should include a list of the

APIs.

NOTE

When you call the base API URL, you will get a list of all the available APIs. You can append $metadata

to the URL to also get information about the fields in the APIs. The list of supported APIs and fields
information can also be found in the API documentation, for example, call
GET https://api.businesscentral.dynamics.com/v1.0/api/v1.0

In the Token name field, choose a descriptive name.
In the Grant type field, choose Authorization Code.
In the Callback URL field, specify the URL specified as the sign-on URL/Reply URL in the Azure Portal.
In the Auth URL field, specify a URL such as
https://login.windows.net/<your tenant domain>/oauth2/authorize?
resource=https://api.businesscentral.dynamics.com

.
In the Access Token URL field, specify a URL such as
https://login.windows.net/<your tenant domain>/oauth2/token?
resource=https://api.businesscentral.dynamics.com

.
In the Client ID field, enter the Application ID from the registered app in Azure Portal.
In the Client Secret field, enter the key generated under Keys that you copied in step 6 in the Setting up
Azure Active Directory (AAD) based authentication.
In the Client Authentication field, choose the Send client credentials in body option.

For OAuth for testing purposes, a multi-tenant AAD app has been created. Admin consent is needed before the
ADD app can be used. Information is as follows:

Grant Type: Implict
Callback URL: https://localhost
Auth URL: https://login.windows.net/common/oauth2/authorize?
resource=https://api.businesscentral.dynamics.com
Client ID: 060af3ac-70c3-4c14-92bb-8a88230f3f38

Each resource is uniquely identified through an ID, see the following example of calling GET <endpoint>/companies :

https://login.windows.net/common/oauth2/authorize?resource=https://api.businesscentral.dynamics.com

 {
 "@odata.context": "<endpoint>/$metadata#companies",
 "value": [
 {
 "id": "bb6d48b6-c7b2-4a38-9a93-ad5506407f12",
 "systemVersion": "18453",
 "name": "CRONUS USA, Inc.",
 "displayName": "CRONUS USA, Inc.",
 "businessProfileId": ""
 }
]
 }

See Also

The resource ID must be provided in the URL when trying to read or modify a resource or any of its children. The
ID is provided in parenthesis () after the API endpoint. For example, to GET the “CRONUS USA, Inc.” company
details, you must call <endpoint>/companies(bb6d48b6-c7b2-4a38-9a93-ad5506407f12)/ .

All resources, such as customers, invoices etc., live in the context of a parent company, of which there can be more
than one in the Dynamics 365 Business Central tenant. Therefore, it is a requirement to provide the company ID in
the URL for all resource API calls. To GET all customers in the “CRONUS USA, Inc.” company, we must call a GET
on the URL <endpoint>/companies(bb6d48b6-c7b2-4a38-9a93-ad5506407f12)/customers .

Using Deltas With APIs
Using Filtering With APIs
Tips for Working with APIs

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-connect-apps-delta
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-connect-apps-filtering
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-connect-apps-tips

Instrumenting an Application for Telemetry
6/25/2019 • 3 minutes to read

Telemetry overview

Creating custom telemetry events

SENDTRACETAG(Tag, Category, Verbosity, Message[, DataClassification])

PARAMETER DESCRIPTION

Tag A text string that assigns an identifier to the telemetry trace
event. The tag can consist of letters, numbers, and special
characters. Business Central system telemetry events use an
auto-generated, auto-incremented, 7-character tag that
includes numbers and letters, such as 000002Q. and
000013P. Try to make your tags unique from these telemetry
event tags by, for example, using at least 8 characters or a
prefix, like Cronus-0001 and Cronus-0002.

Category A text string that assigns the telemetry trace event to a
category that you define. For example, you could have a
category for upgrading, user activity, or reporting.

This article describes how you can implement custom telemetry trace events in your application for collecting
telemetry data. This data can then be collected and visualized for analyzing the application against the desired
business goals, troubleshooting, and more.

One aspect of event logging is collecting data about how the application and your deployment infrastructure is
working in order to diagnose conditions and troubleshoot problems that affect operation and performance. For
example, this type of event logging includes Dynamics NAV Server events and trace events like SQL and AL
method (function) traces.

Another aspect of event logging is telemetry, which is collecting data about how your application functions and
how it is being used in production. Telemetry can tell you about specific activities that users perform within the
application in the production environment. Telemetry is also a useful tool for troubleshooting, especially instances
where you are not able to reproduce the conditions experienced by the user or have no access to the user's
environment. Telemetry can be divided into different levels or categories, like: telemetry for engineering,
telemetry about the business, telemetry for customers.

By default, the Business Central application is instrumented to emit several system telemetry trace events that
are recorded in the event log. Custom telemetry trace events enable you to send telemetry data from anywhere
in the application code.

To create a custom telemetry event, you use the SENDTRACETAG method in code. You can use the
SENDTRACETAG method in any object, trigger, or method. The SENDTRACETAG method has the following
syntax:

You use the parameters to define the information about the telemetry trace event. This information is can be
consumed by event logging tools, and presented in different ways.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-sendtracetag-method

Verbosity An enumeration that specifies the severity level of the
telemetry trace event. The value can be Critical, Error,
Warning, Normal, or Verbose. This severity level can be used
by Dynamics NAV Server to filter out lower-level telemetry
trace events from being emitted. See Viewing and collecting
telemetry data.

Message A text string that specifies the descriptive message for the
telemetry trace event.

DataClassification A DataClassification data type that assigns a classification to
the telemetry trace event. For more information, see Data
Classifications.

PARAMETER DESCRIPTION

SENDTRACETAG('Cronus-0001', 'Action', VERBOSITY::Critical, 'This is a critical message.',
DATACLASSIFICATION::CustomerContent);
SENDTRACETAG('Cronus-0002', 'Action', VERBOSITY::Error, 'This is an error message.',
DATACLASSIFICATION::EndUserIdentifiableInformation);
SENDTRACETAG('Cronus-0003', 'Action', VERBOSITY::Warning, 'This is a warning message.',
DATACLASSIFICATION::AccountData);
SENDTRACETAG('Cronus-0004', 'Action', VERBOSITY::Normal, 'This is an informational message.',
DATACLASSIFICATION::OrganizationIdentifiableInformation);
SENDTRACETAG('Cronus-0005', 'Action', VERBOSITY::Verbose, 'This is a verbose message.',
DATACLASSIFICATION::SystemMetadata);

Viewing and collecting telemetry data

IMPORTANT

For example, the following code creates simple telemetry trace events for the five different severity levels.

For a simple test of this code, add it to the OnRun trigger of a codeunit, and then run the codeunit. Of course, you
can also call the code from other objects, triggers or functions as well.

Viewing and collecting telemetry data is done the same way as with other trace events emitted by Business
Central, for example, by using tools like Event Viewer, Performance Monitor, PerfView, or logman.

In Event Viewer, telemetry trace events can be viewed from Applications and Services Logs, in the
Microsoft > Dynamics365BusinessCentral > Common folder. The custom telemetry trace events are
recorded in the Admin folder. You should be aware that only events with severity level of Warning, Error,
and Critical will appear.

For more information, see Monitoring Business Central Server Events Using Event Viewer.

With other tools like Performance Monitor, PerfView, and logman, you can collect telemetry data by using
Microsoft-DynamicsNAV-Common as the event trace provider.

For more information, see Get Started Monitoring Events.

The Dynamics NAV Server instance includes a configuration setting called Diagnostic Trace Level (TraceLevel in the
customsettings.config file) that enables you to specify the lowest severity level of telemetry events to be recorded in the
event log, or even turn off telemetry event logging altogether. If you do not see the expected events, then verify the
Dynamics NAV Server instance configuration with an administrator. For information, see Configuring Business Central
Server.

See Also
Monitoring Business Central Server Events

Getting started with Microsoft .NET Interoperability
from AL
3/31/2019 • 2 minutes to read

IMPORTANT

Enabling .NET Interoperability

Declaring a .NET package

dotnet
{

}

dotnet
{
 assembly(mscorlib)
 {
 }
}

You can call .NET type members, including methods, properties, and constructors, from AL code. In this article we
will guide you through the process of creating an extension that uses .NET types.

.NET Interoperability is only available on-premise. If you want to use this functionality, you must set the
"target": "Internal" in the app.json file. For more information, see JSON Files.

.NET interoperability can only be used by applications that target on-premise deployments. See JSON Files for
more information on how to set the correct compilation target.

Using a .NET type in AL is a two-step process. First, you must declare the type in a dotnet package, and then
reference it from code using the DotNet type.

You start by declaring an empty dotnet package in your extension. See the example snippet below.

It is recommended to have only one package per extension that contains all the .NET types which you will be
using.

You continue by adding a declaration of the assembly that you will be referencing. For this example, we will use
the mscorlib assembly that contains the core .NET types. A dotnet package can contain an unlimited number of
assembly declarations. The name of the assembly must be the one defined in the assembly's manifest. See the
following example snippet.

By default, the compiler only knows about the location of the mscorlib assembly. You can reference any
compatible assembly by providing the compiler with a path to the assembly's containing folder. This can be
achieved by adding the path to assembly's containing folder to the "al.assemblyProbingPaths" setting.

NOTE

dotnet
{
 assembly(mscorlib)
 {
 type(System.DateTime; MyDateTime){}
 }
}

Using a .NET type from AL code

dotnet
{
 assembly(mscorlib)
 {
 type(System.DateTime; MyDateTime){}
 }
}

pageextension 50100 CustomerListExt extends "Customer List"
{
 trigger OnOpenPage();
 var
 now: DotNet MyDateTime;
 begin
 now := now.UtcNow();
 Message('Hello, world! It is: ' + now.ToString());
 end;
}

Publishing your extension

See Also

Any update to an assembly's code is not automatically detected by the compiler. If an assembly has changed, then you must
restart your development environment.

You continue by adding a reference to a type from the referenced assembly. In this example, we will use
System.DateTime from mscorlib and we will give it the alias MyDateTime . The type must be referenced using its

fully-qualified name. The alias is used for referencing the .NET type from code. If an alias is not provided, the
compiler will use the .NET type name. A .NET assembly declaration can contain any number of type declarations.
See the example below.

From this point on, we can reference the .NET type from AL code using its given alias, as shown in the example
below.

The AL Language extension, including the AL compiler, and the server to which you publish your code are
completely decoupled. When publishing, the server re-compiles your code and tries to resolve all the references to
external assemblies. In order for the compilation to succeed, the server must be able to locate and load all the
referenced assemblies and types.

The server will search the global assembly cache (GAC), the Add-ins folder, and the Add-in table. You must
manually install any custom assembly in one of these locations.

Getting Started with AL

.NET Control Add-Ins
Subscribing to Events in a .NET Framework Type
Serializing .NET Framework Types

.NET Control Add-Ins
3/31/2019 • 3 minutes to read

NOTE

In Dynamics 365 Business Central on-premises you can use existing .NET and Javascript control add-ins from the
AL Language through .NET interoperability. It is recommended that you convert your existing .NET and Javascript
add-ins to native AL control add-ins that are supported both on-premises and in the cloud. For more information
about native AL control add-ins, see Control Add-In Object.

To declare the usage of a .NET or Javascript add-in in AL, you need three critical pieces of information about the
.NET type that represent the interface of the add-in. These are the name of the assembly containing the add-in, the
name of the control add-in, and the name of the class that implements the control add-in. We will show how to
retrieve this information for the Microsoft.Dynamics.Nav.Client.PingPong control add-in that ships with Business
Central.

The name of the assembly can be retrieved from the AssemblyName element in the .csproj file associated with
the .NET project that represents the control add-in. In this case the name of the assembly is
Microsoft.Dynamics.Nav.Client.PingPong .

If you do not have access to the .csproj file , you can determine the name of the assembly by following the instructions
in How to: Determine an Assembly's Fully Qualified Name.

The following code sample contains the stub definition of the Microsoft.Dynamics.Nav.Client.PingPong .NET add-
in.

https://docs.microsoft.com/en-us/dotnet/framework/app-domains/how-to-determine-assembly-fully-qualified-name

namespace Microsoft.Dynamics.Nav.Client.PingPong
{

/// <summary>
/// Add-in for pinging the server from the client. The client will respond with a pong.
/// </summary>
[ControlAddInExport("Microsoft.Dynamics.Nav.Client.PingPong")]
public class PingPongAddIn : WinFormsControlAddInBase
{

 /// <summary>
 /// Event will be fired when the AddIn is ready for communication through its API
 /// </summary>
 [ApplicationVisible]
 public event MethodInvoker AddInReady;

 /// <summary>
 /// Event will be fired when the specified time by the ping has elapsed.
 /// </summary>
 [ApplicationVisible]
 public event MethodInvoker Pong;

 /// <summary>
 /// Starts the ping process.
 /// </summary>
 /// <param name="milliseconds">Number of milliseconds before ponging.</param>
 /// <remarks>If a milliseconds are less than the minimum then the MinimumValue is used.</remarks>
 [ApplicationVisible]
 public void Ping(int milliseconds)
 {
 ...
 }
}

}

dotnet
{
 assembly("Microsoft.Dynamics.Nav.Client.PingPong")
 {
 type("Microsoft.Dynamics.Nav.Client.PingPong.PingPongAddIn"; "Microsoft.Dynamics.Nav.Client.PingPong")
 {
 IsControlAddIn = true;
 }
 }
}

The next needed piece of information is the namespace-qualified name of the type annotated with the
ControlAddInExport attribute. This is the type that provides the implementation of the control add-in and which

exposes members annotated with the ApplicationVisible attribute to the AL runtime. In this example this is
Microsoft.Dynamics.Nav.Client.PingPong.PingPongAddIn .

The ControlAddInExport attribute's constructor takes as an argument the name of the control add-in, as
represented in the runtime, and in existing C/AL code. In this example, the name of the control add-in is
Microsoft.Dynamics.Nav.Client.PingPong . This was the last component needed to construct a declaration for this

.NET control add-in in AL. The name of the assembly is used in creating the assembly construct, the namespace-
qualified name of the type is used as the first element in the type declaration, and the name of the control add-in
is used as the alias of the type. You complete the declaration by setting the IsControlAddIn property to true. This
property is used to tell the AL compiler to treat the given type declaration as a .NET control add-in declaration.

You can now use the Microsoft.Dynamics.Nav.Client.PingPong from AL, just as you use a native control add-in.

page 50100 MyPage
{
 layout
 {
 area(Content)
 {
 usercontrol(PingPongControl; PingPongAddIn)
 {
 trigger Pong()
 begin
 Message('Pong received.');
 end;

 trigger AddInReady()
 begin
 Message('Ready');
 end;
 }
 }
 }
}

Remarks

See Also

Only members of the .NET type implementing the control add-in that are annotated with the
ApplicationVisibleAttribute will be accessible from AL. Usages of .NET control add-ins in C/AL are automatically

converted to AL by the Txt2Al conversion tool, but the code will only compile, if you manually insert the
declaration of the control add-in, as outlined above.

If within the same project you have a native AL control add-in and a .NET add-in with the same name, the .NET
add-in will be the one used.

Getting Started with AL
Control Add-In Object
Getting started with Microsoft .NET Interoperability from AL
Subscribing to Events in a .NET Framework Type
Serializing .NET Framework Types
How to: Determine an Assembly's Fully Qualified Name

https://docs.microsoft.com/en-us/dotnet/framework/app-domains/how-to-determine-assembly-fully-qualified-name

Subscribing to Events in a .NET Framework Type
3/31/2019 • 2 minutes to read

dotnet
{
 assembly(System)
 {
 type(System.Timers.Timer; MyTimer) {}
 type(System.Timers.ElapsedEventArgs; MyElapsedEventArgs) {}
 }
}

pageextension 50101 CustomerListExt extends "Customer List"
{
 var
 [WithEvents]
 timer: DotNet MyTimer;

 trigger OnOpenPage()
 begin
 SetupTimer();
 end;

 procedure SetupTimer()
 begin
 timer := timer.Timer(2000);
 timer.AutoReset := true;
 timer.Enabled := true;
 timer.Start();
 end;

 trigger timer::Elapsed(sender: Variant; e: DotNet MyElapsedEventArgs)
 begin
 // Print a message when this event is published
 Message('%1', e.SignalTime());
 timer.Stop();
 end;
}

With .NET Framework interoperability in Dynamics 365 Business Central objects, you can configure a DotNet
variable to subscribe to events that are published by a .NET Framework type. Events are handled by triggers in the
AL code of the Business Central object.

You start by declaring in AL the usage of two .NET types from the System assembly. The first type is
System.Timers.Timer and it will be used to generate .NET events. The second one is called
System.Timers.ElapsedEventArgs and it is required for creating a subscriber to the Elapsed event emitted by the
Timer type.

You can only subscribe to events that are emitted by global variables of the .NET type marked with the WithEvents

attribute. For all the global variables that are marked with this attribute, the compiler will expose the events
available on the type as triggers on the variable. The syntax for declaring these triggers is
{VariableName}::{EventName}(...ParameterList) , but IntelliSense will offer suggestions for the event name and

autocomplete the parameter list.

See Also
Getting started with Microsoft .NET Interoperability from AL
.NET Control Add-Ins
Serializing .NET Framework Types
Method Attributes

Serializing .NET Framework Types
3/31/2019 • 6 minutes to read

IMPORTANT

Making a Type Serializable

Basic Serialization Using SerializableAttribute

[Serializable]
public class MyObject
{
 code
}

Basic Serialization of Date Fields

Custom Serialization Using ISerializable Interface

In Microsoft .NET Framework, serialization is the process of converting an object into a format that can be
transmitted across a network connection. Microsoft .NET Framework interoperability uses serialization for
communication between client-side .NET Framework objects and server-side .NET Framework objects. When you
configure DotNet variables in a Dynamics 365 Business Central object, you can specify .NET Framework objects
to target either the Business Central Windows client or Business Central Server. In some cases, a client-side object
and a server-side object must communicate and share data, such as return values and parameters. The
serialization occurs when the following conditions are true:

When a server-side object is assigned to a client-side object, and vice-versa.

When a server-side object is passed as a parameter in a method call from the server to a client-side object,
and vice-versa.

Serialization requires that the .NET Framework types that are used by the DotNet variables are serializable. Many
types in the Microsoft .NET Framework class library are already serializable. If you are using a .NET Framework
type that cannot be serialized, then you must modify the type to make it serializable.

For the Business Central Web client, you cannot implement Microsoft .NET Framework interoperability objects that target
the client.

There are two ways that you can make a .NET Framework type serializable. You can implement basic serialization
by applying the System.SerializableAttribute attribute to the type or you can implement custom serialization by
using System.Runtime.Serialization.ISerializable interface.

Basic serialization uses the .NET Framework to automatically serialize an object. To implement basic serialization
on a type, you decorate the type with the SerializableAttribute class as shown in the following example.

This method requires that you have access to the source code of the .NET Framework assembly.

You can use basic serialization only if all data fields in the type are serializable. Fields that are calculated at runtime
cannot be serialized. If a field cannot be serialized, then at runtime, the serialization process will throw an
exception and the AL code execution will fail.

You can exclude fields from the serialization process by decorating the field with the
System.NonSerializedAttribute class.

http://go.microsoft.com/fwlink/?LinkID=262177
http://go.microsoft.com/fwlink/?LinkID=262178
http://go.microsoft.com/fwlink/?LinkID=262177
http://go.microsoft.com/fwlink/?LinkID=262179

Custom Serialization Example

To c r e a t e t h e c u s t o m se r i a l i z a t i o n o b j e c t

With custom serialization, you can create an object that controls the serialization of types in another object. This
method is useful when you do not have access to the source code of the assembly that contains the .NET
Framework types that you are implementing with .NET Framework interoperability. The custom object specifies
which types will be serialized and how serialization will be done.

To implement custom serialization, you create a class that implements the ISerializable interface, and decorate the
class with SerializableAttribute. In most cases, you must also implement the
System.Runtime.Serialization.ISerializable.GetObjectData method and a special constructor that is used when the
source object is deserialized. You use the GetObjectData method to populate the SerializationInfo the data that is
required to serialize the source object at runtime.

The common language runtime calls the constructor during deserialization to construct a replica of the source
object. The constructor takes two parameters, a SerializationInfo type and a
System.Runtime.Serialization.StreamingContext type. The StreamingContext parameter describes the source
and destination of a given serialized stream.

The following code example demonstrates a custom serialization object that implements the basic functionality
that is required for compliance with the ISerializable interface. In the first procedure of this example, you create a
.NET Framework assembly that includes a serializable type. In the second procedure, in the Business Central
development environment, you create a codeunit that includes two DotNet variables for the serializable type. You
set one variable to target the Business Central Windows client and the other to target the Business Central Server.
In AL code, you add code that transfers the value for the DotNet variable on the Business Central Server to the
Business Central Windows client. You will also add code that verifies that the data transfer is successful.

1. In Microsoft Visual Studio, create a C# Class Library project called SerializationSample.

2. Add the following code.

http://go.microsoft.com/fwlink/?LinkID=262178
http://go.microsoft.com/fwlink/?LinkID=262177
http://go.microsoft.com/fwlink/?LinkID=262180
http://go.microsoft.com/fwlink/?LinkID=262181
http://go.microsoft.com/fwlink/?LinkID=262182

 using System;
 using System.Runtime.Serialization;

 [Serializable]
 public class SerializeWithInterface : ISerializable
 {
 // Defines a field that will not be serialized.
 [NonSerialized]
 private string notSerializedField;
 // Defines two fields that will be serialized.
 private int serializedIntField;
 private string serializedStringField;
 // Specifies literal field names.
 private const string serializedIntFieldName = “serializedIntField”;
 private const string serializedStringFieldName = “serializeStringField”;

 // Defines a default constructor that initializes the object with default values.
 public SerializeWithInterface()
 {
 this.serializedIntField = 1;
 this.notSerializedField = string.Empty;
 this.serializedStringField = string.Empty;
 }

 // Defines the protected constructor that is required by the ISerializable interface.
 // Data is stored in the SerializationInfo argument and is extracted using the GetValue method.
 protected SerializeWithInterface(SerializationInfo si, StreamingContext context)
 {
 this.serializedStringField = (string)si.GetValue(serializedStringFieldName, typeof(string));
 this.serializedIntField = (int)si.GetValue(serializedIntFieldName, typeof(int));
 }

 // Fills the SerializationInfo object with data that must to be sent to the replicated object.
 // Data is stored in the dictionary using the AddValue method.
 // The SerializationInfo object is a key/value dictionary.
 // The name you use to store the value must match the name used in the constructor.
 // For this reason, a string constant is used.
 public void GetObjectData(SerializationInfo info, StreamingContext context)
 {
 info.AddValue(serializedStringFieldName, this.serializedStringField);
 info.AddValue(serializedIntFieldName, this.serializedIntField);
 }

 // Remaining class implementation is irrelevant for the serialization process.
 // The SerializedStringField property is used by AL code to verify that the contained data is
transferred between the server and client.
 // SerializedStringField gets or sets the internal serialized string field.
 public string SerializedStringField
 {
 get { return this.serializedStringField; }
 set { this.serializedStringField = value; }
 }
 }

3. Build the project.

4. Copy the SerializationSample.dll to the Add-ins folder of the Business Central Windows client and
Business Central Server installation folders.

By default, the path of the Business Central Windows client installation folder is C:\Program Files (x86)\Microsoft
Dynamics 365 Business Central\140\RoleTailored Client\Add-ins.

By default, the path of the Business Central Server installation folder is C:\Program Files\Microsoft Dynamics 365
Business Central\130\Service\Add-ins.

To t e s t t h e se r i a l i z a t i o n o b j e c t

dotnet
{
 assembly(SerializationSample)
 {
 type(SerializationSample.SerializeWithInterface; SerializeWithInterface){}
 }
}

codeunit 50101 SerializationSample
{
 procedure Testing()
 var
 ServerObject: DotNet SerializeWithInterface;
 ClientObject: DotNet SerializeWithInterface;

 begin
 // Constructor that instantiates the ServerObject object on the server.
 ServerObject := ServerObject.SerializeWithInterface();
 // Constructor that instantiates the ClientObject object on the server.
 ClientObject := ClientObject.SerializeWithInterface();
 // Assign unique values to the data members in the two objects.
 ServerObject.SerializedStringField := ‘ServerSide’;
 ClientObject.SerializedStringField := ‘ClientSide’;
 // Transfer the server object to the client object using serialization.
 ClientObject := ServerObject;
 // Test if the objects contain the same data.
 If ClientObject.SerializedStringField <> ServerObject.SerializedStringField then
 Error(‘Client object does not match the server object.’);
 Message(‘Server data has been serialized to the client object.’);
 end;
}

See Also

1. In the AL Development Environment, add the following code.

The line that contains assignment of the ServerObject to the ClientObject causes the serialization process to
run. When completed, the message Server data has been serialized to the client object appears, which
verifies that the server object has been transferred to the client object.

Getting Started with AL
Getting started with Microsoft .NET Interoperability from AL
.NET Control Add-Ins
Subscribing to Events in a .NET Framework Type
Using Designer

Exporting Permission Sets
3/31/2019 • 2 minutes to read

To export permission sets from Dynamics 365 Business Central

To export permission sets using Visual Studio Code

See Also

Permission sets that exist in Dynamics 365 Business Central can be exported and packaged for your extension
directly from the client, instead of defining XML by hand.

1. In Dynamics 365 Business Central, search for Permission Sets, and then choose the relevant link.
2. On the Permission Sets page, choose the permissions that you want to export, and then choose Export

Selected Permissions.
3. In the Export Permission Sets dialog, choose to export permission sets only for the application, only for the

tenant, or for both.
4. Save the file to your extension folder.
5. Delete the permission sets from Dynamics 365 Business Central.

You can generate a permission set file which contains permissions to all the files in your extension. This will make it
easier to start setting up permissions for your app. You can do this by simply creating an extension with some
objects.

1. In Visual Studio Code, open your extension.
2. Create extension with some objects like Page, Report, Table, Query, Codeunit, or XmlPort.
3. Open the command palette using the Ctrl+Shift+P keys and select the AL: Generate permission set

containing current extension objects command.

NOTE

4. Publish the app.

If you do this repeatedly, Visual Studio Code will probe for overwriting the file, there is no support for merging
manual corrections into newly generated content.

Now, you have the XML file with default permissions to all your objects.

Permissions on Database Objects
Permissions Property
TestPermissions Property

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-permissions-on-database-objects
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-permissions-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-testpermissions-property

Creating and Interacting with an OData V4 Bound
Action
3/31/2019 • 2 minutes to read

Declaring the OData bound action

NOTE

This topic provides an overview of how to expose a procedure as an OData V4 web service action and how to
verify that the service is working as expected.

The following example shows you how you can declare an OData bound action on a page exposed as a web
service. For that, you need to add a procedure to the SalesInvoiceCopy page, expose the procedure using the
[ServiceEnabled] attribute, and use the WebServiceActionContext and WebServiceActionResultCode AL types to set

the result of the function.

Bound actions cannot be added by extending an existing page that has been exposed as a web service.

page 50110 SalesInvoiceCopy
{
 ODataKeyFields = "Id";
 SourceTable = "Sales Header";

 layout
 {
 area(Content)
 {
 group(GroupName)
 {
 field(Id; Id)
 {
 ApplicationArea = All;
 }

 field("No."; "No.")
 {
 ApplicationArea = All;
 }

 field("Sell-to Customer No."; "Sell-to Customer No.")
 {
 ApplicationArea = All;
 }
 }
 }
 }

 trigger OnOpenPage()
 begin
 SetRange("Document Type", "Document Type"::Invoice);
 end;

 [ServiceEnabled]
 procedure Copy(var actionContext: WebServiceActionContext)
 var
 FromSalesHeader: Record "Sales Header";
 ToSalesHeader: Record "Sales Header";
 SalesSetup: Record "Sales & Receivables Setup";
 CopyDocMgt: Codeunit "Copy Document Mgt.";
 DocType: Option Quote,"Blanket Order",Order,Invoice,"Return Order","Credit Memo","Posted
Shipment","Posted Invoice","Posted Return Receipt","Posted Credit Memo";
 begin
 SalesSetup.Get;
 CopyDocMgt.SetProperties(true, false, false, false, false, SalesSetup."Exact Cost Reversing Mandatory",
false);

 FromSalesHeader.Get("Document Type", "No.");
 ToSalesHeader."Document Type" := FromSalesHeader."Document Type";
 ToSalesHeader.Insert(true);

 CopyDocMgt.CopySalesDoc(DocType::Invoice, FromSalesHeader."No.", ToSalesHeader);

 actionContext.SetObjectType(ObjectType::Page);
 actionContext.SetObjectId(Page::SalesInvoiceCopy);
 actionContext.AddEntityKey(Rec.FIELDNO(Id), ToSalesHeader.Id);

 // Set the result code to inform the caller that an item was created.
 actionContext.SetResultCode(WebServiceActionResultCode::Created);
 end;
}

Registering and publishing the page as a web service

Verifying the web service availability
HTTP request

POST /ODataV4/Company({companyName})/SalesInvoiceCopy({id})/NAV.Copy

Request headers

HEADER VALUE

Authorization Bearer {token}. Required.

Example

{baseurl}/ODataV4/Company('CRONUS%20USA%2C%20Inc.')/SalesInvoiceCopy('S-ORD101001')/NAV.Copy

See Also

1. Open the Business Central Web Client.
2. In the Search box, enter Web Services, and choose the related link.
3. In the Web Services page, on the Home tab, choose New.
4. In the Object Type column, select Page. In the Object ID column, enter 43, and in the Service Name column,

enter SalesInvoiceCopy .
5. Select the check box in the Published column.
6. When you publish the web service, in the OData URL and SOAP URL fields, you can see the URLs that are

generated for the web service.

AL Development Environment
Getting started with Microsoft .NET Interoperability from AL
Devoloping for Multiple Platform Versions
Exporting Permission Sets
Discover Events Using the Event Recorder

AL Development Environment
3/31/2019 • 2 minutes to read

TIP

Defining the AL data model
TO SEE

Learn about how to define new table objects for your
extension.

Table Object

Learn about how to modify and extend existing table
objects.

Table Extension Object

Presenting the AL data
TO SEE

Learn about how to create new page objects for your
extension.

Page Object

Learn about how to modify and extend existing page
objects.

Page Extension Object

Learn about how to create page customization objects. Page Customization Object

Learn about how to create profile objects. Profile Object

Learn about how to create report objects. Report Object

Learn about how to create xmlport objects. XmlPort Object

Learn about how to create query objects. Query Object

Learn about how to create control add-in objects. Control Add-In Object

Writing AL code
TO SEE

Learn about writing codeunits for your extension. Codeunit Object

This section describes all of the objects that are available with the AL Language development
environment for Dynamics 365 Business Central.

If you are looking for the C/SIDE documentation, visit our Dynamics NAV library.

https://docs.microsoft.com/dynamics-nav/development

API for HTTP, JSON, TextBuilder, and XML

See Also

For information about the HTTP, JSON, TextBuilder, and XML classes, see HTTP, JSON, TextBuilder,
and XML API Overview.

Developing Extensions
Getting Started with AL
FAQ for Developing in AL

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-restapi-overview

Programming in AL
3/31/2019 • 2 minutes to read

Where to write AL code

NOTE

Guidelines for placing AL code

AL is the programming language that is used for manipulating data (such as retrieving, inserting, and modifying
records) in a Dynamics 365 Business Central database, and controlling the execution of the various application
objects, such as pages, reports, or codeunits.

With AL, you can create business rules to ensure that the data which is stored in the database is meaningful and
consistent with the way customers do business. Through AL programming, you can:

Add new data or transfer data from one table to another, for example, from a journal table to a ledger table.
Combine data from multiple tables into one report or display it on one form or page.

Almost every object in Dynamics 365 Business Central contains triggers where you can add your AL code. Triggers
exist for the following objects:

Tables

Table fields

Pages

Reports

Data items

XMLports

Queries

You can initiate the execution of your AL code from the following:

Actions

Any object that has an instantiation of the object that contains AL code. An example of an instantiation is a
variable declaration.

If the AL code is in a local method, then you cannot run it from another object.

We recommend the following guidelines for AL code:

In general, put the code in codeunits instead of on the object on which it operates. This promotes a clean
design and provides the ability to reuse code. It also helps enforce security. For example, typically users do
not have direct access to tables that contain sensitive data, such as the General Ledger Entry table, nor do
they have permission to modify objects. If you put the code that operates on the general ledger in a
codeunit, give the codeunit access to the table, and give the user permission to execute the codeunit, then
you will not compromise the security of the table and the user will be able to access the table.

Reusing code

See Also

If you must put code on an object instead of in a codeunit, then put the code as close as possible to the
object on which it operates. For example, put code that modifies records in the triggers of the table fields.

Reusing code makes developing applications both faster and easier. More importantly, if you organize your AL
code as suggested, your applications will be less prone to errors. By centralizing the code, you will not
unintentionally create inconsistencies by performing the same calculation in many places, for example, in several
triggers that have the same table field as their source expression. If you have to change the code, you could either
forget about some of these triggers or make a mistake when you modify one of them.

Simple Statements
Control Statements
Methods
System-Defined Variables
Developing Extensions
Getting Started with AL

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-al-control-statements
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-al-methods
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-system-defined-variables

AL Simple Statements
3/31/2019 • 4 minutes to read

Assignment statements

Example

Count := 1;

Example

Amount := 2 * Price;

Example

OK := TestFile.Open('C:\temp\simple.xml');

TestFile.Open('C:\temp\simple.xml');

if TestFile.Open('C:\temp\simple.xml') then begin
 // continue running
else
 Error(Text001);

Method statements

AL simple statements are single-line statements that are executed sequentially and do not alter the flow of
execution of code. This article explains some of the simple statements in AL.

Assignment statements assign a value to a variable. The value that you assign to the variable is an AL expression. It
can be a constant or a variable, or it can consist of multiple elements of AL expressions. If you use a method call as
the value to assign to a variable in an assignment statement, then the value that is assigned is the return value of
the method.

You use the ":=" operator for assignment statements.

The following example assigns a constant integer value to an integer variable that you have defined.

The following example assigns a value that consists of a constant, an operator, and a variable.

The following example assigns the return value of the Open Method (File) to a Boolean variable that you have
defined.

The return value of the Open method is optional. If you do not handle the return value in your code, then a run-
time error occurs when a method returns false. The following example causes a run-time error if the file
C:\temp\simple.xml cannot be opened.

You can handle the return value by using an if-then statement.

You use method statements to execute either built-in system methods or user-defined (custom) methods. Method

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-open-method

AssertError statements

TestAsserterrorFail: FAILURE

An error was expected inside an AssertError statement.

Example

InvalidDate := 19000101D;
InvalidDateErrorMessage := Text001;
AssertError CheckDate(InvalidDate);

IF GetLastErrorText <> InvalidDateErrorMessage then
 Error('Unexpected error: %1', GetLastErrorText);

var
 InvalidDate : Date;
 InvalidDateErrorMessage : Text;
 Text001 : TextConst 'The date is outside the valid date range.';

With statements

with <Record> do
 <Statement>

calls may include parameters, which are passed to the method. For more information, see Calling Methods.

You use AssertError statements in test methods to test how your application behaves under failing conditions. The
AssertError keyword specifies that an error is expected at run time in the statement that follows the AssertError
keyword.

If a simple or compound statement that follows the AssertError keyword causes an error, then execution
successfully continues to the next statement in the test method. You can get the error text of the statement by using
the GetLastErrorText method.

If a statement that follows the AssertError keyword does not cause an error, then the AssertError statement causes
the following error and the test method that is running produces a FAILURE result:

To create a test method to test the result of a failure of a CheckDate method that you have defined, you can use the
following code. This example requires that you create a method called CheckDate to check whether the date is valid
for the customized application.

This example requires the following variables.

The following syntax shows a with-do statement.

When you work with records, addressing is created as record name, dot (period), and field name:

<Record>.<Field>

If you work continuously with the same record, then you can use with statements. When you use a with

statement, you can only specify the record name one time.

Within the scope of <Statement>, fields in Record> can be addressed without having to specify the record name.

You can nest several with statements. If you have identical names, then the inner with statement overrules the

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-al-methods
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-getlasterrortext-method

Example

CustomerRec."No." := '1234';
CustomerRec.Name := 'Windy City Solutions';
CustomerRec."Phone No." := '555-444-333';
CustomerRec.Address := '1241 Druid Avenue';
CustomerRec.City := 'Windy City';
Message('A variable has been created for this customer.');

var
 CustomerRec : Record Customer;

with CustomerRec do begin
 "No." := '1234';
 Name := 'Windy City Solutions';
 "Phone No." := '555-444-333';
 Address := '1241 Druid Avenue';
 City := 'Windy City';
 Message('A variable has been created for this customer.');
end;

Programming conventions

Example

with CustLedgEntry do begin
 Insert;
 ...;
 with CustLedgEntry2 do begin
 Insert;
 ...;
 end;
end;

Incorrect example

outer with statement.

This example shows two ways to write the same code that creates a record variable that you can commit later.

This example requires the following variables.

The following example shows another way to create a record variable that you can commit later:

Within with-do blocks, do not repeat the name of the object by using the member variable or method.

If you nest a with-do block within another explicit or implicit with-do block, then the with-do block that you
create within another with-do block must always be attached to a variable of the same type as the variable that is
attached to the surrounding with-do block. Otherwise, it can be difficult to see what variable that a member
variable or method refers to. For example, implicit with-do blocks occur in table objects and in pages that have
been attached to a record.

The following example demonstrates nested with-do blocks. Both with-do blocks are attached to a Customer
Ledger Entry record variable.

The following example demonstrates incorrect code in which you cannot directly tell which record variable that the
MyField field refers to.

with CustLedgEntry do begin
 ...;
 with VendLedgEntry do begin
 MyField := <Some Value>;
 ...;
 end;
end;

See Also
Control Statements
Methods

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-al-control-statements
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-al-methods

FAQ for Developing in AL
5/24/2019 • 2 minutes to read

How do I get started?

Which version of the AL Language extension should I use?

How do I enable the debugger?

Can I create something similar to Menusuites?

How do I upgrade Extensions V1 to Extensions V2?

File APIs are not available in Extensions V2. What do I do?

DotNet types are not available in Extensions V2. What now?

This topic contains a number of frequently asked questions and answers to these questions.

For an overview of developing apps for Dynamics 365 Business Central, see aka.ms/GetStartedWithApps

Next, follow the Getting Started with AL to set up the tools.

1. For Dynamics 365 Business Central cloud sandboxes you must use the AL Language extension available in
the Visual Studio Code Marketplace.

2. For the latest Developer Preview releases you must use the AL Language extension that is available on the
Docker images.

To read about enabling the Visual Studio Code Debugger, see here Debugging

In the AL Language extension, the concept of Menusuites is not supported. The two primary purposes of
Menusuites are:

Making pages searchable
Making pages accessible through a navigation structure

The first purpose can be achieved in Extensions by using the new properties added to Pages and Reports. For
more information, see Adding Pages and Reports to Search.

The second purpose can be achieved by extending the Navigation Pane page and/or by adding Actions to other
existing pages that can serve as a navigation starting point. For more information, see Adding Menus to the
Navigation Pane.

For information on upgrading, see the following topics: Upgrading Extensions v2 and Converting from
Extensions v1 to Extensions v2.

Code that relies on temporary files must be rewritten to rely on InStream and OutStream types. Code that relies
on permanent files must be rewritten to use another form of permanent storage.

For cloud solutions .NET interop is not available due to safety issues in running arbitrary .NET code on cloud
servers.

https://aka.ms/GetStartedWithApps
https://marketplace.visualstudio.com/vscode

See Also

With the AL Language extension, you can find AL types that replace the most typical usages of .NET like HTTP,
JSON, XML, StringBuilder, Dictionaries and Lists. Many .NET usages can be replaced directly by the AL types
resulting in much cleaner code. For more information, see HTTP, JSON, TextBuilder, and XML API Overview.

For things that are not possible to achieve in AL code, the recommendation is to use Azure Functions to host the
DLL or C# code previously embedded and call that service from AL.

Getting Started with AL
Keyboard Shortcuts
AL Development Environment

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-restapi-overview

Working with multiple AL project folders within one
workspace
3/31/2019 • 2 minutes to read

Working with multiple project folders

Grouping a set of disparate project folders into one workspace

See also

Visual Studio Code offers the multi-root workspace feature which enables grouping different project folders into
one workspace. The AL Language extension also supports the multi-root functionality and allows you to work with
multiple AL folders including roots and projects within one workspace.

Go through the following steps to work simultaneously on several related projects.

1. On the File tab of Visual Studio Code, select Add Folder to Workspace... .
2. Save the workspace file if you plan to open it again.

This will create a code-workspace file that contains an array of folders with either absolute or relative paths. If
you want to share your workspace files, choose the relative paths.

3. Modify the settings of your files in the Settings editor. You can change your user settings, global workspace
settings, or individual folder settings.

For more information about multi-root workspaces in Visual Studio Code, see Multi-root Workspaces.

It is not mandatory to use only AL-based roots. Different kinds of projects can be mixed, and each AL project will
have its configuration values for the following settings:

al.packageCachePath

al.enableCodeAnalysis

The al.packageCachePath setting allows you to specify the path to a folder that will act as the cache for the symbol
files used by your project. It can be specified in the User Settings, Workspace Settings, or Project Settings. The
al.enableCodeAnalysis setting allows you to enable the execution of code analyzers on your project. It can likewise

be specified in the User Settings, Workspace Settings, or Project Settings.

Development in AL
Best Practices for AL

https://code.visualstudio.com/docs/editor/multi-root-workspaces

Using the Code Analysis Tool
6/25/2019 • 2 minutes to read

Enabling code analysis

Adding your own code to the project

pageextension 50100 CustomerListExt extends "Customer List"
{
 trigger OnOpenPage();
 var
 result: Integer;
 begin
 // The following line will trigger the warning
 // AA0001 "There must be exactly one space character on each side
 // of a binary operator such as := + - AND OR =."
 result := 2+2;
 Message('2 + 2 = ' + Format(result));
 end;
}

Viewing the results of the code analysis

Code analyzers

This topic shows how you can use static code analysis tool on an AL project from within Visual Studio Code.

First, follow the steps below to create a simple project in AL.

1. Press Alt + A, Alt + L to create a new project.
2. Open the Command Palette Ctrl+Shift+P and choose either User Settings or Workspace Settings.
3. Copy the setting al.enableCodeAnalysis to the settings file and set it to true : "al.enableCodeAnalysis": true .
4. Copy the setting al.codeanalyzers to the settings file and then use Ctrl+Space to pick from the available code

analyzers. Separate the list of code analyzers with commas. For more information about the available
analyzers, see AppSourceCop, CodeCop, PerTenantExtensionCop, and UICop.

At this point, the selected analyzers will be run on your project. Next, add some code to the project that will, in the
following example, be used to demonstrate a violation of the AA0001 "There must be exactly one space
character on each side of a binary operator such as := + - AND OR =." code analysis rule.

In the Visual Studio Code Explorer, open the HelloWorld.al file and replace the existing code with the following:

The code analysis tools will run in the background. You will see the faulty expression underlined and the warning
"There must be exactly one space character on each side of '+'." will be displayed if you mouse over the
underlined code. You can also view the list of issues by selecting the View tab of Visual Studio Code and choosing
the Problems option.

Using the Ctrl+Shift+B shortcut to build your project will run the code analysis tools on the entire project and
the detected issues will be displayed in the Output window of Visual Studio Code. For more information about
AL keyboard shortcuts, see Keyboard shortcuts.

A code analyzer is a library that builds on the compiler's functionality to offer enhanced analysis of the syntax and

See also

semantics of your code at build time. The AL Language extension for Visual Studio Code contains four analyzers:

CodeCop is an analyzer that enforces the official AL Coding Guidelines. For more information about the
CodeCop rules, see CodeCop Analyzer Rules.
PerTenantExtensionCop is an analyzer that enforces rules that must be respected by extensions meant to be
installed for individual tenants. For more information about the PerTenantExtensionCop rules, see
PerTenantExtensionCop Analyzer Rules.
AppSourceCop is an analyzer that enforces rules that must be respected by extensions meant to be published
to Microsoft AppSource. For more information about the AppSourceCop rules, see AppSourceCop Analyzer
Rules.
UICop is an analyzer that enforces rules that must be respected by extensions meant to customize a user
interface. For more information about the UserInterfaceCop rules, see UICop Analyzer Rules.

Using the Code Analysis Tools with the Ruleset
Ruleset for the Code Analysis Tool
Development in AL
Debugging in AL

Ruleset for the Code Analysis Tool
3/31/2019 • 2 minutes to read

NOTE

SETTING MANDATORY TYPE VALUE

name Yes String The name of the ruleset.

description No String The description of the
ruleset. You can use this to
document the purpose of
the ruleset.

generalAction No Error | Warning | Info | Hidde
n

The action to apply to all the
diagnostics that have rules
defined in this file or in other
files that have a Default
action specified and to all
the diagnostics generated
by the current set of
analyzers that do not have a
rule defined. If an included
file has a stricter
generalAction, that one will
be used.

includedRuleSets No Array of IncludedRuleSet List of external ruleset files
to include in the current
ruleset. The order in which
the files are processed is
undefined.

rules No Array of Rule Collection of rules to apply
to diagnostics generated by
analyzers.

SETTING MANDATORY TYPE VALUE

In an AL project, you can use a custom ruleset file to specify how code analysis will report the issues it encounters.
Different settings can affect how rules are applied and each ruleset file name must follow the pattern
<name>.ruleset.json to benefit from IntelliSense in Visual Studio Code.

Use the truleset and trule snippets provided by the AL Language extension to create your ruleset.

The following table describes the schema of a ruleset object:

An IncludedRuleSet is a complex JSON object that defines the inclusion of an external ruleset file in the current
ruleset, and has the following properties:

path Yes String The path to the included file.
For includes specified in the
file to which the
al.ruleSetPath is set, the
path can be absolute or
relative to the project folder.
For files included from the
root ruleset file, the path is
relative to the file.

action Yes Error | Warning | Info | Hidde
n | None | Default

The action to apply for all
the diagnostics that have an
action specified in the
included ruleset that is
different from None and
Hidden.

SETTING MANDATORY TYPE VALUE

SETTING MANDATORY TYPE VALUE

id Yes String The string that uniquely
identifies a diagnostic.

action Yes Error | Warning | Info | Hidde
n | None

The action to apply if the
diagnostic is emitted. There
cannot be two rules with the
same id and different actions
in the same rule file.

Examples

{
 "name": "Company ruleset",
 "description": "These rules must be respected by all the AL code written within the company.",
 "rules": [
 {
 "id": "AA0001",
 "action": "Error",
 "justification": "This diagnostic helps to improve readability. It must be respected in all
cases."
 }
]
}

A Rule is a complex JSON object that specifies how you can process a specific diagnostic. A Rule object has the
following properties:

The following example shows a ruleset that sets the severity of rule AA0001 : There must be exactly one space
character on each side of a binary operator such as := + - AND OR =. provided by the CodeCop analyzer to
Error.

The following example shows a project specific ruleset that extends a company wide ruleset contained in the file
company.ruleset.json and sets the severity of the rule AA0005 : Only use BEGIN..END to enclose
compound statements. provided by the CodeCop analyzer to Info.

{
 "name": "Personal Project ruleset",
 "description": "A list of project specific rules",
 "includedRuleSets": [
 {
 "action": "Default",
 "path": "./company.ruleset.json"
 }
],
 "rules": [
 {
 "id": "AA0005",
 "action": "Info",
 "justification": "For this specific project, this diagnostic should be informational."
 }
]
}

See Also
Using the Code Analysis Tools
Using the Code Analysis Tools with the ruleset
AL Development Environment

Using the Code Analysis Tools with the Ruleset
6/25/2019 • 3 minutes to read

Using rulesets with code analysis

Add your own code to the project

pageextension 50100 CustomerListExt extends "Customer List"
{
 trigger OnOpenPage();
 var
 result: Integer;
 begin
 // The following line will trigger the warning
 // AA0001 "There must be exactly one space character on each side
 // of a binary operator such as := + - AND OR =."
 result := 2+2;
 Message('2 + 2 = ' + Format(result));
 end;
}

Creating and customizing a ruleset

This topic shows how you can use a custom ruleset to customize the severity of diagnostics produced by the code
analysis tools that are part of the AL Language extension for Visual Studio Code.

First, create a simple project in AL.

1. Press Alt + A, Alt + L to create a new project.
2. Open the Command Palette by using the Ctrl+Shift+P shortcut and choose either User Settings or

Workspace Settings.
3. Copy the setting al.enableCodeAnalysis to the settings.json file and set it to true :

"al.enableCodeAnalysis": true .
4. Copy the setting al.codeanalyzers to the settings file and then use Ctrl+Space to pick from the available code

analyzers. Separate the list of code analyzers with commas. For more information about the available
analyzers, see AppSourceCop, CodeCop, PerTenantExtensionCop, and UICop.

At this point, the selected analyzers will be run on your project. Next, add some code to the project that will, in the
following example, be used to demonstrate violations of the AA0001 "There must be exactly one space
character on each side of a binary operator such as := + - AND OR =." code analysis rule.

In the Visual Studio Code Explorer, open the HelloWorld.al file and replace the existing code with the following:

On the View tab of Visual Studio Code, select the Problems option and you will see a warning with the message
"There must be exactly one space character on each side of '+'.". In this case, the problem can be fixed by
running the AL Formatter command. For more information, see AL Formatter.

To create and customize a ruleset of your own, follow the next steps:

1. On the File tab in Visual Studio Code, choose New File.

2. Save the empty file with a name, for example <name>.ruleset.json and make a note of the file path.

NOTE

Running the code analysis

Limitations

See also

{
 "name": "My Custom ruleset",
 "rules": [
 {
 "id": "AA0001",
 "action": "None"
 }
]
}

3. Add the following code to the <name>.ruleset.json file:

4. In your project settings set al.ruleSetPath to the path to the <name>.ruleset.json file, relative to the
project root. For more information about custom rules, see ruleset for the Code Analysis tool.

Use the truleset and trule snippets provided by the AL Language extension to create your ruleset. The ruleset will be
applied to all the analyzers enabled for the current project. For more information about selectively enabling analyzers, see
Using the Code Analysis Tools.

The code analysis will run in the background and you will see the warning "There must be exactly one space
character on each side of '+'." disappear from the Problems option in Visual Studio Code.

To trigger a new compilation manually, use the Ctrl+Shift+B shortcut to build your project. For more information
about AL keyboard shortcuts, see Keyboard shortcuts.

Changing the contents of the ruleset file will not be detected by the AL Language extension. To see the effects of
changing the ruleset file, you can try any of the following:

Set the al.incrementalBuild setting to false and trigger a new compilation by using the Ctrl+Shift+B
shortcut.
Reload the window.
In the project settings, change the al.ruleSetPath setting to an invalid path. Save the settings file, change back
the setting, and save it.

Ruleset for the Code Analysis Tool
Using the Code Analysis Tools
Development in AL
Debugging in AL

AppSourceCop Analyzer Rules
3/31/2019 • 4 minutes to read

Rules

ID TITLE DESCRIPTION
MESSAGEFORM
AT CATEGORY

DEFAULT
SEVERITY

ISENABLEDBYD
EFAULT

AS0001 Tables cannot
be deleted.

Tables cannot
be deleted.

Table '{0}' has
been deleted.

Upgrade Error true

AS0002 Fields cannot
be deleted.

Fields cannot
be deleted.

Field '{0}' has
been deleted
from table
'{1}'.

Upgrade Error true

AS0003 The previous
version was
not found.

The previous
version was
not found.

The previous
version was
not found.
Name='{0}',
Publisher='{1}'
, Version'{2}'.

Upgrade Warning true

AS0004 Fields cannot
change type.

Fields cannot
change type.

Field '{0}' has
changed type
from '{1}' to
'{2}'. Type
changes are
not allowed.

Upgrade Error true

AS0005 Fields cannot
change name.

Fields cannot
change name.

Field '{0}' has
changed
name to '{1}'.
Name
changes are
not allowed.

Upgrade Error true

AS0006 Tables cannot
change name.

Tables cannot
change name.

Table '{0}' has
changed
name to '{1}'.
Name
changes are
not allowed.

Upgrade Error true

AS0007 Properties
cannot
change value.

Properties
cannot
change value.

The property
'{0}' has
changed
value. Value
change is not
allowed for
this property.

Upgrade Error true

AppSourceCop is an analyzer that enforces rules that must be respected by extensions meant to be published to
Microsoft AppSource.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/appsourcecop-as0001-tabledeletionnotallowed
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/appsourcecop-as0002-fielddeletionnotallowed
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/appsourcecop-as0003-previousversionnotfound
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/appsourcecop-as0004-fieldtypechangenotallowed
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/appsourcecop-as0005-fieldnamechangenotallowed
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/appsourcecop-as0006-tablenamechangenotallowed
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/appsourcecop-as0007-propertyvaluechangenotallowed

AS0008 Keys cannot
change name.

Keys cannot
change name.

Key '{0}' has
changed
name to '{1}'.
Name
changes are
not allowed.

Upgrade Error true

AS0009 Key fields
cannot be
changed.

Key fields
cannot be
changed.

Key '{0}' has
changed the
key fields.
Changes to
the field list
are not
allowed.

Upgrade Error true

AS0010 Keys cannot
be deleted.

Keys cannot
be deleted.

Key '{0}' has
been deleted.
Key deletions
is not allowed.

Upgrade Error true

AS0011 An affix is
required.

An affix is
required.

The identifier
'{0}' must
have at least
one of the
mandatory
affixes '{1}'.

Extensibility Error true

AS0013 The field
identifier must
be within the
allowed range.

The field
identifier must
be within the
allowed range.

The field
identifier '{0}'
is not valid. It
must be
within the
allowed range
'{1}' - '{2}'.

Extensibility Error true

AS0014 The project
manifest must
contain the
allocated
identifier
range.

The project
manifest must
contain the
allocated
identifier
range.

The project
manifest must
contain the
allocated
identifier
range.

Extensibility Error true

AS0015 Please enable
the
TranslationFile
feature in the
app.json file
for your
project.

Please enable
the
TranslationFile
feature in the
app.json file
for your
project.

Please enable
the
TranslationFile
feature in the
app.json file
for your
project.

Extensibility Error true

ID TITLE DESCRIPTION
MESSAGEFORM
AT CATEGORY

DEFAULT
SEVERITY

ISENABLEDBYD
EFAULT

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/appsourcecop-as0008-keynamechangenotallowed
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/appsourcecop-as0009-keyfieldschangenotallowed
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/appsourcecop-as0010-keydeletenotallowed
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/appsourcecop-as0011-identifiersmusthaveaffix
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/appsourcecop-as0013-fieldidmustbewithinallocatedrange
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/appsourcecop-as0014-projectmanifestmustspecifyidrange
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/appsourcecop-as0015-translationsmustbeenabled

AS0016 Fields of field
class 'Normal'
must use the
DataClassificat
ion property
and its value
should be
different from
ToBeClassified.

Fields of field
class 'Normal'
must use the
DataClassificat
ion property
and its value
must be
different from
ToBeClassified.
FlowFields
and FlowFilter
fields are
automatically
set to the
SystemMetad
ata data
classification.

Field with
name '{0}'
must use the
DataClassificat
ion property
and its value
should be
different from
ToBeClassified.

Extensibility Error true

ID TITLE DESCRIPTION
MESSAGEFORM
AT CATEGORY

DEFAULT
SEVERITY

ISENABLEDBYD
EFAULT

NOTE

Configuration

SETTING MANDATORY VALUE

name No The name of a previous version of this
package with which you want to
compare the current package for
breaking changes.

publisher No The publisher of a previous version of
this package with which you want to
compare the current package for
breaking changes.

version Yes The version of a previous version of this
package with which you want to
compare the current package for
breaking changes.

mandatoryAffixes No Affixes that must be prepended or
appended to the name of all new
application objects, extension objects,
and fields.

Several rules enforced by the AppSourceCop analyzer are incompatible with rules enforced by the PerTenantExtensionCop.
Make sure to enable only one of these at a time.

The AppSourceCop analyzer can be further configured by adding a file named AppSourceCop.json in the project's
root folder. The AL Language extension will offer intellisense for this file.

The following table describes the settings in the AppSourceCop.json file:

The name , publisher , version properties are used for specifying a previous version of the current package.
AppSourceCop will use this information to download the specified package from the server and compare the
current package with it. AppSourceCop will report any breaking changes introduced by the current package.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/appsourcecop-as0016-dataclassificationmustbespecified

Example

NOTE

pageextension 50100 CustomerListExt extends "Customer List"
{
 trigger OnOpenPage();
 begin
 begin
 Message('App published: Hello world');
 end;
 end;
}

{
 "mandatoryAffixes": ["Foo", "Bar"]
}

AS0011: The identifier 'CustomerListExt' must have at least one of the mandatory affixes 'Foo, Bar'.

NOTE

See Also

The mandatoryAffixes property specifies strings that must be prepended or appended to the names of all new
objects, extension objects and fields. By using these affixes, you can prevent clashes between objects added by
your extension and objects added by other extensions.

In the following example, we will configure AppSourceCop to validate that all new elements have a name that
contains one of the specified affixes.

Make sure code analysis is enabled and ${AppSourceCop} is in the list of enabled code analyzers.

We start by creating the default "Hello world" extension.

We continue by adding the configuration file AppSourceCop.json in the project's root folder and setting its content
to the following.

You are immediately greeted by the following error message:

Prepending Foo to the name of the page extension object will fix this error and prevent clashes between this page
extension and page extensions added by other developers.

It is still possible to use the mandatoryPrefix and mandatorySuffix properties in the AppSourceCop.json , for more
information see AS0011.

Using the Code Analysis Tool
Ruleset for the Code Analysis Tool
Using the Code Analysis Tools with the Ruleset

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/appsourcecop-as0011-identifiersmusthaveaffix

CodeCop Analyzer Rules
3/31/2019 • 4 minutes to read

Rules

ID TITLE DESCRIPTION
MESSAGEFORM
AT CATEGORY

DEFAULT
SEVERITY

ISENABLEDBYD
EFAULT

AA0001 There must be
exactly one
space
character on
each side of a
binary
operator such
as := + - AND
OR =.

There must be
exactly one
space
character on
each side of a
binary
operator such
as := + - AND
OR =. The
parameter
comma
operator
however,
should have
no spaces.

There must be
exactly one
space
character on
each side of
'{0}'.

Readability Warning true

AA0002 There must be
no space
character.

There must be
no space
character
between a
unary
operator and
its argument.

There must be
no space
character after
'{0}'.

Readability Warning true

AA0003 There must be
exactly one
space
character
between the
NOT operator
and its
argument.

There must be
exactly one
space
character
between the
NOT operator
and its
argument.

There must be
exactly one
space
character after
'{0}'.

Readability Warning true

AA0005 Only use
BEGIN..END
to enclose
compound
statements.

Only use
BEGIN..END
to enclose
compound
statements.

Only use
BEGIN..END to
enclose
compound
statements.

Readability Warning true

AA0008 Function calls
should have
parenthesis
even if they
do not have
any
parameters.

Use
parenthesis in
a function call
even if the
function does
not have any
parameters.

You must
specify open
and close
parenthesis
after '{0}'.

Readability Warning true

CodeCop is an analyzer that enforces the official AL Coding Guidelines.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/codecop-aa0001-binaryoperatorspacing
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/codecop-aa0002-unaryoperatornospacing
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/codecop-aa0003-unaryoperatorspacing
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/codecop-aa0005-onlyusebeginendforcompoundstatements
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/codecop-aa0008-useparenthesisforfunctioncall

AA0013 When BEGIN
follows THEN,
ELSE, DO, it
should be on
the same line,
preceded by
one space
character.

When BEGIN
follows THEN,
ELSE, DO, it
should be on
the same line,
preceded by
one space
character.

When BEGIN
follows THEN,
ELSE, DO, it
should be on
the same line,
preceded by
one space
character.

Readability Warning true

AA0018 The END, IF,
REPEAT,
UNTIL, FOR,
WHILE and
CASE
statement
should always
start a line.

The END, IF,
REPEAT,
UNTIL, FOR,
WHILE and
CASE
statement
should always
start a line.

The '{0}'
keyword
should always
start a line.

Readability Warning true

AA0021 Variable
declarations
should be
ordered by
type.

Variable
declarations
should be
ordered by
type. In
general,
object and
complex
variable types
are listed first
followed by
simple
variables.

Variable
declarations
should be
ordered by
type.

Readability Warning true

AA0022 Substitute the
IF THEN ELSE
structure with
a CASE.

An IF followed
by two or
more ELSE IF
should be
replaced with
a CASE.

Substitute the
IF THEN ELSE
structure with
a CASE.

Readability Warning true

AA0040 Avoid using
nested WITH
statements.

It can be
difficult to see
what variable
that a
member
variable or
function refers
to, when
nesting WITH
statements of
variables with
different
types.

This WITH
statement is
nested inside
another WITH
statement at
'{0}'.

Readability Warning true

ID TITLE DESCRIPTION
MESSAGEFORM
AT CATEGORY

DEFAULT
SEVERITY

ISENABLEDBYD
EFAULT

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/codecop-aa0013-trailingbeginshouldbeonthesameline
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/codecop-aa0018-keywordshouldbefirstonline
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/codecop-aa0021-variabledeclarationsshouldbeorderedbytype
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/codecop-aa0022-substituteifelsewithcasestatementifmorethantwoalternatives
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/codecop-aa0040-donotnestwiths

AA0074 TextConst and
Label variable
names should
have an
approved
suffix.

TextConst and
Label variable
names should
have a suffix
(an approved
three-letter
suffix: Msg,
Tok, Err, Qst,
Lbl, Txt)
describing
usage.

TextConst and
Label variable
'{0}' must
have a suffix
from this list:
Msg, Tok, Err,
Qst, Lbl, Txt.

Readability Warning true

AA0100 Do not have
identifiers
with quotes in
the name.

Do not have
identifiers
with quotes in
the name.

Do not have
identifiers with
quotes in the
name.

Design Warning true

AA0101 Use camel
case captions
in pages of
type API.

For pages of
the type API
and all their
field controls,
the Caption
property
value should
be camel-
cased to
follow the
Microsoft
REST API
Guidelines.

For pages of
the type API
and all their
field controls,
the Caption
property
value should
be camel-
cased.

Design Warning true

AA0102 Use camel
case name for
field controls
in pages of
type API.

Field controls
in pages of
type API
should have a
camel case
name in order
to follow the
Microsoft
REST API
Guidelines.

Field controls
in pages of
type API
should have a
camel case
name.

Design Warning true

AA0136 Do not write
code that will
never be hit.

Do not write
code that will
never be hit.

Unreachable
code detected.

Design Warning true

AA0137 Do not
declare
variables that
are unused.

Do not
declare
variables that
are unused.

Variable '{0}' is
unused in '{1}'.

Design Warning true

AA0139 Do not assign
a text to a
target with
smaller size.

Do not assign
a text to a
target with
smaller size.

Possible
overflow
assigning '{0}'
to '{1}'.

Design Warning true

ID TITLE DESCRIPTION
MESSAGEFORM
AT CATEGORY

DEFAULT
SEVERITY

ISENABLEDBYD
EFAULT

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/codecop-aa0074-textconstlabelvariablenamesshouldhaveapprovedsuffix
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/codecop-aa0100-donothaveidentifierswithquotesinthename
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/codecop-aa0101-usecamelcasecaptionsforapipages
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/codecop-aa0102-usecamelcasefieldnamesforapipages
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/codecop-aa0136-donotwritecodethatwillneverbehit
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/codecop-aa0137-donotdeclarevariablesthatareunused
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/codecop-aa0139-donotassigntostringwithsmallercapacity

AA0161 Only use
ASSERTERROR
in Test
Codeunits.

Only use
ASSERTERROR
in Test
Codeunits.

Only use
ASSERTERROR
in Test
Codeunits.

Design Warning true

AA0194 Only write
actions that
have an effect.

Remember to
specify either
the 'OnAction'
trigger or
'RunObject'
property on
an action.

Remember to
specify either
the 'OnAction'
trigger or
'RunObject'
property on
an action.

Design Warning true

ID TITLE DESCRIPTION
MESSAGEFORM
AT CATEGORY

DEFAULT
SEVERITY

ISENABLEDBYD
EFAULT

See Also
Using the Code Analysis Tool
Ruleset for the Code Analysis Tool
Using the Code Analysis Tools with the Ruleset

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/codecop-aa0161-onlyuseasserterrorintestcodeunits
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/codecop-aa0194-donotwriteactionswithnoeffect

PerTenantExtensionCop Analyzer Rules
3/31/2019 • 2 minutes to read

Rules

ID TITLE DESCRIPTION
MESSAGEFORM
AT CATEGORY

DEFAULT
SEVERITY

ISENABLEDBYD
EFAULT

PTE0001 Object ID
must be in
free range.

Object ID
must be in
free range.

{0} '{1}' has an
ID of [{2}]. It
must be
between {3}
and {4}.

ObjectValidati
on

Error true

PTE0002 Field ID must
be in free
range.

Field ID must
be in free
range.

Field '{0}' has
an ID of [{1}].
It must be
between {2}
and {3}.

ObjectValidati
on

Error true

PTE0003 Functions
must not
subscribe to
CompanyOpe
n events.

Functions
must not
subscribe to
CompanyOpe
n events.

Function {0}
subscribes to
{1}.

ObjectValidati
on

Error true

PTE0004 Table
definitions
must have a
matching
permission
set.

Table
definitions
must have a
matching
permission
set.

Table '{0}' is
missing a
matching
permission
set.

ObjectValidati
on

Error true

PTE0005 Property
'target' has
invalid value.

'Internal' is a
reserved
usage for the
'target'
property.

App.json
'target'
property must
not be set to
'Internal'.

PackageValida
tion

Error true

PTE0006 Encryption
key functions
must not be
invoked.

Encryption
key functions
must not be
invoked.

Encryption
key function
'{0}' is not
allowed.

PackageValida
tion

Error true

PTE0007 Test assertion
functions are
not allowed in
a non-test
context.

Test assertion
functions are
not allowed in
a non-test
context.

Assertion
function '{0}'
must not be
invoked.

PackageValida
tion

Error true

PerTenantExtensionCop is an analyzer that enforces rules that must be respected by extensions meant to be
installed for individual tenants.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/pertenantextensioncop-pte0001-objectidmustbeinfreerange
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/pertenantextensioncop-pte0002-fieldidmustbeinfreerange
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/pertenantextensioncop-pte0003-donotsubscribetooncompanyopenevents
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/pertenantextensioncop-pte0004-tablesmusthavepermissionsetdefined
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/pertenantextensioncop-pte0005-manifesttargetmustnotbeinternal
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/pertenantextensioncop-pte0006-donotcallencryptionkeyfunctions
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/pertenantextensioncop-pte0007-donotcallasserterror

PTE0008 Fields must
use
ApplicationAr
ea property.

Fields must
use
ApplicationAr
ea property.

Field with
name '{0}'
must have a
value for the
ApplicationAre
a property.

PackageValida
tion

Error true

PTE0009 This app.json
property
must not be
used for per-
tenant
extensions.

The
properties
'HelpBaseUrl'
and
'SupportedLoc
ales' are
reserved for
translation
apps.

The app.json
'{0}' property
must not be
used for per-
tenant
extensions.

PackageValida
tion

Error true

ID TITLE DESCRIPTION
MESSAGEFORM
AT CATEGORY

DEFAULT
SEVERITY

ISENABLEDBYD
EFAULT

See Also
Using the Code Analysis Tool
Ruleset for the Code Analysis Tool
Using the Code Analysis Tools with the Ruleset

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/pertenantextensioncop-pte0008-useapplicationareaproperty
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/pertenantextensioncop-pte0009-donotusemanifesttranslationproperties

UICop Analyzer Rules
3/31/2019 • 2 minutes to read

Rules

ID TITLE DESCRIPTION
MESSAGEFORM
AT CATEGORY

DEFAULT
SEVERITY

ISENABLEDBYD
EFAULT

AW0001 The Web
client does
not support
displaying the
Request page
of XMLPorts.

The Web
client does
not support
displaying the
Request page
of XMLPorts.

The Web
client does
not support
displaying the
Request page
of the
XMLPort '{0}'.

WebClient Warning true

AW0002 The Web
client does
not support
displaying
both Actions
and Fields in
Cue Groups.
Only Fields
will be
displayed.

The Web
client does
not support
displaying
both Actions
and Fields in
Cue Groups.
Only Fields
will be
displayed.

The Web
client does
not support
displaying
both Actions
and Fields in
the Cue
Group '{0}'.
Only Fields
will be
displayed.

WebClient Warning true

AW0003 The Web
client does
not support
displaying
Repeater
controls
containing
Parts.

The Web
client does
not support
displaying
Repeater
controls
containing
Parts.

The Web
client does
not support
displaying
Repeater
controls
containing
Parts.

WebClient Warning true

AW0004 A Blob cannot
be used as a
source
expression for
a page field.

A Blob cannot
be used as a
source
expression for
a page field.

A Blob cannot
be used as a
source
expression for
a page field.

WebClient Warning true

AW0005 Actions
should use
the Image
property.

Actions
should use
the Image
property.

Action with
name '{0}'
should have a
value for the
Image
property.

WebClient Info true

UICop is an analyzer that enforces rules that must be respected by extensions meant to be installed for individual
tenants.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/uicop-aw0001-requestpageofxmlportscannotbedisplayed
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/uicop-aw0002-cuegroupscannotcontainbothactionsandfields
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/uicop-aw0003-repeaterwithpartscannotbedisplayed
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/uicop-aw0004-blobcannotbeusedonpagefield
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/uicop-aw0005-useimageproperty

AW0006 Pages and
reports
should use
the
UsageCategor
y and
ApplicationAr
ea properties
to be
searchable.

Pages and
reports
should use
the
UsageCategor
y and
ApplicationAr
ea properties
to be
searchable.

The {0} '{1}'
should use
the
UsageCategor
y and
ApplicationAre
a properties
to be
searchable.

WebClient Info true

AW0007 The Web
client does
not support
displaying
Repeater
controls that
contain
FlowFilter
fields.

The Web
client does
not support
displaying
Repeater
controls that
contain
FlowFilter
fields.

The FlowFiter
field '{0}' in
the Repeater
control '{1}'
cannot be
displayed by
the Web
client.

WebClient Error true

ID TITLE DESCRIPTION
MESSAGEFORM
AT CATEGORY

DEFAULT
SEVERITY

ISENABLEDBYD
EFAULT

See Also
Using the Code Analysis Tool
Ruleset for the Code Analysis Tool
Using the Code Analysis Tools with the Ruleset

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/uicop-aw0006-useusagecategoryproperty
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/uicop-aw0007-repeaterwithflowfiltercannotbedisplayed

Isolated Storage
3/31/2019 • 2 minutes to read

METHOD DESCRIPTION FOR MORE INFORMATION, SEE

Set(String, String, [DataScope]) Sets the value associated with the
specified key within the extension.

Set(String, String, [DataScope]) Method

Get(String, [DataScope], var Text) Gets the value associated with the
specified key within the extension.

Get(String, [DataScope], var Text)
Method

Contains(String, [DataScope]) Determines whether the storage
contains a value with the specified key
within the extension.

Contains(String, [DataScope]) Method

Delete(String, [DataScope]) Deletes the value with the specified key
from the isolated storage within the
extension.

ISOLATEDSTORAGE.DELETE Method

See Also

Isolated Storage is a data storage that provides isolation between extensions, so that you can keep keys/values in
one extension from being accessed from other extensions. Keys/values in the Isolated Storage are accessible
through an API. The involved option type is DataScope.

The methods supported for IsolatedStorage are:

DataScope Option Type

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/isolatedstorage/isolatedstorage-set-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/isolatedstorage/isolatedstorage-get-string-datascope-text-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/isolatedstorage/isolatedstorage-contains-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/isolatedstorage/isolatedstorage-delete-method

File Handling and Text Encoding
3/31/2019 • 4 minutes to read

Text encoding

Encoding formats

OBJECT OR DATA TYPE FOR MORE INFORMATION, SEE

XMLports TextEncoding Property (XMLports)

File OPEN Method (File)

BLOB CREATEINSTREAM Method (BLOB)

CREATEOUTSTREAM Method (BLOB)

MS-DOS encoding format

There are several AL methods that you can use to open files, import and export files to and from Dynamics 365
Business Central, and more. For a list of methods, see File Data Type.

The following are recommended best practices for working with files:

Use fully qualified paths to eliminate ambiguity.

Be aware of operating system file access restrictions when designing applications that use files. Consider
which users have access to files and directories and what Access Control List (ACL) that you need to apply to
file directories.

Text encoding is the process of transforming bytes of data into readable characters for users of a system or
program. When you import a file as text or as a stream, the text encoding format ensures that all the language-
specific characters are represented correctly in Dynamics 365 Business Central. When you export a file as text or as
a stream, the text encoding format ensures that all the language-specific characters are represented correctly in the
system or program that will read the exported file.

You can specify text encoding for the following objects.

There are several industry text encoding formats and different systems support different formats. Internally,
Dynamics 365 Business Central uses Unicode encoding. For exporting and importing data with an XMLport, it
supports MS-DOS, UTF-8, UTF-16, and Windows encoding formats.

Data is imported and exported as follows:

When data is imported from an external file, it is read using the format that is specified by the
TextEncoding property or parameter, and then converted to Unicode in Dynamics 365 Business Central.

When data is exported to an external file, it is converted from Unicode in Dynamics 365 Business Central,
and then written to the file in the format that is specified by the TextEncoding property or parameter.

You should set the text encoding to the encoding format that is compatible with the system or program that you
will be exporting to or importing from. The following sections describe the available text encoding formats.

MS-DOS encoding, which is also referred to as OEM encoding, is an older format than UTF-8 and UTF-16, but it is

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/datatypes/devenv-file-data-type
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-textencoding-xmlports-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-open-method-file
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-createinstream-method-blob
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-createoutstream-method-blob

UTF-8 encoding format

UTF-16 encoding format

Windows format

See Also

still widely supported.

MS-DOS encoding requires a different character set for each language. When the property is set to MS-DOS, text
is encoded by using the system locale language of the computer that is running Dynamics 365 Business Central
service instance. So if you use MS-DOS encoding, you should set the system locale language of server instance
computer to match the language of the data that is being imported or exported. For example, if an XMLport
includes text in Danish, then you should set the system locale language of the server instance computer to Danish
before the XMLport is run.

You should choose MS-DOS with XMLports that were created in earlier versions of Dynamics 365 Business
Central.

UTF-8 encoding is a Unicode Transformation Format that uses one byte (8 bits) to encode each character. UTF-8 is
based on the Unicode character set, which includes most characters of all languages in a single character set.

Unlike MS-DOS, when you use UTF-8, you do not have to consider the language settings of Dynamics 365
Business Central service instance or the external system or program that will read or write the data.

UTF-8 is compatible with ASCII so that it will understand files written in ASCII format.

UTF-8 is the most common encoding format and the recommended setting if you are not sure of the format that is
supported by the system that you are integrating with.

UTF-16 encoding resembles UTF-8 except that UTF-16 uses 2 bytes (16 bits) to encode each character. UTF-16 is
also based on the Unicode character set, so you do not have to consider the language setting of Dynamics 365
Business Central service instance or the external system or program that reads or writes the data.

UTF-16 includes two encoding schemes which mandate the byte order: UTF-16LE and UTF-16BE. The schemas
are supported as follows:

When exporting, the file is written using UTF-16LE encoding.

When importing, the file is read using the UTF-16, UTF-16LE, or UTF-16BE, depending on encoding
scheme of the file itself.

A UTF-16 encoded file will typically be larger than the same file encoded with UTF-8, except for Eastern language
character sets, which will typically be smaller.

UTF-16 is incompatible with ASCII so that it will not understand files written in ASCII format.

Windows encoding is also referred to as ANSI encoding. If you set the text encoding to Windows, you can import
and export text files that are based on the Windows codepage on the user’s computer. As a result, you do not have
to consider the language setting of Dynamics 365 Business Central service instance computer or the external
system or program that reads or writes the data.

For example, if an XMLport can import bank files from a foreign bank in addition to a domestic bank, use Windows
encoding instead of MS-DOS encoding to avoid changing the language of Dynamics 365 Business Central service
instance computer.

Windows encoding is compatible with ASCII so that it will understand files written in ASCII format.

TextEncoding Property (XMLports)
File Data Type

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-textencoding-xmlports-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/datatypes/devenv-file-data-type

FlowFields
3/31/2019 • 2 minutes to read

FlowField types

FLOWFIELD TYPE FIELD TYPE DESCRIPTION

Sum Decimal, Integer, BigInteger, or
Duration

The sum of a specified set in a column
in a table.

Average Decimal, Integer, BigInteger, or
Duration

The average value of a specified set in a
column in a table.

Exist Boolean Indicates whether any records exist in a
specified set in a table.

Count Integer The number of records in a specified set
in a table.

Min Any The minimum value in a column in a
specified set in a table.

Max Any The maximum value in a column in a
specified set in a table.

Lookup Any Looks up a value in a column in
another table.

Example

FlowFields display the result of the calculation described in the CalcFormula Property. For example, the Account
Balance field in the General Ledger Account table shows the balance of the account and is calculated as the sum
of the NetAmount fields for all General Journal entries in the account.

FlowFields increase performance in activities such as calculating the balance of your customers. In traditional
database systems, this involves a series of accesses and calculations before a result is available. By using
FlowFields, the result is immediately available.

FlowFields are not physical fields that are stored in the database. They are a description of a calculation and a
location for the result to be displayed. Because the information in FlowFields exists only at run time, values in
FlowFields are automatically initialized to 0 (zero). To update a FlowField, use the CalcFields Method (Record). If a
FlowField is the direct source expression of a control on a page, then the FlowField is automatically calculated
when the page is displayed.

There are seven types of FlowFields. Each is described in the following table.

Consider the Customer table in the following illustration. This table contains two FlowFields. The field named Any
Entries is a FlowField of the Exist type, and the Balance field is a FlowField of the Sum type.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-calcformula-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-calcfields-method

Sum = 10 + 20 + 30 = 60.

Sum("Customer Entries".Amount WHERE(CustNo=FIELD(CustNo)))

Exist("Customer Entries" WHERE(CustNo=FIELD(CustNo)))

See Also

The figure shows that the value in the Balance FlowField for customer number 10000 (Windy City Solutions) is
retrieved from the Amount column in the Customer Entry table. The value is the sum of the amount fields for the
entries that have the customer number 10000.

The values shown in the Balance column in the Customer table for customers 10010, 10020, and 10040 are
found in the same way. For customer number 10030 the value is 0 (zero), as there are no entries in the Customer
Entry table that have a Customer No. that equals 10030.

In this example, the Balance FlowField in the Customer table reflects the sum of a specific subset of the Amount
fields in the Customer Entry table. How the calculation of a FlowField is to be made, is defined in a calculation
formula. The calculation formula for the Balance field is:

Correspondingly, the Any Entries field, which indicates whether any entries exist, has the following definition:

CalcFields Method (Record)
Create FlowFields and FlowFilters

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-calcfields-method

Create FlowFields and FlowFilters
3/31/2019 • 2 minutes to read

Classifying the field type

Calculation formula

Example

This topic describes the procedure and the properties used to create FlowFields and FlowFilters.

A FlowField performs a set of calculations and displays the results immediately. A FlowFilter displays the results
based on the user input to calculate the filtered values that will affect the calculation of a FlowField. The FlowFields
and FlowFilters are not physical fields; these fields act as a virtual field which does not actually exist in the
database. They are a description of a calculation and a location for the result to be displayed which is typically
derived in the CalcFormula Property.

For more information about the FlowField type, see FlowFields, and for more information about the FlowFilter
type, see FlowFilter Overview.

In order to create FlowFields and FlowFilters, you must first classify the field type by using the FieldClass Property.
For more information, see FieldClass Property. By classifying the field as a FlowField or a FlowFilter type, you
enable the fields to act as a virtual field whose value can be dynamically derived based on the calculation formula.

A FlowField type is always associated with a calculation formula that determines how the FlowField is calculated.
Likewise, the FlowFilter type is associated with the calculation formula. To perform the calculations by using the
FlowField and FlowFilter type, you must derive those fields in the calculation formula which you classify in the
table. You can choose from several methods of calculations including sum (total), average, maximum value,
minimum value, record count, lookup, and more, by using the CalcFormula Property. For more information about
the syntax and formulas, see Calculation Formulas and the CalcFormula Property.

In the following example, MyTable sets the Global Dimension 1 Filter and Global Dimension 2 Filter fields
whose values are based only on the dimension values included in the filter. Total Amount is classified as a
FlowField type and here you specify the calculations. Also, this field formulates the currency filter to one single
currency because you do not store the filter value on the entries, hence you define the Currency Filter as a
FlowFilter type. Lastly, the Total Amount displays the results immediately based on the filters you apply in the user
interface.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-calcformula-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-flowfilter-overview
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-fieldclass-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-calculation-formulas-and-the-calcformula-property

table 50123 MyTable
{
 fields
 {
 field(1;MyField; Decimal)
 {
 Description='New field';
 }
 field(3;"no."; Text[20])
 {
 Description='Serial number of the service';
 }
 field(4;"Global Dimension 1 Filter"; Code[20])
 {
 FieldClass = FlowFilter;
 }
 field(5;"Global Dimension 2 Filter"; Code[20])
 {
 FieldClass = FlowFilter;
 }
 field(6;"Currency Filter"; Code[10])
 {
 FieldClass = FlowFilter;
 }
 field(2; "Total Amount"; Decimal)
 {
 FieldClass = FlowField;
 CalcFormula = Sum("Detailed Cust. Ledg. Entry"."Amount (LCY)"
 WHERE ("Customer No."=FIELD("No."),
 "Initial Entry Global Dim. 1"=FIELD("Global Dimension 1 Filter"),
 "Initial Entry Global Dim. 2"=FIELD("Global Dimension 2 Filter"),
 "Currency Code"=FIELD("Currency Filter")
));
 }
 }
}

See Also
FlowFields
FlowFilter Overview
Calculation Formulas and the CalcFormula Property

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-flowfilter-overview
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-calculation-formulas-and-the-calcformula-property

Extensible Enums
3/31/2019 • 2 minutes to read

enum 50121 Loyalty
{
 Extensible = true;

 value(0; None) { }
 value(1; Bronze) { }
 value(2; Silver) { }
 value(3; Gold)
 {
 Caption = 'Gold Customer';
 }
}

enumextension 50130 LoyaltyWithDiamonds extends Loyalty
{
 value(50130; Diamond)
 {
 Caption = 'Diamond Level';
 }
}

Usage

field(50100; Loyal; enum Loyalty) {}

var
 LoyaltyLevel: enum Loyalty;

An enumeration type, also known as an enum in programming, is a keyword used to declare a type that consists of
a set of named constants. The list of named constants is called the enumeration list. Enums can be used as table
fields, local and global variables, and parameters.

To declare an enum in AL you must specify an ID and a name. The enumeration list consists of values and each of
the values are declared with an ID and a value. The value ID is the ordinal value on the enumeration list and must
be unique. The following example shows the declaration of an enum, which can be extended, and has the four
values; None, Bronze, Silver, and Gold.

Enums can be extended in order to add more values to the enumeration list in which case the Extensible property
must be set to true . The syntax for an enum extension, which extends the Loyalty enum with the value
Diamond, is shown below.

When referencing a defined enum from code, you use the syntax as illustrated below.

enum Loyalty

If you want to define an enum as a table field type, use the syntax illustrated below:

Or, as a variable:

codeunit 50140 EnumUsage
{
 procedure Foo(p: enum Loyalty)
 var
 LoyaltyLevel: enum Loyalty;
 begin
 if p = p::Gold then begin
 LoyaltyLevel := p;
 end;
 end;
}

Example

enumextension 50133 TypeEnumExt extends TypeEnum
{
 value(10; Resource) { }
}

tableextension 50135 TableWithRelationExt extends TableWithRelation
{
 fields
 {
 modify(Relation)
 {
 TableRelation = if (Type = const (Resource)) Resource;
 }
 }
}

page 50133 PageOnRelationTable
{
 SourceTable = TableWithRelation;
 SourceTableView = where (Type = const (Resource));
 PageType = List;

 layout
 {
 area(Content)
 {
 repeater(MyRep)
 {
 field(Id; Id)
 {
 ApplicationArea = All;
 }
 field(Type; Type)
 {
 ApplicationArea = All;
 }
 field(Relation; Relation)
 {
 ApplicationArea = All;
 }
 }
 }
 }
}

In code, you address a specific enum value like in the following example:

The following example illustrates how to define an enum extension of TypeEnum , using this in a table extension
TableWithRelationExt and displaying this as a control on a new page.

TIP

Business Central On-Premises

PROPERTY NAME DATA TYPE

Extensible Boolean, default value is No.

EnumTypeId Integer

EnumTypeName Text

Conversions

See Also

For another example of how to extend the usage of the TableRelation property in connection with enums, see
TableRelation Property.

If you want to extend an existing Dynamics 365 on-premises enum, it is possible to mark a table field in C/SIDE as
extensible. To enable running C/SIDE and AL side-by-side, see Running C/SIDE and AL Side-by-Side.

Table field options in C/SIDE have three properties to enable enum support:

Some table fields share options that are semantically identical. In those cases the EnumTypeId and
EnumTypeName must be the same across all the fields. There is no design or runtime check for collision of IDs,
but loading generated symbols, see Running C/SIDE and AL Side-by-Side, into the compiler will show collision
errors.

Conversion to and from enum is more strict than for Options in C/SIDE.

An enum can be assigned/compared to an enum of the same type.
To be backwards compatible we support conversion to/from any Option for now.

AL Data Types
TableRelation Property

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-tablerelation-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/datatypes/devenv-al-data-types
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-tablerelation-property

Table Object
3/31/2019 • 2 minutes to read

NOTE

IMPORTANT

Snippet support

Table syntax

Tables are the core objects used to store data in Dynamics 365 Business Central. Regardless of how data is
registered in the product - from a web service to a finger swipe on the phone app, the results of that transaction
will be recorded in a table.

The structure of a table has four sections. The first block contains metadata for the overall table; the table type.
The fields section describes the data elements that make up the table; their name and the type of data they can
store. The keys section contains the definitions of the keys that the table needs to support. The final section
details the triggers and code that can run on the table.

Extension objects can have a name with a maximum length of 30 characters.

System and virtual tables cannot be extended. System tables are created in the ID range of 2.000.000.000 and above. For
more information about object ranges, see Object Ranges.

Typing the shortcut ttable will create the basic layout for a table object when using the AL Language extension
in Visual Studio Code.

table id MyTable
{
 DataClassification = ToBeClassified;

 fields
 {
 field(1;MyField; Integer)
 {
 DataClassification = ToBeClassified;

 }
 }

 keys
 {
 key(PK; MyField)
 {
 Clustered = true;
 }
 }

 var
 myInt: Integer;

 trigger OnInsert()
 begin

 end;

 trigger OnModify()
 begin

 end;

 trigger OnDelete()
 begin

 end;

 trigger OnRename()
 begin

 end;

}

Table example
This table stores address information and has four fields; Address, Locality, Town/City, and County.

table 50104 Address
{
 caption = 'Sample table';
 DataPerCompany = true;

 fields
 {
 field(1; Address; Text[50])
 {
 Description = 'Address retrieved by Service';
 }
 field(2; Locality; Text[30])
 {
 Description = 'Locality retrieved by Service';
 }
 field(3; "Town/City"; Text[30])
 {
 Description = 'Town/City retrieved by Service';
 }
 field(4; County; Text[30])
 {
 Description = 'County retrieved by Service';

 trigger OnValidate();
 begin
 ValidateCounty(County);
 end;

 }
 }
 keys
 {
 key(PrimaryKey; Address)
 {
 Clustered = TRUE;
 }
 }

 var
 Msg: TextConst = 'Hello from my method';

 trigger OnInsert();
 begin

 end;

 procedure MyMethod();
 begin
 Message(Msg);
 end;
}

See Also
AL Development Environment
Table Overview
Table Extension Object
Table Keys
Table Properties

Table Extension Object
3/31/2019 • 2 minutes to read

NOTE

IMPORTANT

IMPORTANT

Snippet support

Properties

Table extension syntax
tableextension Id MyExtension extends MyTargetTable
{
 fields
 {
 // Add changes to table fields here
 }

 var
 myInt: Integer;
}

The table extension object allows you to add additional fields or to change some properties on a table provided
by the Dynamics 365 Business Central service. In this way, you can add data to the same table and treat it as a
single table. For example, you may want to create a table extension for a retail winter sports store. In your
solution you want to have ShoeSize as an additional field on the customer table. Adding this as an extension
allows you to write code for the customer record and also include values for the ShoeSize .

Along with defining other fields, the table extension is where you write trigger code for your additional fields.

When developing a solution for Dynamics 365 Business Central , you will follow the code layout for a table
extension as shown in the example below.

Extension objects can have a name with a maximum length of 30 characters.

System and virtual tables cannot be extended. System tables are created in the ID range of 2.000.000.000 and above. For
more information about object ranges, see Object Ranges.

Extending tables from Dynamics 365 for Sales is currently not supported.

Typing the shortcut ttableext will create the basic layout for a table extension object when using the AL
Language extension in Visual Studio Code.

Using a table extension allows you to overwrite some properties on fields in the base table. For a list of Table
properties, see Table and Table Extension Properties.

Table extension example

tableextension 50115 RetailWinterSportsStore extends Customer
{
 fields
 {
 field(50116;ShoeSize;Integer)
 {
 trigger OnValidate();
 begin
 if (rec.ShoeSize < 0) then
 begin
 message('Shoe size not valid: %1', rec.ShoeSize);
 end;
 end;
 }
 }

 procedure HasShoeSize() : Boolean;
 begin
 exit(ShoeSize <> 0);
 end;

 trigger OnBeforeInsert();
 begin
 if not HasShoeSize then
 ShoeSize := Random(42);
 end;
}

Applies to

See Also

This table extension object extends the Customer table object by adding a field ShoeSize , with ID 50116 and the
data type Integer . It also contains a procedure to check if the ShoeSize field is filled in.

Tables

AL Development Environment
Table Overview
Table Object
Table and Table Extension Properties
Table Keys

Table Keys
3/31/2019 • 7 minutes to read

Primary keys

NOTE

Secondary keys

Unique secondary keys

The database management system, which is SQL Server, keeps track of data in a table using a primary key. The
primary key is composed of up to 16 fields in a record. The combination of values in fields in the primary key
makes it possible to uniquely identify each record.

The primary key determines the logical order in which records are stored, regardless of their physical placement.

Logically, records are stored sequentially in ascending order and are sorted by the primary key. Before adding a
new record to a table, SQL Server checks if the information in the record's primary key fields is unique and only
then inserts the record into the correct logical position. Records are sorted dynamically so the database is always
structurally correct. This allows for fast data manipulation and retrieval.

A table description contains a list of keys. A key is a sequence of one or more field IDs from the table. Up to 40
keys can be associated to a table. The first key in the list is the primary key.

The primary key is always active, and SQL Server keeps the table sorted in primary key order and rejects records
with duplicate values in primary key fields. Therefore, the values in the primary key must always be unique. Note
that it is not the value in each field in the primary key that must be unique, but it is the combination of values in
all fields that make up the primary key.

In the development environment, it is technically possible to create a primary key based on up to 20 fields. However,
because of SQL Server limitations, only the first 16 are used.

A secondary key is implemented on SQL Server using an additional structure that is called an index. This is like
an index that is used in textbooks. A textbook index alphabetically lists important terms at the end of a book. Next
to each term are page numbers. You can quickly search the index to find a list of page numbers (addresses), and
you can locate the term by searching the specified pages. The index is an exact indicator that shows where each
term occurs in the textbook.

When you define a secondary key and mark it as enabled, an index is automatically maintained on SQL Server.
The index reflects the sorting order that is defined by the key. Several secondary keys can be active at the same
time.

A secondary key can be changed to be disabled, which does not occupy database space, and does not use time
during updates to maintain its index. Disabled keys can be re-enabled, although this can be time-consuming
because SQL Server must scan the whole table to rebuild the index.

The fields that make up the secondary keys do not always contain unique data, and SQL Server does not reject
records with duplicate data in secondary key fields. If two or more records contain identical information in the
secondary key, then SQL Server uses the primary key for the table to resolve this conflict.

A key definition includes the Unique property that you can use to create a unique constraint on the table in SQL

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-unique-property

NOTE

Clustered and non-clustered keys

NOTE

Sort orders and secondary keys

KEY KEY TYPE DEFINITION

1 Primary Customer Number

2 Secondary Customer Name

CUSTOMER NUMBER CUSTOMER NAME

001 Customer C

002 Customer A

003 Customer B

004 Customer C

Server. A unique key ensures that records in a table do not have identical field values. With a unique key, when
table is validated, the key value is checked for uniqueness. If the table includes records with duplicate values, the
validation fails. Another benefit of unique indexes is providing information to the query optimizer that helps
produce more efficient execution plans.

Like primary keys, you can create unique secondary keys that are comprised of multiple fields. In this case, it's the
combination of the values in the secondary key that must be unique. For example, if you have a Customer table,
you could create a unique key for the Name, Address, and City fields to make sure that there are no customers
that have the same combination of values for these fields.

Unlike primary keys, it is possible to define multiple unique secondary keys on a table.

The Unique property is not supported in table extension objects.

A key definition includes the Clustered property that you use to create a clustered index. A clustered index
determines the physical order in which records are stored in the table. Based on the key value, records are sorted
in ascending order. Using a clustered key can speed up the retrieval of records.

There can be only one clustered index per table. By default the primary is configured as a clustered key.

The Clustered property is not supported in table extension objects.

The following example shows how the primary key influences the sort order when a secondary key is active. The
Customer table includes four entries (records), and the records in the Customer table have two fields: Customer
Number and Customer Name.

The following is the key list for the Customer table.

When you sort by the primary key, the Customer table resembles the following table.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-clustered-property

CUSTOMER NAME CUSTOMER NUMBER

Customer A 002

Customer B 003

Customer C 001

Customer C 004

NOTE

How keys affect performance

IF YOU PERFORMANCE IMPROVES WHEN YOU PERFORMANCE SLOWS WHEN YOU

Increase the number of secondary keys
that are marked as active.

Retrieve data in several different
sorting sequences because the data is
already sorted.

Enter data because indexes for each
secondary key must be maintained.

Decide to use only a few keys. Enter data because a minimal number
of indexes are maintained.

Retrieve data. You may have to define
or reactivate the secondary keys to get
the appropriate sorting. Depending on
the size of the database, this can take
some time, because the index must be
rebuilt.

Defining new keys

If you select the secondary key for sorting, then the order is based on the contents of the Customer Name field.
Because the contents of these fields are not unique, the records must be sub-sorted according to the primary key.

The two records that have the same Customer Name value are sorted by Customer Number.

Searching for specific data is easier if several keys have been defined and maintained for the table that holds the
desired data. The indexes for each key provide specific views that enable quick, flexible searches. There are
advantages and disadvantages to using many keys, as demonstrated in the following table.

The decision whether to use a few or many keys is not easy. The choice of appropriate keys and the number of
active keys to use should be the best compromise between maximizing the speed of data retrieval and
maximizing the speed of data updates (operations that insert, delete, or modify data). In general, it may be
worthwhile to deactivate complex keys if they are rarely used.

The overall speed depends on the following factors:

Size of the database.

Number of active keys.

Complexity of the keys.

Number of records in your tables.

Speed of your computer and its hard disk.

You define keys in AL code of a table object. To define keys, add the keys keyword after the fields definition,

keys
{
 key(Name; Fields)
 {

 }
 key(Name; Fields)
 {

 }
}

Key properties

keys
{
 key(PrimaryKey; ID)
 {
 Clustered = true;
 }
 key(CustomerInfo; Name,Address,City)
 {
 Unique = true;
 }
 key(Currency; Currency Code)
 {
 Enabled = false;
 }
}

Restrictions on key modifications

See Also

and then add a key keyword for each key:

Replace Name with descriptive text that you want to use to identify the key. Replace Field with the name of a
field that you want to use as the key. If you want to include multiple fields in a single key, separate each field with
a comma.

The first key keyword defines the primary key. Subsequent key keywords define secondary keys.

There are several properties that configure the behavior of a key, such as the Enabled, Clustered, and Unique
properties:

For a more information about the different key properties, see Key Properties.

When developing a new version of an extension, be aware of the following restrictions to avoid schema
synchronization errors that prevent you from publishing the new version:

Do not delete existing keys.
Do not add or remove fields, change the order of fields, or change properties of existing keys.
Do not add additional unique keys.

Tables Overview
Table Object
Table Extension Object

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-enabled-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-clustered-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-unique-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-key-properties

Page Object
3/31/2019 • 2 minutes to read

NOTE

Snippet support

Card page syntax

Pages are the main way to display and organize visual data in Dynamics 365 Business Central. They are the
primary object that a user will interact with and have a different behavior based on the type that you choose.
Pages are designed independently of the device they are to be rendered on, and in this way the same page
can be reused across phone, tablet, and web clients.

The structure of a page is hierarchical and breaks down in to three sections. The first block contains metadata
for the overall page; the type of the page and the source table it is showing data from. The next section; the
layout, describes the visual parts on the page. The final section details the actions that are published on the
page.

When developing a solution for Dynamics 365 Business Central, you will follow the code layout for a page as
shown in the page example below, but for more details on the individual controls and properties that are
available, see Page Property Overview.

Extension objects can have a name with a maximum length of 30 characters.

Typing the shortcut tpage will create the basic layout for a page object when using the AL Language
extension in Visual Studio Code.

page Id MyPage
{
 PageType = Card;
 ApplicationArea = All;
 UsageCategory = Administration;
 SourceTable = TableName;
 ContextSensitiveHelpPage = 'my-feature';

 layout
 {
 area(Content)
 {
 group(GroupName)
 {
 field(Name; NameSource)
 {
 ApplicationArea = All;

 }
 }
 }
 }

 actions
 {
 area(Processing)
 {
 action(ActionName)
 {
 ApplicationArea = All;

 trigger OnAction()
 begin

 end;
 }
 }
 }

 var
 myInt: Integer;
}

List page syntax

page Id PageName
{
 PageType = List;
 ApplicationArea = All;
 SourceTable = TableName;

 layout
 {
 area(Content)
 {
 repeater(Group)
 {
 field(Name; NameSource)
 {
 ApplicationArea = All;

 }
 }
 }
 area(Factboxes)
 {

 }
 }

 actions
 {
 area(Processing)
 {
 action(ActionName)
 {
 ApplicationArea = All;

 trigger OnAction();
 begin

 end;
 }
 }
 }
}

Page example

page 50101 SimpleCustomerCard
{
 PageType = Card;
 SourceTable = Customer;
 ContextSensitiveHelpPage = 'my-feature';

 layout
 {
 area(content)
 {
 group(General)
 {
 field("No."; "No.")
 {
 ApplicationArea = All;
 CaptionML = ENU = 'Hello';

 trigger OnValidate()
 begin
 if "No." < '' then
 Message('Number too small')
 end;
 }

 field(Name; Name)
 {
 ApplicationArea = All;
 }
 field(Address; Address)
 {
 ApplicationArea = All;
 }
 }
 }
 }
 actions
 {
 area(Navigation)
 {
 action(NewAction)
 {
 ApplicationArea = All;
 RunObject = codeunit "Document Totals";
 }
 }
 }
}

See Also
AL Development Environment
Adding Help Links from Pages, Reports, and XMLports
Page Extension Object
Page and Page Extension Properties Overview
Page Properties
Developing Extensions
Configure Context-Sensitive Help

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-page-properties

Page Extension Object
3/31/2019 • 2 minutes to read

NOTE

IMPORTANT

Snippet support

Page extension syntax
pageextension Id MyExtension extends MyTargetPage
{
 layout
 {
 // Add changes to page layout here
 }

 actions
 {
 // Add changes to page actions here
 }

 var
 myInt: Integer;
}

Page extension examples

The page extension object extends a Dynamics 365 Business Central page object and adds or overrides the
functionality.

The structure of a page is hierarchical and breaks down into three sections. The first block contains metadata
for the overall page; the type of the page and the source table it is showing data from. The next section; the
layout, describes the visual parts on the page. The final section details the actions that are published on the
page.

For more information about the Page and Page Extension objects, see Pages Overview.

Extension objects can have a name with a maximum length of 30 characters.

The API page type should not be extended by creating a page extension object. Instead, create a new API by adding a
page object.

Typing the shortcut tpageext will create the basic layout for a table object when using the AL Language
extension in Visual Studio Code.

The following page extension object extends the Customer Card page object by adding a field control
ShoeSize to the General group on the page. The field control is added as the last control in the group using

the addlast method. In the actions area, you can see what the syntax looks like for actions that execute
triggers and actions that run objects.

pageextension 50110 CustomerCardExtension extends "Customer Card"
{
 layout
 {
 addlast(General)
 {
 field("Shoe Size"; ShoeSize)
 {
 ApplicationArea = All;
 Caption = 'ShoeSize';

 trigger OnValidate();
 begin
 if ShoeSize < 10 then
 Error('Feet too small');
 end;
 }
 }

 modify("Address 2")
 {
 Caption = 'New Address 2';
 }
 }

 actions
 {
 addlast(Creation)
 {
 group(MyActionGroup)
 {
 Action(MyAction1)
 {
 ApplicationArea = All;
 Caption = 'Hello!';

 trigger OnAction();
 begin
 Message('My message');
 end;
 }

 Action(MyAction2)
 {
 ApplicationArea = All;
 RunObject = codeunit "Activities Mgt.";
 }
 }
 }
 }

 var
 Msg: TextConst = 'Hello from my method';

 trigger OnOpenPage();
 begin
 Message(Msg);
 end;
}

You can reference Report and XMLPort objects and use these objects in the RunObject property, as well as,
declare variables of the types Report and XMLPort and call AL methods on them. This page extension
object extends the Customer List page object by adding two actions; the first action calls the Customer -
List report, the second action calls the Export Contact xmlport.

pageextension 50114 AddCustomerReport extends "Customer List"
{
 actions
 {
 AddLast("&Customer")
 {
 action("Customer List Report")
 {
 trigger OnAction();
 var
 rep : Report "Customer - List";
 begin
 rep.Run;
 end;
 }

 action("Export Contact List")
 {
 trigger OnAction();
 var
 xml : XmlPort "Export Contact";
 begin
 xml.Run;
 end;
 }
 }
 }
}

Applies To

See Also

Pages

Page Object
Page and Page Extension Properties
Developing Extensions
AL Development Environment

Page Customization Object
3/31/2019 • 2 minutes to read

NOTE

Snippet support

Page customization syntax
pagecustomization MyCustomization customizes MyTargetPage
{
 layout
 {
 // Add changes to page layout here
 }

 actions
 {
 // Add changes to page actions here
 }

 //Variables, procedures and triggers are not allowed on Page Customizations
}

Page customization example

pagecustomization MyCustomization customizes "Customer List"
{
 actions
 {
 moveafter("Blanket Orders"; "Aged Accounts Receivable")

 modify(NewSalesBlanketOrder)
 {
 Visible = false;
 }

 }
}

The page customization object in Dynamics 365 Business Central allows you to add changes to the page layout
and actions. The page customization object has more restrictions than the page extension object; when you define
a new page customization object, you cannot add variables, procedures, or triggers.

Extension objects can have a name with a maximum length of 30 characters.

Typing the shortcut tpagecust will create the basic layout for a page customization object when using the AL
Language extension in Visual Studio Code.

The following page customization example MyCustomization is intialized to perform changes to Customer List.
By using the moveafter method, Blanket Orders is moved next to the Aged Accounts Receivable action item. And
the modify method is used to hide the NewSalesBlanketOrder action item.

See Also
Developing Extensions
AL Development Environment
Page Object
Page Extension Object
Page Extension Properties

Report Object
3/31/2019 • 3 minutes to read

NOTE

Snippet support

Report syntax

Reports are used to print or display information from a database. You can use a report to structure and
summarize information, and to print documents, such as sales quotes and invoices.

Creating a report consists of two primary tasks; the first task is to create the underlying data model and the
next is to define the visual layout that displays the data. The report object defines the underlying data model
and specifies which database tables and fields to pull data from. When the report is run, that data is displayed
in a specified layout; the visual layout, which determines the content and format of a report when it is viewed
and printed.

For more information about defining database tables and fields, see Defining a Report Dataset.

You build the layout of a report by arranging data items and columns, and specifying the general format,
such as text font and size. There are two types of report layouts; client report definition, also called RDL
layouts and Word layouts. RDL layouts are defined in Visual Studio Report Designer or Microsoft SQL
Server Reporting Services Report Builder. Word layouts are created using Word. Word layouts are based on
a Word document that includes a custom XML part representing the report dataset.

Extension objects can have a name with a maximum length of 30 characters.

Typing the shortcut treport will create the basic layout for a report object when using the AL Language
extension in Visual Studio Code.

report Id MyReport
{
 UsageCategory = Administration;
 ApplicationArea = All;

 dataset
 {
 dataitem(DataItemName; SourceTableName)
 {
 column(ColumnName; SourceFieldName)
 {

 }
 }
 }

 requestpage
 {
 ContextSensitiveHelpPage = 'my-feature';
 layout
 {
 area(Content)
 {
 group(GroupName)
 {
 field(Name; SourceExpression)
 {
 ApplicationArea = All;

 }
 }
 }
 }

 actions
 {
 area(processing)
 {
 action(ActionName)
 {
 ApplicationArea = All;

 }
 }
 }
 }

 var
 myInt: Integer;
}

Report example

report 50103 "Customer List"
{
 CaptionML=ENU='Customer List';
 RDLCLayout = 'Customer List Report.rdlc'; // if Word use WordLayout property
 dataset
 {
 dataitem(Customer;Customer)
 {

The following example is a report that prints the list of customers. The report object defines a dataset of
columns from the Customer table. For more information on creating a Word Layout report, see Creating a
Report.

 {
 RequestFilterFields="No.","Search Name","Customer Posting Group";
 column(COMPANYNAME;COMPANYNAME)
 {
 }
 column(CurrReport_PAGENO;Customer."no.")
 {
 }
 column(Customer_TABLECAPTION_CustFilter;TABLECAPTION + ': ' + CustFilter)
 {
 }
 column(CustFilter;CustFilter)
 {
 }
 column(Customer_No;"No.")
 {
 }
 column(Customer_Customer_Posting_Group;"Customer Posting Group")
 {
 }
 column(Customer_Customer_Disc_Group;"Customer Disc. Group")
 {
 }
 column(Customer_Invoice_Disc_Code;"Invoice Disc. Code")
 {
 }
 column(Customer_Customer_Price_Group;"Customer Price Group")
 {
 }
 column(Customer_Fin_Charge_Terms_Code;"Fin. Charge Terms Code")
 {
 }
 column(Customer_Payment_Terms_Code;"Payment Terms Code")
 {
 }
 column(Customer_Salesperson_Code;"Salesperson Code")
 {
 }
 column(Customer_Currency_Code;"Currency Code")
 {
 }
 column(Customer_Credit_Limit_LCY;"Credit Limit (LCY)")
 {
 DecimalPlaces=0:0;
 }
 column(Customer_Balance_LCY;"Balance (LCY)")
 {
 }
 column(CustAddr_1;CustAddr[1])
 {
 }
 column(CustAddr_2;CustAddr[2])
 {
 }
 column(CustAddr_3;CustAddr[3])
 {
 }
 column(CustAddr_4;CustAddr[4])
 {
 }
 column(CustAddr_5;CustAddr[5])
 {
 }
 column(Customer_Contact;Contact)
 {
 }
 column(Customer_Phone_No;"Phone No.")
 {
 }
 column(CustAddr_6;CustAddr[6])

 column(CustAddr_6;CustAddr[6])
 {
 }
 column(CustAddr_7;CustAddr[7])
 {
 }
 column(Customer_ListCaption;Customer_ListCaptionLbl)
 {
 }
 column(CurrReport_PAGENOCaption;CurrReport_PAGENOCaptionLbl)
 {
 }
 column(Customer_NoCaption;FIELDCAPTION("No."))
 {
 }
 column(Customer_Customer_Posting_GroupCaption;Customer_Customer_Posting_GroupCaptionLbl)
 {
 }
 column(Customer_Customer_Disc_GroupCaption;Customer_Customer_Disc_GroupCaptionLbl)
 {
 }
 column(Customer_Invoice_Disc_CodeCaption;Customer_Invoice_Disc_CodeCaptionLbl)
 {
 }
 column(Customer_Customer_Price_GroupCaption;Customer_Customer_Price_GroupCaptionLbl)
 {
 }
 column(Customer_Fin_Charge_Terms_CodeCaption;FIELDCAPTION("Fin. Charge Terms Code"))
 {
 }
 column(Customer_Payment_Terms_CodeCaption;Customer_Payment_Terms_CodeCaptionLbl)
 {
 }
 column(Customer_Salesperson_CodeCaption;FIELDCAPTION("Salesperson Code"))
 {
 }
 column(Customer_Currency_CodeCaption;Customer_Currency_CodeCaptionLbl)
 {
 }
 column(Customer_Credit_Limit_LCYCaption;FIELDCAPTION("Credit Limit (LCY)"))
 {
 }
 column(Customer_Balance_LCYCaption;FIELDCAPTION("Balance (LCY)"))
 {
 }
 column(Customer_ContactCaption;FIELDCAPTION(Contact))
 {
 }
 column(Customer_Phone_NoCaption;FIELDCAPTION("Phone No."))
 {
 }
 column(Total_LCY_Caption;Total_LCY_CaptionLbl)
 {
 }

 trigger OnAfterGetRecord();
 begin
 CALCFIELDS("Balance (LCY)");
 FormatAddr.FormatAddr(
 CustAddr,Name,"Name 2",'',Address,"Address 2",
 City,"Post Code",County,"Country/Region Code");
 end;

 }
 }

 requestpage
 {
 SaveValues=true;

 ContextSensitiveHelpPage = 'my-feature';
 layout
 {
 }

 actions
 {
 }
 }

 labels
 {
 LabelName = 'LabelText', Comment = 'Foo', MaxLength = 999, Locked = true;
 }

 trigger OnPreReport();
 var
 CaptionManagement : Codeunit 42;
 begin
 CustFilter := CaptionManagement.GetRecordFiltersWithCaptions(Customer);
 end;

 var
 FormatAddr : Codeunit 365;
 CustFilter : Text;
 CustAddr : ARRAY [8] OF Text[50];
 Customer_ListCaptionLbl : TextConst ENU='Customer - List';
 CurrReport_PAGENOCaptionLbl : TextConst ENU='Page';
 Customer_Customer_Posting_GroupCaptionLbl : TextConst ENU='Customer Posting Group';
 Customer_Customer_Disc_GroupCaptionLbl : TextConst ENU='Cust./Item Disc. Gr.';
 Customer_Invoice_Disc_CodeCaptionLbl : TextConst ENU='Invoice Disc. Code';
 Customer_Customer_Price_GroupCaptionLbl : TextConst ENU='Price Group Code';
 Customer_Payment_Terms_CodeCaptionLbl : TextConst ENU='Payment Terms Code';
 Customer_Currency_CodeCaptionLbl : TextConst ENU='Currency Code';
 Total_LCY_CaptionLbl : TextConst ENU='Total (LCY)';
}

See Also
Creating an RDL Layout Report
Creating a Word Layout Report
Adding Help Links from Pages, Reports, and XMLports
Page Extension Object
Page Properties
Developing Extensions
AL Development Environment

Profile Object
3/31/2019 • 2 minutes to read

NOTE

Snippet support

Profile syntax
profile MyProfile
{
 Description = 'My Description';
 RoleCenter = RoleCenter;
 Customizations = Customizations;
}

Profile example

profile TheBoss
{
 Description = 'The Boss';
 RoleCenter = "Business Manager";
 Customizations = MyCustomization;
}

pagecustomization MyCustomization customizes "Customer List"
{
 layout
 {
 modify(Name)
 {
 Visible = false;
 }
 }
}

The profile object in Dynamics 365 Business Central allows you to build an individual experience for each user
profile. Profile object performs a validation to check whether the specified role center page exists, and page
customization objects exists, when you define a new profile object. You can add changes to the page layout, and
actions; but you cannot add variables, procedures, or triggers.

Extension objects can have a name with a maximum length of 30 characters.

Typing the shortcut tprofile will create the basic layout for a profile object when using the AL Language
extension in Visual Studio Code.

The following profile object example performs a validation to check if the Business Manager page of type
RoleCenter exists, and if MyCustomization exists, and if it is a page customization object. Then the page
customization modifies the layout of the Customer List to make the Name field invisible using the modify

method.

See Also
AL Development Environment
Developing Extensions
Pages Overview
Page Customization Object

Codeunit Object
3/31/2019 • 2 minutes to read

Snippet support

Codeunit example

codeunit 50113 CreateCustomer
{
 trigger OnRun();
 var
 r: record Customer;
 begin
 if not r.HasShoeSize() then
 r.ShoeSize := 42;
 end;
}

See Also

A codeunit is a container for AL code that you can use in many application objects. You typically implement
business logic in codeunits and call the codeunit from the object that needs to perform that specific logic.

Typing the shortcut tcodeunit will create the basic layout for a codeunit object when using the AL Language
extension in Visual Studio Code.

This codeunit example checks whether a given customer has registered a shoe size. If not, the customer is assigned
a shoe size of 42.

Developing Extensions
Table Extension Object
Page Extension Object
AL Development Environment

Query Object
5/21/2019 • 2 minutes to read

NOTE

Snippet support

Query syntax
query Id MyQuery
{
 QueryType = Normal;

 elements
 {
 dataitem(DataItemName; SourceTableName)
 {
 column(ColumnName; SourceFieldName)
 {

 }
 filter(FilterName; SourceFieldName)
 {

 }
 }
 }

 var
 myInt: Integer;

 trigger OnBeforeOpen()
 begin

 end;
}

A query describes a dataset of Dynamics 365 Business Central. You can query to retrieve fields from a single table
or multiple tables. You can specify how to join tables in the query and filter the result data, and you can specify
totaling methods on fields, such as sums and averages. Queries retrieve records from one or more tables and
combine the records into rows and columns in a single dataset. You create a query by adding a Query object file to
your project. In the Query object, you define dataitem and column elements in the elements section. The dataitem
element specifies the table to retrieve records from. The column element specifies a field of the table to include in
the resulting dataset of a query.

When you have specified the dataitem and column elements, you create links between the dataitem elements. A
dataitem link determines which records to include in the dataset based on a common field between two dataitems.

For information about creating a query of the type API, see API Query Type.

Extension objects can have a name with a maximum length of 30 characters.

Typing the shortcut tquery will create the basic layout for a Query object when using the AL Language extension
in Visual Studio Code.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-api-querytype

Query example

query 50102 "Top Customer Overview"
{
 Caption = 'Top Customer Overview';

 elements
 {
 dataitem(Customer; Customer)
 {
 column(Name; Name)
 {
 }
 column(No; "No.")
 {
 }
 column(Sales_LCY; "Sales (LCY)")
 {
 }
 column(Profit_LCY; "Profit (LCY)")
 {
 }
 column(Country_Region_Code; "Country/Region Code")
 {
 }
 column(City; City)
 {
 }
 column(Global_Dimension_1_Code; "Global Dimension 1 Code")
 {
 }
 column(Global_Dimension_2_Code; "Global Dimension 2 Code")
 {
 }
 column(Salesperson_Code; "Salesperson Code")
 {
 }
 dataitem(Salesperson_Purchaser; "Salesperson/Purchaser")
 {
 DataItemLink = Code = Customer."Salesperson Code";
 column(SalesPersonName; Name)
 {
 }
 dataitem(Country_Region; "Country/Region")
 {
 DataItemLink = Code = Customer."Country/Region Code";
 column(CountryRegionName; Name)
 {
 }
 }
 }
 }
 }
}

The following example shows a query that displays a list of customers with sales and profit figures. The query
primarily retrieves fields from the Customer table, but also displays fields from the Salesperson Purchaser and
Country Region tables.

The query also uses the DataItemLink property to create a link between the Customer table, Salesperson Code
field and the Salesperson Purchaser table, Code fields and a link between the Customer table,
Country/Region Code field and the Country/Region table, Code field.

See Also
Developing Extensions
AL Development Environment
API Query Type
Page Extension Object
Report Object
Page Properties

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-api-querytype

XMLport Object
3/31/2019 • 2 minutes to read

NOTE

Snippet support

XMLport syntax

XMLports are used to export and import data between an external source and Dynamics 365 Business Central.
Sharing data between different computer systems is seamless when it is shared in XML format. Working with
XML files can be tedious so the details of how the XML file is handled are encapsulated in XMLports.

To use an XMLport to import or export data, you first create an XMLport object. You can run the XMLport from a
page or codeunit object.

In the Dynamics 365 Business Central Web client, Request pages are not supported. Request pages are dialog boxes that
enables the user to set a filter on the data, sort the data, or choose whether to export or import the data. If you try to run
an XMLport with a Request page from the Web client, you receive an error that the XMLport page type is not supported.

Typing the shortcut txmlport will create the basic layout for an XMLport object when using the AL Language
extension in Visual Studio Code.

xmlport Id MyXmlport
{
 schema
 {
 textelement(NodeName1)
 {
 tableelement(NodeName2; SourceTableName)
 {
 fieldattribute(NodeName3; NodeName2.SourceFieldName)
 {

 }
 }
 }
 }

 requestpage
 {
 layout
 {
 area(content)
 {
 group(GroupName)
 {
 field(Name; SourceExpression)
 {

 }
 }
 }
 }

 actions
 {
 area(processing)
 {
 action(ActionName)
 {

 }
 }
 }
 }

 var
 myInt: Integer;
}

XMLport example

pageextension 50111 PermissionSetExporter extends "Permission Sets"
{
 actions
 {
 addafter(Permissions)
 {
 action(ExportPermissionSet)
 {
 Promoted = true;
 PromotedCategory = New;
 trigger OnAction();
 begin

The following example shows a page extension of the Permission Sets page that adds an action to the specified
page calling the XMLport ExportPermissionSet. The XMLport exports the permission set data to an XML file.

 begin
 Xmlport.Run(70000124, false, false);
 end;
 }
 }
 }
}

xmlport 50112 ExportPermissionSet
{
 Format = xml;

 schema
 {
 textelement(PermissionSets)
 {
 tableElement(PSet; "Aggregate Permission Set")
 {
 SourceTableView = WHERE ("App Name" = FILTER (<> ''));
 XmlName = 'PermissionSet';
 fieldattribute(RoleID; pset."Role ID") { }
 fieldattribute(RoleName; pset.Name) { }
 tableelement(P; "Tenant Permission")
 {
 XmlName = 'Permission';
 LinkTable = pset;
 LinkFields = "Role ID" = FIELD ("Role ID");

 textelement(ObjectType)
 {
 trigger onbeforePassvariable();
 var
 int: Integer;
 begin
 int := p."Object Type";
 ObjectType := format(int);
 end;
 }
 textelement(ObjectID)
 {
 trigger onbeforePassvariable();
 var
 int: Integer;
 begin
 int := p."Object ID";
 ObjectID := format(int);
 end;
 }
 textelement(ReadPermission)
 {
 trigger onbeforePassvariable();
 var
 int: Integer;
 begin
 int := p."Read Permission";
 ReadPermission := format(int);
 end;
 }
 textelement(InsertPermission)
 {
 trigger onbeforePassvariable();
 var
 int: Integer;
 begin
 int := p."Insert Permission";
 InsertPermission := format(int);
 end;
 }
 textelement(ModifyPermission)
 {

 {
 trigger onbeforePassvariable();
 var
 int: Integer;
 begin
 int := p."Modify Permission";
 ModifyPermission := format(int);
 end;
 }
 textelement(DeletePermission)
 {
 trigger onbeforePassvariable();
 var
 int: Integer;
 begin
 int := p."Delete Permission";
 DeletePermission := format(int);
 end;
 }
 textelement(ExecutePermission)
 {
 trigger onbeforePassvariable();
 var
 int: Integer;
 begin
 int := p."Execute Permission";
 ExecutePermission := format(int);
 end;
 }
 textelement(SecurityFilter)
 {
 trigger onbeforePassvariable();
 begin
 SecurityFilter := format(p."Security Filter");
 end;
 }
 }
 }
 }
 }
}

See Also
Developing Extensions
AL Development Environment
Page Extension Object
Report Object

Control Add-In Object
3/31/2019 • 4 minutes to read

Control add-in properties

Sizing of the control add-in

Control add-in considerations

The control add-in object allows you to add custom functionality to Dynamics 365 Business Central. A control
add-in is a custom control, or visual element, for displaying and modifying data within an iframe or a page. For
example, a control add-in can display the content of a webpage, visualize data as a chart or on a map, or host a
custom web application. Control add-ins can exchange data with the Dynamics 365 server on various data types
and can respond to user interaction to raise events that execute additional AL code.

In the control add-in definition, you must set the Scripts property to include scripts in the control add-in. The
scripts could be local files in the package or references to external files using the HTTP or the HTTPS protocol.
With the StartupScript property, you can call a special script that runs when the page you have implemented the
control add-in on, is loaded. These settings initialize the control add-in. With the Images and StyleSheet

properties, you can specify additional styling to the control add-in. For more information about some of the
control add-in properties, see:

Images
Scripts
StartupScript
StyleSheets
RecreateScript
RefreshScript

Control add-ins can either have fixed dimensions or dynamically adapt to the available space on the screen. By
controlling the sizing of an add-in, you can ensure that the add-in and the surrounding content on the page
remain optimal on smaller display targets such as the phone or when users resize the browser. The following
properties are available for you to specify how the sizing of the control add-in should behave.

HorizontalShrink
HorizontalStretch
MinimumHeight
MinimumWidth
MaximumHeight
MaximumWidth
RequestedHeight
RequestedWidth
VerticalShrink
VerticalStretch

Designing control add-ins that provide the best possible experience can require some additional planning, design,
and implementation. The following considerations will help you design add-ins that look and feel seamlessly
integrated with Dynamics 365 Business Central.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-images-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-scripts-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-startupscript-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-stylesheets-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-recreatescript-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-refreshscript-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-horizontalshrink-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-horizontalstretch-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-minimumheight-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-minimumwidth-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-maximumheight-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-maximumwidth-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-requestedheight-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-requestedwidth-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-verticalshrink-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-verticalstretch-property

Control add-in syntax example

Respond to touch events so that mobile users or those on devices supporting touch input can also use the
add-in.
Design content that is responsive and is able to flow, resize, or reorganize naturally based on the available
space.
Consider the accessibility needs of users, for example by implementing keyboard access and support for
screen readers.
Use the Style guidelines to apply a choice of colors, typefaces, and font sizes that match that of Dynamics 365
Business Central. For more information, see Control Add-in Style Guide.
Provide language translation and other localizations that match the current user language in Dynamics 365
Business Central.

The following control add-in example syntax defines a chart that can show how customers are represented per
country on a map. The control add-in is implemented as a usercontrol on a page called CustomersMapPage.

// The controladdin type declares the new add-in.

controladdin CustomersPerCountryChart
{
 // The Scripts property can reference both external and local scripts.
 Scripts = 'https://code.jquery.com/jquery-2.1.0.min.js',
 'js/main.js';

 // The StartupScript is a special script that the webclient calls once the page is loaded.
 StartupScript = 'js/chart.js';

 // Images and StyleSheets can be referenced in a similar fashion.

 // The layout properties define how control add-in are displayed on the page.
 VerticalShrink = true;

 // The procedure declarations specify what JavaScript methods could be called from AL.
 // In JavaScript code, there should be a global function LoadData(data) {}
 procedure LoadData(Data : JsonArray);

 // The event declarations specify what callbacks could be raised from JavaScript by using the webclient
API:
 // Microsoft.Dynamics.NAV.InvokeExtensibilityMethod('CountryClicked', [{country: 'M}])
 event CountryClicked(Country: JsonObject);
}

page 50100 CustomersMapPage
{
 layout
 {
 area(Content)
 {
 // The control add-in can be placed on the page using usercontrol keyword.

 usercontrol(ControlName; CustomersPerCountryChart)
 {
 // The control add-in events can be handled by defining a trigger with a corresponding name.

 trigger CountryClicked(Country : JsonObject)
 var Data : JsonArray;
 begin

 // The control add-in methods can be invoked via a reference to the usercontrol.

 CurrPage.ControlName.LoadData(Data);
 end;
 }
 }
 }
}

See Also
AL Development Environment
Developing Extensions
Asynchronous Considerations for Control Add-ins
InvokeExtensibility Method
GetImageResource Method
GetEnvironment Method
Pages Overview
Page Extension Object
Page Customization Object

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-control-addin-asynchronous-considerations
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-invokeextensibility-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-getimageresource-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-getenvironment-method

Data Types and Methods in AL
6/25/2019 • 9 minutes to read

TYPE DESCRIPTION

BigInteger Stores very large whole numbers that range from -
9,223,372,036,854,775,807 to 9,223,372,036,854,775,807.

BigText Handles large text documents.

Blob Is a complex data type. Variables of this data type differ from
normal numeric and string variables in that BLOBs have a
variable length. The maximum size of a BLOB(binary large
object) is 2 GB.

Boolean Indicates true or false.

Byte Stores a single, 8-bit character as a value in the range 0 to
255. You can easily convert this data type from a number to a
character and vice versa. This means you can use
mathematical operators on Byte variables.

Char Stores a single, 16-bit character as a value in the range 0 to
65535. You can convert this data type from a number to a
character and vice versa. This means you can use
mathematical operators on Char variables.

Code Denotes a special type of string that is converted to
uppercase and removes any trailing or leading spaces.

Codeunit Is a container for AL code that you can use from other
application objects.

CodeunitInstance Is a container for AL code that you can use from other
application objects.

CompanyProperty Provides language support for company properties.

Database Provides access to common database functionality.

Date Denotes a date ranging from January 1, 1753 to December
31, 9999.

DateFormula Represents a date formula that has the same capabilities as an
ordinary input string for the CALCDATE Method (Date). The
DateFormula data type is used to provide multilanguage
capabilities to the CALCDATE Method (Date).

The following data types are available as part of the AL Language. Each data type has various methods that
support it. For more information about a data type and its methods, select a link in the table.

DateTime Denotes a date and time ranging from January 1, 1753,
00:00:00.000 to December 31, 9999, 23:59:59.999. An
undefined or blank DateTime is specified by 0DT.

Debugger Enables communication with a debugger.

Decimal Denotes decimal numbers ranging from -
999,999,999,999,999.99 to +999,999,999,999,999.99.

Dialog Represents a dialog window.

Dictionary Represents a collection of keys and values.

DotNet Represents an unspecified .NET type.

Duration Represents the difference between two DateTimes. This value
can be negative. It is stored as a 64-bit integer. The integer
value is the number of milliseconds during the duration.

ErrorInfo Provides a structure for grouping information about an error.

FieldRef Identifies a field in a table and gives you access to this field.

File Represents a file.

FilterPageBuilder Stores filter configurations for a filter page. A filter page is a
dynamic page type that contains one or more filter controls
that enables users to set filters on fields of the underlying
tables.

Guid Represents a 16 byte binary data type. This data type is used
for the global identification of objects, programs, records, and
so on. The important property of a GUID is that each value is
globally unique. The value is generated by an algorithm,
developed by Microsoft, which assures this uniqueness.

HttpClient Provides a data type for sending HTTP requests and receiving
HTTP responses from a resource identified by a URI.

HttpContent Represents an HTTP entity body and content headers.

HttpHeaders Is a collection of headers and their values.

HttpRequestMessage Represents an HTTP request message.

HttpResponseMessage Represents a HTTP response message including the status
code and data.

InStream Is a generic stream object that you can use to read from or
write to files and BLOBs. You can define the internal structure
of a stream as a flat stream of bytes. You can assign one
stream to another. Reading from and writing to a stream
occurs sequentially.

TYPE DESCRIPTION

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/errorinfo/errorinfo-data-type

Integer Stores whole numbers with values that range from -
2,147,483,647 to 2,147,483,647.

IsolatedStorage Provides data isolation for extensions.

Any This data type can be substituted by any other data type.

JsonArray Is a container for any well-formed JSON array. A default
JsonArray contains an empty JSON array.

JsonObject Is a container for any well-formed JSON object. A default
JsonObject contains an empty JSON object.

JsonToken Is a container for any well-formed JSON data. A default
JsonToken object contains the JSON value of NULL.

JsonValue Is a container for any well-formed fundamental JSON value. A
default JsonValue is set to the JSON value of NULL.

KeyRef Identifies a key in a table and the fields in this key.

Label Denotes a string constant that can be optionally translated
into multiple languages.

List Represents a strongly typed list of objects that can be
accessed by index.

Media Encapsulates media files, such as image .jpg and .png files, in
application database tables. The Media data type can be used
as a table field data type, but cannot be used as a variable or
parameter. The Media data type enables you to import a
media file to the application database and reference the file
from records, making it possible to display the media file in
the client user interface. You can also export media from the
database to files and streams.

MediaSet Encapsulates media, such as images, in application database
tables.

ModuleDependencyInfo Provides information about a dependent module.

ModuleInfo Represents information about an application consumable from
AL.

NavApp Provides information about a NavApp.

None Is used implicitly when a method does not return a value.

Notification Provides a programmatic way to send non-intrusive
information to the user interface (UI) in the Business Central
Web client.

NumberSequence Is a complex data type for creating and managing number
sequences in the database.

TYPE DESCRIPTION

file:///T:/q4ru/developer/methods-auto/numbersequence/numbersequence-data-type.md

Option Denotes an option value. In the code snippet below, you can
see how the Option data type is declared.

OutStream Is a generic stream object that you can use to write to files
and BLOBs.

Page Contains a number of simpler elements called controls.
Controls are used to display information to the user or receive
information from the user.

ProductName An application can have a full name, marketing name, and
short name. The PRODUCTNAME functions enable you to
retrieve these name variations.

Query Enables you to retrieve data from multiple tables and combine
the data in single dataset.

QueryInstance Enables you to retrieve data from multiple tables and combine
the data in single dataset.

RecordId Contains the table number and the primary key of a table.

RecordRef References a record in a table.

Report Is used to display, print, or process information from a
database.

ReportInstance Reports are used to display, print, or process information from
a database.

RequestPage Is a page that is run before the report starts to execute.
Request pages enable end-users to specify options and filters
for a report.

Session Represents a Microsoft Dynamics Business Central session.

SessionSettings Is a complex data type for passing user personalization
settings for a client session as an object. The object contains
properties that correspond to the fields in the system table
2000000073 User Personalization, including: App ID,
Company, Language ID, Locale ID, Profile ID, Scope, and Time
Zone. You can use the AL methods of the SessionSettings
data type to get, set, and send the user personalization
settings for the current client session.

String Denotes a sequence of characters. It can be represented by a
string literal, a text value or a code value.

System Is a complex data type.

Record Is a complex data type.

TaskScheduler Is a complex data type for creating and managing tasks in the
task scheduler, which runs codeunits at scheduled times.

TYPE DESCRIPTION

file:///T:/q4ru/developer/methods-auto/queryinstance/queryinstance-data-type.md
file:///T:/q4ru/developer/methods-auto/reportinstance/reportinstance-data-type.md

TestAction Represents a test action on a page.

TestField Represents a testable field on a page.

TestFilter Represents a test filter on a page.

TestFilterField Represents the type of a field filter in a test filter on a page or
on a request page.

TestPage Represents a variable type that can be used to test Page
Application Objects.

TestPart Represents a variable type that can be used to test Page
Application Objects of type Part.

TestRequestPage Stores test request pages. A test request page part is a logical
representation of a request page on a report. A test request
page does not display a user interface (UI). The subtype of a
test request page is the report whose request page you want
to test.

Text Denotes a text string.

TextConst Denotes a multi-language string constant.

TextBuilder Represents a lighweight wrapper for the .Net implementation
of StringBuilder.

Time Denotes a time ranging from 00:00:00.000 to 23:59:59.999.
An undefined or blank time is specified by 0T.

Variant Represents an AL variable object. The AL variant data type can
contain many AL data types.

Version Represents a version matching the format:
Major.Minor.Build.Revision .

WebServiceActionContext Represents an AL WebServiceActionContext.

XmlAttribute Represents an XML attribute.

XmlAttributeCollection Represents a collection of XML attributes.

XmlCData Represents a CData section.

XmlComment Represents an XML comment.

XmlDeclaration Represents an XML declaration.

XmlDocument Represents an XML document.

XmlDocumentType Represents an XML document type.

TYPE DESCRIPTION

XmlElement Represents an XML element.

XmlNamespaceManager Represents a namespace manager that can be used to resolve,
add and remove namespaces to a collection. It also provides
scope management for these namespaces.

XmlNameTable Represents a table of atomized string objects.

XmlNode Represents a XML node which can either be for instance an
XML attribute, an XML element or a XML document.

XmlNodeList Represents a collection of XML nodes.

Xmlport XmlPorts are used to export or import data between an
external source and a Microsoft Dynamics Business Central
database.

XmlportInstance Represents an instance of an XmlPort.

XmlProcessingInstruction Represents a processing instruction, which XML defines to
keep processor-specific information in the text of the
document.

XmlReadOptions Represents the options configuring how XML is loaded from a
data source.

XmlText Represents the text content of an element or attribute.

XmlWriteOptions Represents the options configuring how XML is saved.

Action Represents the action that the user took on the page.

ClientType Represents the type of the client executing the operation.

DataClassification Sets the classification of the data in the table or field.

DataScope Identifies the scope of stored data in the isolated storage.

DefaultLayout The default layout to be used by a report.

ErrorType Represents the type of error.

ExecutionContext Represents the context in which a session is running. In
certain scenarios, for example during upgrade, the system will
run a session in a special context for a limited time.

ExecutionMode The execution mode of the current session.

FieldClass Represents the type of a field class.

FieldType Represents the type of a table field.

TYPE DESCRIPTION

file:///T:/q4ru/developer/methods-auto/xmlportinstance/xmlportinstance-data-type.md
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/errortype/errortype-option

NotificationScope Specifies the context in which the notification appears in the
client.

ObjectType The different types of objects.

PageBackgroundTaskErrorLevel Specifies how an error in the page background task appears in
the client.

ReportFormat Specifies the format of the report.

SecurityFilter Specifies how security filters are applied to the record.

TableConnectionType Use variables of this data type to specify the type of
connection to an external database.

TestPermissions Specifies a value that can be used to determine which
permission sets are used on tests that are run by test
codunits or test functions.

TextEncoding Represents a file encoding.

TransactionModel Represents a test transaction model.

TransactionType Represents a transaction type.

Verbosity Represents the security level of events.

WebServiceActionResultCode Represents a web service action status code.

TYPE DESCRIPTION

See Also
Getting Started with AL
Developing Extensions

file:///T:/q4ru/developer/methods-auto/pagebackgroundtaskerrorlevel/pagebackgroundtaskerrorlevel-option.md

Array Methods
3/31/2019 • 2 minutes to read

Syntax

Array [Dimension] of Type;

Code Example

ArrayOfInteger: Array [10] of Integer;

ArrayOfCode: Array [10] of Code[20];
ArrayOfText: Array [10] of Text[20];

ArrayOfCodeunits: Array [10] of Codeunit 10;
ArrayOfQueryes: Array [10] of Query "My Query";
ArrayOfTemporaryRecords: Array [10] of Record 10 Temporary;
ArrayOfDotNetVariables: Array [10] of DotNet String;

An array is a data structure that contains a number of variables which are accessed through computed indices. The
variables contained in an array, also called the elements of the array, are all of the same type, and this type is called
the element type of the array.

An array has a rank which determines the number of indices associated with each array element. The rank of an
array is also referred to as the dimensions of the array. An array with a rank of one is called a single-dimensional
array. An array with a rank greater than one is called a multi-dimensional array. Specific sized multi-dimensional
arrays are often referred to as two-dimensional arrays, three-dimensional arrays, and so on. Each dimension of an
array has an associated length which is an integral number greater than or equal to zero. The maximum number of
dimensions is 10 and the total number of elements in all dimensions is 1,000,000.

The length of a dimension determines the valid range of indices for that dimension. For a dimension of length N,
indices can range from 1 to N inclusive. The total number of elements in an array is the product of the lengths of
each dimension in the array. If one or more of the dimensions of an array have a length of zero, the array is
considered to be empty.

The syntax for declaring an array of a specific type is the following:

The Dimension is a comma-delimited list of integer literals greater than 0, where each integer defines the number
of elements in that dimension.

The Type is the element type of the array.

The following code sample shows the declaration of an array with a simple element type.

The following code sample shows the declaration of an array with an element type of a fixed length.

The following code sample shows the declaration of an array with a complex element type.

Methods

See Also

The following AL methods for arrays are available:

ARRAYLEN Method

COMPRESSARRAY Method

COPYARRAY Method

AL Method Reference

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-arraylen-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-compressarray-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-copyarray-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-al-method-reference

Method Attributes
4/10/2019 • 2 minutes to read

[Attribute_Name(ArgumentName : data_type, ArgumentName : data_type)]

[Integration(IncludeSender : Boolean, GlobalVarAccess : Boolean)]

Attributes

See Also

An attribute is modifier on a method declaration that specifies information that controls the method's use and
behavior. For example, decorating a method with the Integration attribute sets the method to be an event publisher.
An attribute can have one or more arguments that set properties for the method instance.

In AL, attributes are placed before the method, and have the following syntax:

For example, the Integration attribute has two arguments, and the syntax is:

The following method attributes are available:

Integration Attribute
Business Attribute
EventSubscriber Attribute
NonDebuggable Attribute

AL Method Reference

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-integration-attribute
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-business-attribute
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-eventsubscriber-attribute
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-nondebuggable-attribute
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-al-method-reference

Procedure overload
4/29/2019 • 2 minutes to read

Reasons for using procedure overload

Remarks

Example

Procedure overload enables developers to create multiple procedures with the same name, but with different
signatures, on the same application object. Conceptually, overloaded procedures are used to execute the same task
on a different set of arguments. When an overloaded procedure is called, a specific implementation of that
procedure, appropriate to the context of the call, will be run.

Overloaded procedures give programmers the flexibility to call a procedure with similar semantics for different
types of data. At the same time, overloaded procedures remove the need for abusing the Variant data type for the
purpose of processing different types of data a similar manner and allows the developer to write strongly-typed
code and rely on the compiler for validation.

Overload resolution is performed by using procedure signatures to find the best match. The signature of a
procedure is represented by its name and the type, order, and number of parameters. The return type of a
procedure is not part of the procedure’s signature.

The following example shows how a ToString method can be implemented with and without using procedure
overloads.
In the first code snippet, a ToString procedure is implemented. This takes a Variant value and inspects the type of
the value to delegate to different implementations. If the caller passes a value of a different type than Integer, Date
and Text, an empty string will be returned. This can lead to bugs that will only show up at runtime.

codeunit 10 Stringifier
{
 local procedure TextToString(value : Text) : Text;
 begin
 Exit(value);
 end;

 local procedure DateToString(value : Date) : Text;
 begin
 Exit(Format(value));
 end;

 local procedure IntegerToString(value : Integer) : Text;
 begin
 Exit(Format(value));
 end;

 procedure ToString(value: Variant) : Text;
 begin
 if value.IsInteger then
 Exit(IntegerToString(value))
 else if value.IsDate then
 Exit(DateToString(value))
 else if value.IsText then
 Exit(TextToString(value))
 else
 Exit('');
 end;
}

codeunit 10 StringifierWithOverloads
{
 procedure ToString(value : Text) : Text;
 begin
 Exit(value);
 end;

 procedure ToString(value : Date) : Text;
 begin
 Exit(Format(value));
 end;

 procedure ToString(value : Integer) : Text;
 begin
 Exit(Format(value));
 end;
}

See Also

In the second code snippet, we overload the ToString procedure for Text, Date and Integer. At this point, it is not
possible for a caller to call a ToString method with a different type other than Integer, Date, or Text. This will catch
the bug above at compile time.

AL Development Environment

Action Option Type
3/31/2019 • 2 minutes to read

Members
MEMBER DESCRIPTION

None Represents the result of running a page.

OK
Represents the result of the user closing a page window by
performing one of the following actions:
- Chooses the OK button.
- Chooses the X button when there was no Cancel button on
the window.
- Presses the Esc key when there is no Cancel button on the
window.

Cancel
Represents the result of the user closing a page window by
performing one of the following actions:
- Chooses the Cancel button.
- Chooses the X button when there is a Cancel button on the
window.
- Presses the Esc key when there is a Cancel button on the
window

LookupOK
Represents the result of the user closing a lookup window by
performing one of the following actions:
- Chooses the OK button.
- Chooses an item in the Lookup window.

LookupCancel Represents the result of the user closing a lookup window by
choosing the Cancel button.

Yes Represents the result of the user closing a confirmation
window by choosing the Yes button.

No
Represents the result of the user closing a confirmation
window by performing one of the following actions:
- Chooses the No button.
- Chooses the X button.
- Presses the Esc key.

RunObject Represents the result of the user selecting an option that ran
another object.

RunSystem Represents the result of the user selecting an option that ran
an external program.

Represents the action that the user took on the page.

See Also
Getting Started with AL
Developing Extensions

Any Data Type
3/31/2019 • 2 minutes to read

NOTE

See Also

This data type can be substituted by any other data type.

The Any Data type cannot be used for declaring constructs in AL. Any is a type that is used for the parameters or return type
of methods in the platform.

Getting Started with AL
Developing Extensions

BigInteger Data Type
3/31/2019 • 2 minutes to read

Remarks

BigIntegerVar := -9223372036854775807L;
BigIntegerVar := BigIntegerVar - 1;

Example
BI := 1L;
BI := 455500000000L;

See Also

Stores very large whole numbers that range from -9,223,372,036,854,775,807 to 9,223,372,036,854,775,807.

This data type is a 64-bit integer.

You must add an L to the constant definition to inform AL that the integer must be interpreted and treated as a
BigInteger.

If you assign -9,223,372,036,854,775,808 directly to a BigInteger variable, then you get an error when you try to
compile the code. However, you can indirectly assign -9,223,372,036,854,775,808 to a BigInteger variable by using
the following code.

If you try to indirectly assign a value that is smaller than -9,223,372,036,854,775,808, or larger than
9,223,372,036,854,775,807, then you get a run-time error.

Getting Started with AL
Developing Extensions

BigText Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

Length() Retrieves the length of the text stored in this BigText instance.

AddText(String, [Integer]) Adds a text string to a BigText variable.

AddText(BigText, [Integer]) Adds a text string to a BigText variable.

GetSubText(var Text, Integer, [Integer]) Gets part of a BigText variable.

GetSubText(var BigText, Integer, [Integer]) Gets part of a BigText variable.

TextPos(String) Gets the position at which a specific string first occurs in this
BigText instance.

Write(OutStream) Streams a BigText object to a BLOB field in a table.

Read(InStream) Streams a BigText object that is stored as a BLOB in a table to
a BigText variable.

Remarks

See Also

Handles large text documents.

The following methods are available on instances of the BigText data type.

This data type cannot be shown in a message window or be seen in the Debugger. The maximum length of a
BigText variable is 2,147,483,647 characters and this corresponds to 2 GB. You can use the BigText methods to
manipulate a BigText variable, for example to extract part of a BigText variable or to add a text string to a BigText
variable. The normal string methods cannot be used with a BigText variable.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/bigtext/bigtext-length-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/bigtext/bigtext-addtext-string-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/bigtext/bigtext-addtext-bigtext-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/bigtext/bigtext-getsubtext-text-integer-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/bigtext/bigtext-getsubtext-bigtext-integer-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/bigtext/bigtext-textpos-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/bigtext/bigtext-write-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/bigtext/bigtext-read-method

Blob Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

HasValue() Determines whether a binary large object (BLOB) has a value.

Length() Returns the number of bytes in the binary large object (BLOB).

Import(String) Imports a binary large object (BLOB) from a file.

Export(String) Exports a binary large object (BLOB) to a file.

CreateInStream(InStream, [TextEncoding]) Creates an InStream object for a binary large object (BLOB).
This enables you to read data from the BLOB.

CreateOutStream(OutStream, [TextEncoding]) Creates an OutStream object for a binary large object (BLOB).
This enables you to write data to the BLOB.

Remarks

NOTE

See Also

Is a complex data type. Variables of this data type differ from normal numeric and string variables in that BLOBs
have a variable length. The maximum size of a BLOB(binary large object) is 2 GB.

The following methods are available on instances of the Blob data type.

Use BLOBs to store memos (text), pictures (bitmaps), or user-defined types.

You cannot view text that is stored in BLOBs from the development environment.

You can read from and write to BLOBs by creating input and output streams, respectively. To do so, use
CREATEINSTREAM method (BLOB) and CREATEOUTSTREAM method (BLOB).

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/blob/blob-hasvalue-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/blob/blob-length-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/blob/blob-import-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/blob/blob-export-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/blob/blob-createinstream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/blob/blob-createoutstream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/blob/blob-createinstream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/blob/blob-createoutstream-method

Boolean Data Type
3/31/2019 • 2 minutes to read

See Also

Indicates true or false.

Getting Started with AL
Developing Extensions

Byte Data Type
3/31/2019 • 2 minutes to read

Example

B := 'A';
B := S[2];
B := 65;

MyText[5] := 'e';

See Also

Stores a single, 8-bit character as a value in the range 0 to 255. You can easily convert this data type from a
number to a character and vice versa. This means you can use mathematical operators on Byte variables.

The following example assumes that you have a Byte variable named B and a Text variable named S.

You can assign a constant string of the length 1 to a Byte variable, as shown in the first line of the following code
example. You can assign a single character in a Text or Code variable to a Byte variable, as shown in the second line
of the following code example. You can assign a numeric value to a Byte variable, as shown in the third line of the
following code example. This causes the Byte variable to contain the character from the ASCII character set that
corresponds to the numeric ASCII code.

You cannot assign a character to a position greater than the position of the null terminator. For example, if the
value of the text variable MyText is 'abc', then the null terminator is at position 4 and the following assignment
causes a run-time error to occur.

Getting Started with AL
Developing Extensions

Char Data Type
3/31/2019 • 2 minutes to read

Example

C := 'A';
C := S[2];
C := 65;

MyText[5] := 'e';

See Also

Stores a single, 16-bit character as a value in the range 0 to 65535. You can convert this data type from a number
to a character and vice versa. This means you can use mathematical operators on Char variables.

The following example assumes that you have a Char variable named C and a Text or Code variable named S.

You can assign a constant string of the length 1 to a Char variable, as shown in the first line of the following code
example. You can assign a single Char in a Text or Code variable to a Char variable, as shown in the second line of
the following code example. You can assign a numeric value to a Char variable, as shown in the third line of the
following code example.

You cannot assign a Char to a position greater than the position of the null terminator. For example, if the value of
the Text variable MyText is 'abc', then the null terminator is at position 4 and the following assignment causes a
run-time error to occur.

Getting Started with AL
Developing Extensions

ClientType Option Type
3/31/2019 • 2 minutes to read

Members
MEMBER DESCRIPTION

Background A background client.

Desktop A desktop client.

Management A management client.

NAS A NAS client.

OData A NAS client.

Phone Microsoft Dynamics Business Central Phone client.

SOAP A SOAP client.

Tablet Microsoft Dynamics Business Central Tablet client.

Web Microsoft Dynamics Business Central Web client.

Windows Microsoft Dynamics Business Central Windows client.

Current Microsoft Dynamics Business Central Windows client.

Default The default client.

ODataV4 A ODataV4 client.

Api An API client.

See Also

Represents the type of the client executing the operation.

Getting Started with AL
Developing Extensions

Code Data Type
3/31/2019 • 2 minutes to read

Remarks

Example

c := 'ABC';
// Results in variable c, which contains 'ABC'
// and is 3 characters in length.
c := '1';
// Results in variable c, which contains '1'
// and is 1 character in length.
c := '';
// Results in variable c, which contains '' (empty string)
// and is zero (0) characters in length.
c := ' 2 ';
// Results in variable c, which contains '2'
// and is 1 character in length.

See Also

Denotes a special type of string that is converted to uppercase and removes any trailing or leading spaces.

The length of a Code variable equals the number of characters in the text without leading or trailing spaces.

You must specify the length of a Code variable or field. The maximum length of a Code variable is 1024 characters.
The maximum length of a Code field in a table is 250 characters. A Code variable cannot be null. The Code data
type supports Unicode.

You can index any character position in a string, such as A[65]. The resulting value will be a Char Data Type. You
cannot assign a char to a position in the code variable greater than the current length of the variable +1.

Fields that contain a date formula must not have data type Code. Instead, use the DateFormula Data Type. All
fields that contain a date formula with data type Code must be converted into data type DateFormula.

This example shows some typical examples of code string assignments. In these examples, assume that the
variable c is a code variable with a maximum length of 4.

Getting Started with AL
Developing Extensions

Codeunit Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

Run(Integer, [var Record]) Loads and runs the unit of AL code you specify. To use this
method, you can specify a table associated with the codeunit
when you defined the codeunit properties. This allows you to
pass a variable with the method. The transaction that the
codeunit contains is always committed due to the Boolean
return value.

METHOD NAME DESCRIPTION

Run(var Record) Loads and executes the unit of C/AL code that you specify.

See Also

Is a container for AL code that you can use from other application objects.

The following methods are available on the Codeunit data type.

The following methods are available on instances of the Codeunit data type.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/codeunit/codeunit-run-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/codeunit/codeunitinstance-run-method

CodeunitInstance Data Type
3/31/2019 • 2 minutes to read

See Also

A container for AL code that you can use from other application objects.

Getting Started with AL
Developing Extensions

CompanyProperty Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

DisplayName() Gets the current company display name.

UrlName() Gets the string that represents the company name in a URL.

See Also

Provides language support for company properties.

The following methods are available on the CompanyProperty data type.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/companyproperty/companyproperty-displayname-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/companyproperty/companyproperty-urlname-method

Database Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

UserId() Gets the user name of the user account that is logged on to
the current session.

CompanyName() Gets the current company name.

Commit() Ends the current write transaction.

SerialNumber() Gets a string that contains the serial number of the license file
for your system.

CheckLicenseFile(Integer) Checks a key in the license file of the system.

SelectLatestVersion() Forces the latest version of the database to be used.

CurrentTransactionType([TransactionType]) Gets the current transaction type and sets a new type to be
assigned.

LockTimeout([Boolean]) Determines whether the lock time-out setting is set to On.
You can also use this method to override the default setting.

SID([String]) Retrieves the security identifier (SID) of a Windows user
account.

UserSecurityId() Gets the unique identifier of the user that is logged on to the
current session.

SetUserPassword(Guid, String) Sets a password for the user iwith the given user security ID. If
the given password is blank, an empty string will be stored
instead of a password hash. This will prevent the user from
logging in using a password. Only SUPER can call this method.
Passwords cannot be set for the empty GUID or for the
default Super ID.

ChangeUserPassword(String, String) Changes the password for the current user.

Provides access to common database functionality.

The following methods are available on the Database data type.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/database/database-userid-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/database/database-companyname-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/database/database-commit-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/database/database-serialnumber-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/database/database-checklicensefile-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/database/database-selectlatestversion-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/database/database-currenttransactiontype-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/database/database-locktimeout-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/database/database-sid-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/database/database-usersecurityid-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/database/database-setuserpassword-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/database/database-changeuserpassword-method

TenantId() Gets the ID of the tenant that has started the current session.
Use this method when your code must be specific about
which tenant database to access in a multitenant deployment.
For example, if your code imports data into a cache, you can
make a cache tenant-specific by using the tenant ID as a key.
Also, if you want to write code that saves documents, you can
include the tenant ID in the file name or location, for example.
In those cases, you can use the TENANTID method in
combination with the COMPANYNAME method to identify
the company and the tenant database.

SessionId() Gets the ID of the current session.

ServiceInstanceId() Gets the ID of the service instance.

CopyCompany(String, String) Creates a new company and copies all data from an existing
company in the same database.

ImportData(Boolean, var Text, [Boolean], [Boolean], [Record]) Imports data from a file that has been exported from a
database.

ExportData(Boolean, var Text, [String], [Boolean], [Boolean],
[Boolean], [Record])

Exports data from the database to a file. The data is not
deleted from the database.

DataFileInformation(Boolean, var Text, var Text, var Boolean,
var Boolean, var Boolean, var Text, var DateTime, var Record)

Specifies data from a file that has been exported from a
database.

RegisterTableConnection(TableConnectionType, String, String) Registers a table connection to an external database.

UnregisterTableConnection(TableConnectionType, String) Unregisters a table connection to an external database.

SetDefaultTableConnection(TableConnectionType, String,
[Boolean])

Establishes a connection to an external database based on a
previously registered connection of the specified type.

GetDefaultTableConnection(TableConnectionType) Gets the default table connection based on the specified
connection type. You must already have registered a table
connection of this type.

HasTableConnection(TableConnectionType, String) Verifies if a connection to an external database exists based on
the specified name.

METHOD NAME DESCRIPTION

See Also
Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/database/database-tenantid-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/database/database-sessionid-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/database/database-serviceinstanceid-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/database/database-copycompany-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/database/database-importdata-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/database/database-exportdata-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/database/database-datafileinformation-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/database/database-registertableconnection-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/database/database-unregistertableconnection-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/database/database-setdefaulttableconnection-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/database/database-getdefaulttableconnection-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/database/database-hastableconnection-method

DataClassification Option Type
3/31/2019 • 2 minutes to read

Members
MEMBER DESCRIPTION

CustomerContent Content directly provided/created by admins and users.

ToBeClassified Content that has not yet been given a classification. This is the
initial value when table or field is created.

EndUserIdentifiableInformation (EUII) Data that identifies or could be used to identify the user
of a Microsoft service. EUII does not contain Customer
content.

AccountData Customer billing information and payment instrument
information, including administrator contact information, such
as tenant administrator’s name, address, or phone number.

EndUserPseudonymousIdentifiers (EUPI) An identifier created by Microsoft tied to the user of a
Microsoft service. When EUPI is combined with other
information, such as a mapping table, it identifies the end user.
EUPI does not contain information uploaded or created by the
customer (Customer content or EUII).

OrganizationIdentifiableInformation (OII) Data that can be used to identify a tenant, generally
config or usage data. This data is not linkable to a user and
does not contain Customer content.

SystemMetadata Data generated while running the service or program that is
not linkable to a user or tenant.

See Also

Sets the classification of the data in the table or field.

Getting Started with AL
Developing Extensions

DataScope Option Type
3/31/2019 • 2 minutes to read

Members
MEMBER DESCRIPTION

Module Indicates that the record is available in the scope of the
app(extension) context.

Company Indicates that the record is available in the scope of the
company within the app context.

User Indicates that the record is available for a user within the app
context.

CompanyAndUser Indicates that the record is available for a user and specific
company within the app context.

See Also

Identifies the scope of stored data in the isolated storage.

Getting Started with AL
Developing Extensions

Date Data Type
3/31/2019 • 2 minutes to read

Undefined dates

Normal dates and closing dates

Syntax

Storing dates in the SQL server database

Example

VARIABLE DATATYPE

Date1 Date

Date1 := 20180612D;
MESSAGE(FORMAT(Date1));

Denotes a date ranging from January 1, 1753 to December 31, 9999.

The displayed text format of the date is determined by your Region and Language Format setting in Windows.

An undefined or blank date is specified by 0D. The undefined date is considered to be before all other dates.

All normal dates have a corresponding closing date. The closing date for a given date is defined as a period of time
that follows a given normal date and precedes the next normal date.

The syntax for defining DateTime format follows the ISO standard.

The syntax for defining Date format is yyyymmddD , where D is a mandatory letter. For example, 20180325D , read
as the 26th of March, 2018.

To assign a normal date to a variable, use the following format: yyyymmddD .

SQL Server stores information about both date and time in columns of the DATETIME types. For date fields,
Dynamics 365 Business Central uses only the date and uses a constant value for the time. For a normal date, this
constant value contains 00:00:00:000. For a closing date, it contains 23:59:59:000.

The Dynamics 365 Business Central undefined date is represented by the earliest valid date in SQL Server. The
earliest valid date in SQL Server for a DATETIME is 01-01-1753 00:00:00:000.

If you store a date in the database that is outside the valid range for a SQL DATETIME, a run-time error occurs.

This example shows a valid assignment of date. It requires that you define the following variable.

This example is compiled and run on a computer with the regional format set to English (United States).

The message window displays the following:

06/12/2018

https://en.wikipedia.org/wiki/ISO_8601

See Also
Getting Started with AL
Developing Extensions

DateFormula Data Type
4/24/2019 • 2 minutes to read

Remarks

Example

IF FORMAT(DateFormulaVariable) = ' ' THEN
 EVALUATE(DateFormulaVariable, '1W');

See Also

Represents a date formula that has the same capabilities as an ordinary input string for the CALCDATE Method
(Date). The DateFormula data type is used to provide multilanguage capabilities to the CALCDATE Method (Date).

When a date calculation formula is stored in a DateFormula field, it is converted to a generic, non-language
dependent format. When a date calculation formula is retrieved from a DateFormula field, it is converted to a valid
date conversion string for the currently selected language.

To assign a value to a DateFormula data type, whether it is a field or a variable, you must use the EVALUATE
Method.

This example requires that you create a DateFormulaVariable variable that is a DateFormula data type.

You must use the FORMAT Method to make a comparison with a text string. If you do not use this method, then
the IF statement will fail because you cannot compare a DateFormula data type with a Text data type.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-evaluate-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-format-joker-integer-string-method

DateTime Data Type
3/31/2019 • 2 minutes to read

Remarks

Syntax

SQL Server

See Also

Denotes a date and time ranging from January 1, 1753, 00:00:00.000 to December 31, 9999, 23:59:59.999. An
undefined or blank DateTime is specified by 0DT.

The displayed text format of a DateTime is determined by your Regional and Language Options in Windows.

A DateTime is stored in the database as Coordinated Universal Time (UTC). UTC is the international time standard
(formerly Greenwich Mean Time, or GMT). Zero hours UTC is midnight at 0 degrees longitude.

The DateTime is always displayed as local time in Dynamics 365 Business Central. Local time is determined by the
time zone regional settings used by your computer. You must always enter DateTimes as local time. When you
enter a DateTime as local time, it is converted to UTC using the current settings for the time zone and daylight
savings time.

The DateTime data type does not support closing dates.

By default, DateTimes are displayed using the standard display format. When you use the standard display format,
seconds and milliseconds are not displayed until you select the DateTime field. Furthermore, if you export your
data using an XMLport or by writing it to a file, the seconds and milliseconds are not exported unless you specify
that DateTime fields use another format and display this information. For more information about how DateTime
objects are displayed and the formats that are available, see Format Property.

The only constant available when you use the DateTime data type is the undefined DateTime, 0DT. To assign a
constant value to a DateTime variable you must use the CREATEDATETIME method.

If you use a date that is outside the valid date range, a run-time error occurs.

The syntax for defining DateTime format follows the ISO standard.

The syntax for defining Date format is yyyymmddD , where D is a mandatory letter. For example, 20180325D , read
as the 26th of March, 2018.
The syntax for defining Time format is hhmmssT , where T is the time designator. For example, 093125H , read as
9:13:25.

In SQL Server, the earliest permitted DateTime is January 1, 1753, 00:00:00.000. The latest permitted DateTime is
December 31, 9999, 23:59:59.999. If you store a date in the database that is outside the valid range for a SQL
DATETIME, a run-time error run-time occurs.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-format-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-createdatetime-method
https://en.wikipedia.org/wiki/ISO_8601

Debugger Data Type
3/31/2019 • 2 minutes to read

NOTE

METHOD NAME DESCRIPTION

Activate() Activates the debugger and attaches the debugger to the next
session that is started.

Deactivate() Deactivates the debugger.

IsActive() Indicates whether the debugger is active.

Attach(Integer) Activates the debugger and attaches it to the specified
session.

IsAttached() Specifies if the debugger is attached to a session.

DebuggedSessionID() Gets the ID of the previous session that the debugger was
attached to.

IsBreakpointHit() Specifies if a breakpoint is hit in a debugging session.

Break() Breaks code execution of a debugging session.

BreakOnError(Boolean) Sets whether the debugger breaks on errors.

BreakOnRecordChanges(Boolean) Breaks execution before a change to a record occurs.

SkipSystemTriggers(Boolean) Enables the debugger to skip code that is inside system
triggers.

Continue() Executes code until the next breakpoint or until execution
ends.

StepInto() Executes a method call and then stops at the first line of code
inside the method.

StepOut() Enables debugging to return to the calling method after it
steps into a method call.

StepOver() Executes a method call and then stops at the first line outside
the method call.

Enables communication with a debugger.

This data type is supported only in Business Central on-premises.

The following methods are available on the Debugger data type.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/debugger/debugger-activate-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/debugger/debugger-deactivate-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/debugger/debugger-isactive-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/debugger/debugger-attach-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/debugger/debugger-isattached-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/debugger/debugger-debuggedsessionid-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/debugger/debugger-isbreakpointhit-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/debugger/debugger-break-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/debugger/debugger-breakonerror-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/debugger/debugger-breakonrecordchanges-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/debugger/debugger-skipsystemtriggers-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/debugger/debugger-continue-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/debugger/debugger-stepinto-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/debugger/debugger-stepout-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/debugger/debugger-stepover-method

Stop() Stops execution as if the code hits an error.

DebuggingSessionID() Gets the ID of the session that the debugger is currently
attached to.

GetLastErrorText() Gets the last error that occurred in the debugger.

EnableSqlTrace(Integer, [Boolean]) Enables or verifies SQL tracing. If you enable SQL tracing, then
SQL Server events for selected sessions on the server instance
are collected.

METHOD NAME DESCRIPTION

NOTE

See Also

The Dynamics 365 Business Central Debugger is an example of a debugger application that is built using tables, pages,
codeunits, and the AL debugger methods.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/debugger/debugger-stop-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/debugger/debugger-debuggingsessionid-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/debugger/debugger-getlasterrortext-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/debugger/debugger-enablesqltrace-method

Decimal Data Type
3/31/2019 • 2 minutes to read

Example

546.88
3425.57

Example

342

Limits on Decimal Data Type Variables

LIMIT VALUE

Maximum format value.

This is the maximum value that can be:

- Formatted into a TEXT variable by the FORMAT function.
- Input from the UI or XMLPorts.
- Assigned directly in source code.

+/- 999,999,999,999,999.99

Maximum field data type value.

This is the maximum value that a field variable in a record can
hold while not being persisted.

+/- 999,999,999,999,999.99

Maximum persisted value.

This is the maximum value that can be stored in the database.

Can read previous stored values but cannot store values
outside the formatting range since field variables cannot be
assigned values outside the formatting range.

Maximum calculating value.

This is the maximum value that can be calculated by code
statements while not assigning to a field variable, storing to
the database, or formatting to a text variable.

+/- 79,228,162,514,264,337,593,543,950,335

Denotes decimal numbers ranging from -999,999,999,999,999.99 to +999,999,999,999,999.99.

The following are examples of decimal values.

The following is not a decimal, but rather an Integer Data Type.

The Decimal data type is mapped to the Microsoft .NET Framework common language runtime (CLR) Decimal
data type, which controls and the precision and limits for variables.

The following table shows the limits for variables of type Decimal .

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/datatypes/devenv-integer-data-type

Scaling factor (digits after decimal point) for calculating values 28

For example, 7.9228162514264337593543950335

LIMIT VALUE

See Also

It is possible to assign to a variable the maximum value that can be formatted and then multiply that variable by a
large positive number, thereby generating a greater value. However, we do not recommend doing this. If you do,
you will get errors if you attempt to format this variable to a text variable or assign the variable to a field variable in
a record.

Getting Started with AL
Developing Extensions

DefaultLayout Option Type
3/31/2019 • 2 minutes to read

Members
MEMBER DESCRIPTION

None The default layout is not set.

RDLC The default layout is RDLC.

Word The default layout is Word.

See Also

The default layout to be used by a report.

Getting Started with AL
Developing Extensions

Dialog Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

Error(String, [Any,...]) Displays an error message and ends the execution of AL code.

Error(ErrorInfo) Displays an error message and ends the execution of AL code.

Message(String, [Any,...]) Displays a text string in a message window.

Confirm(String, [Boolean], [Any,...]) Creates a dialog box that prompts the user for a yes or no
answer. The dialog box is centered on the screen.

StrMenu(String, [Integer], [String]) Creates a menu window that displays a series of options.

METHOD NAME DESCRIPTION

Open(String, [var Any,...]) Opens a dialog window.

Update([Integer], [Any]) Updates the value of a '#'-or '@' field in the active window.

Close() Closes a dialog window that has been opened by the OPEN
method.

HideSubsequentDialogs([Boolean]) Specifies that subsequent child dialogs are not shown.

See Also

Represents a dialog window.

The following methods are available on the Dialog data type.

The following methods are available on instances of the Dialog data type.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/dialog/dialog-error-string-joker-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/dialog/dialog-error-errorinfo-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/dialog/dialog-message-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/dialog/dialog-confirm-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/dialog/dialog-strmenu-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/dialog/dialog-open-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/dialog/dialog-update-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/dialog/dialog-close-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/dialog/dialog-hidesubsequentdialogs-method

Dictionary Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

Count() Gets the number of key/value pairs contained in the
Dictionary.

Keys() Gets a collection containing the keys in the Dictionary.

Values() Gets a collection containing the values in the Dictionary.

Get(TKey, var TValue) Gets the value associated with the specified key.

Get(TKey) Gets the value associated with the specified key.

Set(TKey, TValue) Sets the value associated with the specified key.

Set(TKey, TValue, var TValue) Sets the value associated with the specified key.

Add(TKey, TValue) Adds the specified key and value to the dictionary.

ContainsKey(TKey) Determines whether the Dictionary contains the specified key.

Remove(TKey) Removes the value with the specified key from the Dictionary.

Remarks

Example

Represents a collection of keys and values.

The following methods are available on instances of the Dictionary data type.

Each addition to the dictionary consists of a value, and its associated key. Every key in a Dictionary must be unique.
A key cannot be null, but a value can be, only when the value type is a reference type.

In the following example, the variable counter represents the Dictionary data type to store a value representing
the number of occurrences for each character in the customerName . Using the Get method, you get the number of
occurrences for the character at position i . If i returns false, it means there is no value associated with that
character, so you add the value 1. If i returns true, it means the value already exists, so you add c + 1 to the
value. The Add method adds the {key:value} pair to the Dictionary.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/dictionary/dictionary-count-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/dictionary/dictionary-keys-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/dictionary/dictionary-values-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/dictionary/dictionary-get-tkey-tvalue-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/dictionary/dictionary-get-tkey-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/dictionary/dictionary-set-tkey-tvalue-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/dictionary/dictionary-set-tkey-tvalue-tvalue-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/dictionary/dictionary-add-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/dictionary/dictionary-containskey-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/dictionary/dictionary-remove-method

procedure CountCharactersInCustomerName(customerName: Text; var counter: Dictionary of [Char, Integer]);
var
 i : Integer;
 c : Integer;
begin

 for i := 1 to StrLen(customerName) do
 begin
 if counter.Get(customerName[i], c) then
 counter.Set(customerName[i], c + 1)
 else
 counter.Add(customerName[i], 1);
 end;
end;

See Also
Getting Started with AL
Developing Extensions

DotNet Data Type
3/31/2019 • 2 minutes to read

See Also

Represents an unspecified .NET type.

Getting Started with AL
Developing Extensions

Duration Data Type
3/31/2019 • 2 minutes to read

Example

VARIABLE DATATYPE

DateTime1 DateTime

Datetime2 DateTime

Duration Duration

DateTime1 := CREATEDATETIME(010109D, 080000T); // January 1, 2009 at 08:00:00 AM
DateTime2 := CREATEDATETIME(050509D, 133001T); // May 5, 2009 at 1:30:01 PM
Duration := DateTime2 - DateTime1;
MESSAGE(FORMAT(Duration));

See Also

Represents the difference between two DateTimes. This value can be negative. It is stored as a 64-bit integer. The
integer value is the number of milliseconds during the duration.

The following are examples of durations:

DATETIME-DATETIME=DURATION

DATETIME-DURATION=DATETIME

DATETIME+DURATION=DATETIME

This example shows how to calculate the difference between two DateTimes. It requires that you define the
following variables.

This example is run on a computer with the Current Format in the Regional and Language Options set to English
(United States).

The message window displays the following:

124 days 4 hours 30 minutes 1 second

Getting Started with AL
Developing Extensions

ExecutionContext Option Type
3/31/2019 • 2 minutes to read

Members
MEMBER DESCRIPTION

Normal The normal execution context.

Install An application is being installed.

Uninstall An application is being uninstalled.

Upgrade An application is being upgraded.

See Also

Represents the context in which a session is running. In certain scenarios, for example during upgrade, the system
will run a session in a special context for a limited time.

Getting Started with AL
Developing Extensions

ExecutionMode Option Type
3/31/2019 • 2 minutes to read

Members
MEMBER DESCRIPTION

Standard The session is executing in standard mode.

Debug The session is executing in debug mode.

See Also

The execution mode of the current session.

Getting Started with AL
Developing Extensions

FieldClass Option Type
3/31/2019 • 2 minutes to read

Members
MEMBER DESCRIPTION

Normal A normal field.

FlowField A flow field.

FlowFilter A flow filter.

See Also

Represents the type of a field class.

Getting Started with AL
Developing Extensions

FieldRef Data Type
3/31/2019 • 4 minutes to read

METHOD NAME DESCRIPTION

Number() Gets the number of a field as a string.

Name() Gets the name of a field as a string.

Caption() Gets the current caption of a field as a String.

Type() Gets the data type of the field that is currently selected.

Class() Gets the value of the FieldClass Property of the field that is
currently selected. This method returns an error if no field is
selected.

OptionMembers() Gets the list of options that are available in the field that is
currently selected.

OptionString() The 'OptionString' property has been deprecated and will be
removed in the future. Use the 'OptionMembers' property
instead.

OptionCaption() Gets the option caption of the field that is currently selected.

Active() Checks whether the field that is currently selected is enabled.

Record() Gets the RecordRef of the field that is currently selected. This
method returns an error if no field is selected.

Length() Gets the maximum size of the field (the size specified in the
DataLength property of the field). This method is usually used
for finding the defined length of code and text fields.

Value([Any]) Sets or gets the value of the field that is currently selected.
This method returns an error if no field is selected.

CalcField() Updates FlowFields in a record.

CalcSum() Calculates the total of all values of a SumIndexField in a table.

Validate([Any]) Use this method to enter a new value into a field and have the
new value validated by the properties and code that have
been defined for that field.

Identifies a field in a table and gives you access to this field.

The following methods are available on instances of the FieldRef data type.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-number-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-name-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-caption-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-type-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-class-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-optionmembers-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-optionstring-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-optioncaption-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-active-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-record-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-length-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-value-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-calcfield-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-calcsum-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-validate-method

FieldError([String]) Stops the execution of the code, causing a run-time error, and
creates an error message for a field.

TestField() Determines whether the contents of a field matches a given
value. If the contents differ from the given value, an error
message is displayed.

TestField(Byte) Determines whether the contents of a field matches a given
value. If the contents differ from the given value, an error
message is displayed.

TestField(Boolean) Determines whether the contents of a field matches a given
value. If the contents differ from the given value, an error
message is displayed.

TestField(Char) Determines whether the contents of a field matches a given
value. If the contents differ from the given value, an error
message is displayed.

TestField(Option) Determines whether the contents of a field matches a given
value. If the contents differ from the given value, an error
message is displayed.

TestField(Integer) Determines whether the contents of a field matches a given
value. If the contents differ from the given value, an error
message is displayed.

TestField(BigInteger) Determines whether the contents of a field matches a given
value. If the contents differ from the given value, an error
message is displayed.

TestField(Decimal) Determines whether the contents of a field matches a given
value. If the contents differ from the given value, an error
message is displayed.

TestField(Guid) Determines whether the contents of a field matches a given
value. If the contents differ from the given value, an error
message is displayed.

TestField(String) Determines whether the contents of a field matches a given
value. If the contents differ from the given value, an error
message is displayed.

TestField(Text) Determines whether the contents of a field matches a given
value. If the contents differ from the given value, an error
message is displayed.

TestField(Code) Determines whether the contents of a field matches a given
value. If the contents differ from the given value, an error
message is displayed.

TestField(Date) Determines whether the contents of a field matches a given
value. If the contents differ from the given value, an error
message is displayed.

METHOD NAME DESCRIPTION

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-fielderror-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-testfield--method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-testfield-byte-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-testfield-boolean-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-testfield-char-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-testfield-option-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-testfield-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-testfield-biginteger-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-testfield-decimal-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-testfield-guid-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-testfield-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-testfield-text-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-testfield-code-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-testfield-date-method

TestField(DateTime) Determines whether the contents of a field matches a given
value. If the contents differ from the given value, an error
message is displayed.

TestField(Time) Determines whether the contents of a field matches a given
value. If the contents differ from the given value, an error
message is displayed.

TestField(Variant) Determines whether the contents of a field matches a given
value. If the contents differ from the given value, an error
message is displayed.

TestField(Any) Determines whether the contents of a field matches a given
value. If the contents differ from the given value, an error
message is displayed.

Relation() Finds the table relationship of a given field.

SetRange([Any], [Any]) Sets a simple filter on a field, such as a single range or a single
value.

SetFilter(String, [Any,...]) Assigns a filter to a field that you specify.

GetFilter() Gets the filter that is currently applied to the field referred to
by FieldRef.

GetRangeMin() Gets the minimum value in a range for a field.

GetRangeMax() Gets the maximum value in a range for a field.

METHOD NAME DESCRIPTION

See Also
Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-testfield-datetime-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-testfield-time-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-testfield-variant-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-testfield-joker-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-relation-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-setrange-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-setfilter-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-getfilter-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-getrangemin-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/fieldref/fieldref-getrangemax-method

FieldType Option Type
3/31/2019 • 3 minutes to read

Members
MEMBER DESCRIPTION

Boolean Assumes the values true or false. When formatted, a Boolean
field is shown as "Yes" or "No". The size of the corresponding
SQL data type, TINYINT, is 1 byte.

Integer Denotes an integer between -2,147,483,647 and
2,147,483,647. The size of the corresponding SQL data type,
INTEGER, is 4 bytes.

BigInteger A 64-bit integer.

Decimal A decimal number between -10^63 and 10^63. The exponent
ranges from -63 to 63. Decimal numbers are held in memory
with 18 significant digits. The representation of a decimal
number is a Binary Coded Decimal (BCD). The size of the
corresponding SQL data type, DECIMAL(38,20), is 17 bytes.
We recommend that you construct decimals that operate on
numbers in the range of +/- 999,999,999,999,999.99. You
can construct larger numbers in some cases, but overflow,
truncation or loss of precision can occur.

Option An option field is defined by using an option string, which is a
comma-separated list of strings that represent each valid
value of the field. This string is used when a field of type
Option is formatted and its value is converted into a string.

Text Any alphanumeric string. The field must be defined to be
between 1 and 250 characters. The number of bytes used by a
text field equals (number of characters + 1) * 2. The additional
character is used for the string terminating character, which is
'0' in Unicode. The size of a Unicode character is 2 bytes.
Therefore, you multiply the number of characters by two to
get the size.

Code An alphanumeric string, which is right-justified if the contents
are numbers only. If letters or blanks occur among the
numbers, the contents are left-aligned. All letters are
converted to uppercase upon entry.

DateTime Represents a point in time as a combined date and time. The
datetime is stored in the database as Coordinated Universal
Time (UTC) and is always displayed as local time in Dynamics
365 Business Central.

Represents the type of a table field.

Time Any time in the range 00:00:00 to 23:59:59.999. A time field
contains 1 plus the number of milliseconds since 00:00:00
o'clock, or 0 (zero), an undefined time.

Date A date value in the range from January 1, 1753 to December
31, 9999. An undefined date is expressed as 0. All dates have
a corresponding closing date. The system considers the
closing date for a given date as a period that follows the given
date but comes before the next normal date; that is, a closing
date is sorted immediately after the corresponding normal
date but before the next normal date.

DateFormula Used to verify the date entered by the user.

Duration Represents the difference between two points in time, in
milliseconds. This value can be negative.

Guid Globally unique identifier (GUID).

RecordId Unique record identifier.

TableFilter This data type is used to apply a filter to another table.
Currently, this can only be used to apply security filters from
the Permission table.

Blob Binary Large Object. Used to store bitmaps and memos.
Notice that the BLOB is not stored in the record, but in the
BLOB area of the table.

Media A complex type that encapsulates media files, such as image
.jpg and .png files, in application database tables. The Media
data type can be used as a table field data type, but cannot be
used as a variable or parameter.

MediaSet A complex type that encapsulates media, such as images, in
application database tables. The MediaSet data type can be
used as a table field data type, but cannot be used as variable
or parameter.

MEMBER DESCRIPTION

See Also
Getting Started with AL
Developing Extensions

File Data Type
4/10/2019 • 3 minutes to read

METHOD NAME DESCRIPTION

Erase(String) Deletes a file.

Rename(String, String) Renames an ASCII or binary file.

Copy(String, String) Copies a file.

GetStamp(String, var Date, [var Time]) Gets the exact time that a file was last written to.

SetStamp(String, Date, [Time]) Sets a timestamp for a file.

Exists(String) Determines whether a file exists.

UploadIntoStream(String, String, String, var Text, var InStream) Sends a file from the client computer to the corresponding
server. The client computer is the computer that is running the
Windows client or the computer that is running a browser
that accesses the web client.

DownloadFromStream(InStream, String, String, String, var
Text)

Sends a file from server computer to the client computer. The
client computer is the computer that is running the Windows
client or the computer that is running the browser that
accesses the web client.

Upload(String, String, String, String, var Text) Sends a file from the client computer to the server computer.
The client computer is the computer that is running the
Windows client or the computer that is running a browser
that accesses the web client.

Download(String, String, String, String, var Text) Sends a file from a server computer to the client computer.
The client computer is the computer that is running the
Windows client or the computer that is running a browser
that accesses the web client.

IsPathTemporary(String) Validates whether the given path is located in the current
users temporary folder within the current service.

METHOD NAME DESCRIPTION

Open(String, [TextEncoding]) Opens an ASCII or binary file. This method does not create
the file if it does not exist.

Create(String, [TextEncoding]) Creates an Automation object.

Represents a file.

The following methods are available on the File data type.

The following methods are available on instances of the File data type.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-erase-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-rename-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-copy-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-getstamp-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-setstamp-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-exists-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-uploadintostream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-downloadfromstream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-upload-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-download-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-ispathtemporary-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-open-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-create-method

Close() Closes a file that has been opened by the OPEN method (File).

Name() Gets the name of an ASCII or binary file.

Pos() Gets the current position of the file pointer in an ASCII or
binary file.

Len() Gets the length of an ASCII or binary file.

Read(var Any) Reads from an MS-DOS encoded file or binary file.

Write(Boolean) Writes to an MS-DOS encoded file or binary file.

Write(Byte) Writes to an MS-DOS encoded file or binary file.

Write(Char) Writes to an MS-DOS encoded file or binary file.

Write(Integer) Writes to an MS-DOS encoded file or binary file.

Write(BigInteger) Writes to an MS-DOS encoded file or binary file.

Write(Decimal) Writes to an MS-DOS encoded file or binary file.

Write(Guid) Writes to an MS-DOS encoded file or binary file.

Write(Text) Writes to an MS-DOS encoded file or binary file.

Write(Code) Writes to an MS-DOS encoded file or binary file.

Write(Label) Writes to an MS-DOS encoded file or binary file.

Write(BigText) Writes to an MS-DOS encoded file or binary file.

Write(Date) Writes to an MS-DOS encoded file or binary file.

Write(Time) Writes to an MS-DOS encoded file or binary file.

Write(DateTime) Writes to an MS-DOS encoded file or binary file.

Write(DateFormula) Writes to an MS-DOS encoded file or binary file.

Write(Duration) Writes to an MS-DOS encoded file or binary file.

Write(Option) Writes to an MS-DOS encoded file or binary file.

Write(Record) Writes to an MS-DOS encoded file or binary file.

Write(RecordId) Writes to an MS-DOS encoded file or binary file.

Write(String) Writes to an MS-DOS encoded file or binary file.

METHOD NAME DESCRIPTION

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-close-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-name-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-pos-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-len-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-read-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-write-boolean-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-write-byte-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-write-char-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-write-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-write-biginteger-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-write-decimal-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-write-guid-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-write-text-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-write-code-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-write-label-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-write-bigtext-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-write-date-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-write-time-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-write-datetime-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-write-dateformula-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-write-duration-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-write-option-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-write-table-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-write-recordid-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-write-string-method

Write(Any) Writes to an MS-DOS encoded file or binary file.

Seek(Integer) Sets a file pointer to a new position in an ASCII or binary file.

Trunc() Truncate an ASCII or binary file to the current position of the
file pointer.

WriteMode([Boolean]) Use this method before you use OPEN method (File)] to set or
test whether you can write to a file in later calls.

TextMode([Boolean]) Sets whether a file should be opened as an ASCII file or a
binary file. Gets the current setting of this option for a file.

CreateInStream(InStream) Creates an InStream object for a file. This enables you to
import or read data from the file.

CreateOutStream(OutStream) Creates an OutStream object for a file. This enables you to
export or write data to the file.

CreateTempFile([TextEncoding]) Creates a temporary file. This enables you to save data of any
format to a temporary file. This file has a unique name and will
be stored in a temporary file folder.

METHOD NAME DESCRIPTION

See Also
Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-write-joker-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-seek-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-trunc-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-writemode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-textmode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-createinstream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-createoutstream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/file/file-createtempfile-method

FilterPageBuilder Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

AddTable(String, Integer) Adds filter control for a table to a filter page.

AddRecord(String, Record) Adds a filter control for a table to a filter page. The table is
specified by a record data type variable that is passed to the
method.

AddRecordRef(String, RecordRef) Adds a filter control for a table to a filter page. The table is
specified by a RecordRef variable that is passed to the method.
This creates a filter control on the filter page, where users can
set filter table data.

AddField(String, Any, [String]) Adds a table field to the filter control for a table on filter page.

AddField(String, FieldRef, [String]) Adds a table field to the filter control for a table on filter page.

AddFieldNo(String, Integer, [String]) Adds a table field to the filter control for a table on the filter
page.

SetView(String, String) Sets the current filter view, which defines the sort order, key,
and filters, for a record in a filter control on a filter page. The
view contains all fields that have default filters, but does not
contain fields without filters.

GetView(String, [Boolean]) Gets the filter view (which defines the sort order, key, and
filters) for the record in the specified filter control of a filter
page. The view contains all fields in the filter control that have
a default filter value.

RunModal() Builds and runs the filter page that includes the filter controls
that are stored in FilterPageBuilder object instance.

Count() Gets the number of filter controls that are specified in the
FilterPageBuilder object instance.

Name(Integer) Gets the name of a table filter control that is included on a
filter page based on an index number that is assigned to the
filter control.

PageCaption([String]) Gets or sets the FilterPageBuilder UI caption. Defaults to the
resource text if not explicitly set.

See Also

Stores filter configurations for a filter page. A filter page is a dynamic page type that contains one or more filter
controls that enables users to set filters on fields of the underlying tables.

The following methods are available on instances of the FilterPageBuilder data type.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/filterpagebuilder/filterpagebuilder-addtable-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/filterpagebuilder/filterpagebuilder-addrecord-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/filterpagebuilder/filterpagebuilder-addrecordref-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/filterpagebuilder/filterpagebuilder-addfield-string-joker-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/filterpagebuilder/filterpagebuilder-addfield-string-fieldref-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/filterpagebuilder/filterpagebuilder-addfieldno-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/filterpagebuilder/filterpagebuilder-setview-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/filterpagebuilder/filterpagebuilder-getview-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/filterpagebuilder/filterpagebuilder-runmodal-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/filterpagebuilder/filterpagebuilder-count-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/filterpagebuilder/filterpagebuilder-name-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/filterpagebuilder/filterpagebuilder-pagecaption-method

Getting Started with AL
Developing Extensions

Guid Data Type
5/28/2019 • 3 minutes to read

Compatibility

MyTableRec.MyGuid := MyTableRec.MyText;

Methods and properties

Guid := CREATEGUID();

Ok := ISNULLGUID(Guid);

Represents a 16 byte binary data type. This data type is used for the global identification of objects, programs,
records, and so on. The important property of a GUID is that each value is globally unique. The value is generated
by an algorithm, developed by Microsoft, which assures this uniqueness.

The GUID is a 16-byte binary data type that can be logically grouped into the following subgroups:

4byte-2byte-2byte-2byte-6byte.

The standard textual representation is {12345678-1234-1234-1234-1234567890AB}.

The virtual table OLE Control (2000000042) does not use the GUID data type. It uses a textual representation of
the GUID in a text field instead. It is easier to make operations and references to this text field using the GUID data
type than it is using the textual representation. The GUID data type is compatible with the existing textual
representation.

The GUID data type is useful when you want to uniquely identify some data, so that it can be exchanged with
external applications. For example, if you want to transfer an item catalog to an external application, you add a
GUID field to the record in the table and use this as the primary reference when you communicate with the
external application.

You can assign and compare the Text data type and the GUID data type. Assigning a GUID to a Text can be done as
follows:

The supported formats of MyText are:

'11111111-1111-1111-1111-111111111111' '{22222222-2222-2222-2222-222222222222}'

The following AL methods can be used with the GUID data type:

This method creates a new unique GUID value. The value can then be assigned to a field of the GUID data type or
of the Text data type.

This method is a convenient way to check if a value has already been assigned to a GUID. A NULL GUID
(consisting only of zeroes) is valid, but should never be used for reference purposes.

A NULL GUID is valid but is not useful in a table. Therefore, the AutoSplitKey property is implemented for the
GUID data type when it is used in a page. When GUID is selected as a primary key, AutoSplitKey is enabled for
the page, and the GUID value remains NULL. When you create a new record, a valid GUID is created and assigned

Format

See Also

automatically.

The CREATEGUID method and ISNULLGUID method methods are available in the AL Symbol Menu under
SYSTEM, Variables.

CREATEGUID takes no arguments and returns a valid 16-byte GUID value. If the result is assigned to a TEXT
variable or field, the value is converted to a string and follows the syntax explained earlier. The algorithm that
generates the new GUID value uses Microsoft's CoCreateGuid method.

ISNULLGUID takes a GUID value as a required argument and returns TRUE/FALSE depending on whether the
GUID value is NULL. This method does not accept a Text value as an argument.

AutoSplitKey is a property, not a method and can be applied to pages. If you have defined a GUID field as part of
the primary key, the AutoSplitKey property automatically generates a new valid GUID value. When a new record
is created and the GUID field is left as NULL, the AutoSplitKey property ensures that a valid GUID value is
automatically inserted into the field. If you then enter a NULL GUID into this record, for example, by using the
CLEAR method, this new NULL GUID value is not automatically replaced by the AutoSplitKey property. The
AutoSplitKey property only applies to new records.

The GUID value can also be represented as text. You can use the standard AL methods FORMAT and EVALUATE to
convert from GUID values to Text values. If you do not use the correct format when you edit a GUID value in its
textual format, the following error message is displayed:

Invalid Format of GUID string. The correct format of the GUID string is {CDEF7890-ABCD-1234-ABCD-
1234567890AB} where 0-9, A-F symbolizes hexadecimal digits.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-createguid-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-isnullguid-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-format-joker-integer-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-evaluate-method

HttpClient Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

Clear() Sets the HttpClient variable to the default value.

GetBaseAddress() Gets the base address of Uniform Resource Identifier (URI) of
the Internet resource used when sending requests.

SetBaseAddress(String) Sets the base address of Uniform Resource Identifier (URI) of
the Internet resource used when sending requests.

DefaultRequestHeaders() Gets the default request headers which should be sent with
each request.

Timeout([Duration]) Gets or sets the duration in seconds to wait before the
request times out.

Get(String, var HttpResponseMessage) Sends a GET request to get the resource identified by the
request URL.

Delete(String, var HttpResponseMessage) Sends a DELETE request to delete the resource identified by
the request URL.

Post(String, HttpContent, var HttpResponseMessage) Sends a POST request to the specified URI as an asynchronous
operation.

Put(String, HttpContent, var HttpResponseMessage) Sends a PUT request to the specified URI as an asynchronous
operation.

Send(HttpRequestMessage, var HttpResponseMessage) Sends an HTTP request as an asynchronous operation.

AddCertificate(String, [String]) Adds a certificate to the HttpClient class.

UseDefaultNetworkWindowsAuthentication() Sets the HttpClient credentials to use the default network
credentials for Windows authentication. If this method is
invoked after any HTTP request has started; a runtime error
occurs.

UseWindowsAuthentication(String, String, [String]) Sets the HttpClient credentials to use the specified network
credentials for Windows authentication. If this method is
invoked after any HTTP request has started; a runtime error
occurs.

See Also

Provides a data type for sending HTTP requests and receiving HTTP responses from a resource identified by a
URI.

The following methods are available on instances of the HttpClient data type.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/httpclient/httpclient-clear-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/httpclient/httpclient-getbaseaddress-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/httpclient/httpclient-setbaseaddress-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/httpclient/httpclient-defaultrequestheaders-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/httpclient/httpclient-timeout-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/httpclient/httpclient-get-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/httpclient/httpclient-delete-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/httpclient/httpclient-post-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/httpclient/httpclient-put-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/httpclient/httpclient-send-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/httpclient/httpclient-addcertificate-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/httpclient/httpclient-usedefaultnetworkwindowsauthentication-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/httpclient/httpclient-usewindowsauthentication-method

Getting Started with AL
Developing Extensions

HttpContent Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

Clear() Sets the HttpContent object to a default value. The content
contains an empty string and empty headers.

WriteFrom(Text) Sets HttpContent content to the provided text or stream.

WriteFrom(InStream) Sets HttpContent content to the provided text or stream.

GetHeaders(var HttpHeaders) Gets the HTTP content headers as defined in RFC 2616.

ReadAs(var Text) Reads the content into the provided text.

ReadAs(var InStream) Reads the content into the provided text.

Example

Represents an HTTP entity body and content headers.

The following methods are available on instances of the HttpContent data type.

An instance of HttpContent encapsulates the body and the associated headers of an HTTP request that will be sent
to a remote endpoint or that is being received from a remote endpoint. The HttpContent data type is a value type.
This means that when assigning an instance of HttpContent to a variable, a copy will be created.

The following example illustrates how to use the HttpContent type to send a simple POST request containing
JSON data.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/httpcontent/httpcontent-clear-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/httpcontent/httpcontent-writefrom-text-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/httpcontent/httpcontent-writefrom-instream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/httpcontent/httpcontent-getheaders-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/httpcontent/httpcontent-readas-text-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/httpcontent/httpcontent-readas-instream-method

codeunit 50110 MyCodeunit
{
 procedure MakeRequest(uri: Text; payload: Text) responseText: Text;
 var
 client: HttpClient;
 request: HttpRequestMessage;
 response: HttpResponseMessage;
 contentHeaders: HttpHeaders;
 content: HttpContent;
 begin
 // Add the payload to the content
 content.WriteFrom(payload);

 // Retrieve the contentHeaders associated with the content
 content.GetHeaders(contentHeaders);
 contentHeaders.Clear();
 contentHeaders.Add('Content-Type', 'application/json');

 // Assigning content to request.Content will actually create a copy of the content and assign it.
 // After this line, modifying the content variable or its associated headers will not reflect in
 // the content associated with the request message
 request.Content := content;

 request.SetRequestUri(uri);
 request.Method := 'POST';

 client.Send(request, response);

 // Read the response content as json.
 response.Content().ReadAs(responseText);
 end;
}

See Also
Getting Started with AL
Developing Extensions

HttpHeaders Data Type
5/28/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

Add(String, String) Adds the specified header and its value into the HttpHeaders
collection. Validates the provided value.

TryAddWithoutValidation(String, String) Adds the specified header and its value into the HttpHeaders
collection. Doesn't validate the provided value.

Contains(String) Checks if the specified header exists in the HttpHeaders
collection.

Clear() Sets the HttpHeaders variable to the default value.

Remove(String) Removes the specified header from the HttpHeaders
collection.

GetValues(String, Array of [Text]) Gets the values for the specified key.

See Also

Is a collection of headers and their values.

The following methods are available on instances of the HttpHeaders data type.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/httpheaders/httpheaders-add-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/httpheaders/httpheaders-tryaddwithoutvalidation-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/httpheaders/httpheaders-contains-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/httpheaders/httpheaders-clear-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/httpheaders/httpheaders-remove-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/httpheaders/httpheaders-getvalues-method

HttpRequestMessage Data Type
5/28/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

Content([HttpContent]) Gets or sets the contents of the HTTP message.

Method([String]) Gets or sets the method type as defined in the HTTP
standard.

GetRequestUri() Gets the URI used for the HTTP request.

SetRequestUri(String) Sets the URI used for the HTTP request.

GetHeaders(var HttpHeaders) Gets a reference to the collection of HTTP request headers.

NOTE

See Also

Represents an HTTP request message.

The following methods are available on instances of the HttpRequestMessage data type.

For performance reasons all HTTP, JSON, TextBuilder, and XML types are reference types, not value types. Reference types
holds a pointer to the data elsewhere in memory, whereas value types store its own data.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/httprequestmessage/httprequestmessage-content-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/httprequestmessage/httprequestmessage-method-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/httprequestmessage/httprequestmessage-getrequesturi-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/httprequestmessage/httprequestmessage-setrequesturi-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/httprequestmessage/httprequestmessage-getheaders-method

HttpResponseMessage Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

Content() Gets the contents of the HTTP response.

Headers() Gets the HTTP response's HTTP headers.

IsSuccessStatusCode() Gets a value that indicates if the HTTP response was
successful.

IsBlockedByEnvironment() Gets a value that indicates if the HTTP response is the result
of the environment blocking an outgoing HTTP request.

ReasonPhrase() Gets the reason phrase which typically is sent by servers
together with the status code.

HttpStatusCode() Gets the status code of the HTTP response.

NOTE

See Also

Represents a HTTP response message including the status code and data.

The following methods are available on instances of the HttpResponseMessage data type.

For performance reasons all HTTP, JSON, TextBuilder, and XML types are reference types, not value types. Reference types
holds a pointer to the data elsewhere in memory, whereas value types store its own data.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/httpresponsemessage/httpresponsemessage-content-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/httpresponsemessage/httpresponsemessage-headers-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/httpresponsemessage/httpresponsemessage-issuccessstatuscode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/httpresponsemessage/httpresponsemessage-isblockedbyenvironment-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/httpresponsemessage/httpresponsemessage-reasonphrase-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/httpresponsemessage/httpresponsemessage-httpstatuscode-method

InStream Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

Read(var Boolean, [Integer]) Reads a specified number of bytes from an InStream object.
Data is read in binary format.

Read(var Byte, [Integer]) Reads a specified number of bytes from an InStream object.
Data is read in binary format.

Read(var Char, [Integer]) Reads a specified number of bytes from an InStream object.
Data is read in binary format.

Read(var Integer, [Integer]) Reads a specified number of bytes from an InStream object.
Data is read in binary format.

Read(var BigInteger, [Integer]) Reads a specified number of bytes from an InStream object.
Data is read in binary format.

Read(var Decimal, [Integer]) Reads a specified number of bytes from an InStream object.
Data is read in binary format.

Read(var Guid, [Integer]) Reads a specified number of bytes from an InStream object.
Data is read in binary format.

Read(var String, [Integer]) Reads a specified number of bytes from an InStream object.
Data is read in binary format.

Read(var Any, [Integer]) Reads a specified number of bytes from an InStream object.
Data is read in binary format.

EOS() Indicates whether an input stream has reached End of Stream
(EOS).

ReadText(var Text, [Integer]) Reads text from an InStream object.

See Also

Is a generic stream object that you can use to read from or write to files and BLOBs. You can define the internal
structure of a stream as a flat stream of bytes. You can assign one stream to another. Reading from and writing to a
stream occurs sequentially.

The following methods are available on instances of the InStream data type.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/instream/instream-read-boolean-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/instream/instream-read-byte-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/instream/instream-read-char-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/instream/instream-read-integer-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/instream/instream-read-biginteger-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/instream/instream-read-decimal-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/instream/instream-read-guid-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/instream/instream-read-string-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/instream/instream-read-joker-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/instream/instream-eos-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/instream/instream-readtext-method

Integer Data Type
3/31/2019 • 2 minutes to read

Remarks

IntegerVar := -2147483647;
IntegerVar := IntegerVar - 1;

Example

546
-3425

Example

342.45

See Also

Stores whole numbers with values that range from -2,147,483,647 to 2,147,483,647.

In addition to representing whole numbers in this range, you can use integers to represent Boolean values. For
Boolean values, -1 represents true and 0 represents false.

If you assign -2,147,483,648 directly to an Integer variable, then you get an error when you try to compile the
code. However, you can indirectly assign -2,147,483,648 to an Integer variable by using the following code.

If you try to indirectly assign a value that is smaller than -2,147,483,648 or larger than 2,147,483,647, then you get
a run-time error.

The following are examples of integer values.

The following example is a decimal and not an integer.

Getting Started with AL
Developing Extensions

IsolatedStorage Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

Set(String, String, [DataScope]) Sets the value associated with the specified key.

Get(String, [DataScope], var Text) Gets the value associated with the specified key.

Get(String, var Text) Gets the value associated with the specified key.

Contains(String, [DataScope]) Determines whether the storage contains a value with the
specified key.

Delete(String, [DataScope]) Deletes the value with the specified key from the isolated
storage.

SetEncrypted(String, String, [DataScope]) Encrypts and sets the value associated with the specified key.
The input string cannot exceed a length of 215 plain
characters; be aware that special characters take up more
space.

See Also

Provides data isolation for extensions.

The following methods are available on the IsolatedStorage data type.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/isolatedstorage/isolatedstorage-set-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/isolatedstorage/isolatedstorage-get-string-datascope-text-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/isolatedstorage/isolatedstorage-get-string-text-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/isolatedstorage/isolatedstorage-contains-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/isolatedstorage/isolatedstorage-delete-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/isolatedstorage/isolatedstorage-setencrypted-method

JsonArray Data Type
4/10/2019 • 5 minutes to read

METHOD NAME DESCRIPTION

Path() Retrieves the JSON path of the array relative to the root of its
containing tree.

ReadFrom(String) Reads the JSON data from the string into a JsonArray variable.

ReadFrom(InStream) Reads the JSON data from the stream into a JsonArray
variable.

WriteTo(var Text) Serializes and writes the JSON data of the JsonArray to a given
Text object.

WriteTo(OutStream) Serializes and writes the JSON data of the JsonArray to a given
OutStream object.

SelectToken(String, var JsonToken) Selects a JsonToken using a JPath expression.

Clone() Creates a deep-copy of the JsonArray value.

AsToken() Converts the value in a JsonArray to a JsonToken data type.

Count() Gets the number of elements in the JsonArray.

Get(Integer, var JsonToken) Retrieves the value at the given index in the JsonArray.

Set(Integer, JsonToken) Replaces the value at the given index with a new value.

Set(Integer, JsonObject) Replaces the value at the given index with a new value.

Set(Integer, JsonArray) Replaces the value at the given index with a new value.

Set(Integer, JsonValue) Replaces the value at the given index with a new value.

Set(Integer, Boolean) Replaces the value at the given index with a new value.

Set(Integer, Char) Replaces the value at the given index with a new value.

Set(Integer, Byte) Replaces the value at the given index with a new value.

Set(Integer, Option) Replaces the value at the given index with a new value.

Set(Integer, Integer) Replaces the value at the given index with a new value.

Is a container for any well-formed JSON array. A default JsonArray contains an empty JSON array.

The following methods are available on instances of the JsonArray data type.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-path-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-readfrom-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-readfrom-instream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-writeto-text-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-writeto-outstream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-selecttoken-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-clone-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-astoken-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-count-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-get-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-set-integer-jsontoken-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-set-integer-jsonobject-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-set-integer-jsonarray-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-set-integer-jsonvalue-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-set-integer-boolean-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-set-integer-char-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-set-integer-byte-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-set-integer-option-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-set-integer-integer-method

Set(Integer, BigInteger) Replaces the value at the given index with a new value.

Set(Integer, Decimal) Replaces the value at the given index with a new value.

Set(Integer, Duration) Replaces the value at the given index with a new value.

Set(Integer, Date) Replaces the value at the given index with a new value.

Set(Integer, Time) Replaces the value at the given index with a new value.

Set(Integer, DateTime) Replaces the value at the given index with a new value.

Set(Integer, String) Replaces the value at the given index with a new value.

RemoveAt(Integer) Removes the token at the given index.

Insert(Integer, JsonToken) Inserts the value at the given index in the array while shifting
all the values to the right by one position.

Insert(Integer, JsonArray) Inserts the value at the given index in the array while shifting
all the values to the right by one position.

Insert(Integer, JsonObject) Inserts the value at the given index in the array while shifting
all the values to the right by one position.

Insert(Integer, JsonValue) Inserts the value at the given index in the array while shifting
all the values to the right by one position.

Insert(Integer, Boolean) Inserts the value at the given index in the array while shifting
all the values to the right by one position.

Insert(Integer, Char) Inserts the value at the given index in the array while shifting
all the values to the right by one position.

Insert(Integer, Byte) Inserts the value at the given index in the array while shifting
all the values to the right by one position.

Insert(Integer, Option) Inserts the value at the given index in the array while shifting
all the values to the right by one position.

Insert(Integer, Integer) Inserts the value at the given index in the array while shifting
all the values to the right by one position.

Insert(Integer, BigInteger) Inserts the value at the given index in the array while shifting
all the values to the right by one position.

Insert(Integer, Decimal) Inserts the value at the given index in the array while shifting
all the values to the right by one position.

Insert(Integer, Duration) Inserts the value at the given index in the array while shifting
all the values to the right by one position.

METHOD NAME DESCRIPTION

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-set-integer-biginteger-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-set-integer-decimal-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-set-integer-duration-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-set-integer-date-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-set-integer-time-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-set-integer-datetime-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-set-integer-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-removeat-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-insert-integer-jsontoken-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-insert-integer-jsonarray-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-insert-integer-jsonobject-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-insert-integer-jsonvalue-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-insert-integer-boolean-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-insert-integer-char-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-insert-integer-byte-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-insert-integer-option-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-insert-integer-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-insert-integer-biginteger-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-insert-integer-decimal-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-insert-integer-duration-method

Insert(Integer, Date) Inserts the value at the given index in the array while shifting
all the values to the right by one position.

Insert(Integer, Time) Inserts the value at the given index in the array while shifting
all the values to the right by one position.

Insert(Integer, DateTime) Inserts the value at the given index in the array while shifting
all the values to the right by one position.

Insert(Integer, String) Inserts the value at the given index in the array while shifting
all the values to the right by one position.

Add(JsonToken) Adds a new value at the end of the JsonArray.

Add(JsonArray) Adds a new value at the end of the JsonArray.

Add(JsonObject) Adds a new value at the end of the JsonArray.

Add(JsonValue) Adds a new value at the end of the JsonArray.

Add(Boolean) Adds a new value at the end of the JsonArray.

Add(Char) Adds a new value at the end of the JsonArray.

Add(Byte) Adds a new value at the end of the JsonArray.

Add(Option) Adds a new value at the end of the JsonArray.

Add(Integer) Adds a new value at the end of the JsonArray.

Add(BigInteger) Adds a new value at the end of the JsonArray.

Add(Decimal) Adds a new value at the end of the JsonArray.

Add(Duration) Adds a new value at the end of the JsonArray.

Add(Date) Adds a new value at the end of the JsonArray.

Add(Time) Adds a new value at the end of the JsonArray.

Add(DateTime) Adds a new value at the end of the JsonArray.

Add(String) Adds a new value at the end of the JsonArray.

IndexOf(JsonToken) Determines the index of a specific value in the JsonArray.

IndexOf(JsonArray) Determines the index of a specific value in the JsonArray.

IndexOf(JsonObject) Determines the index of a specific value in the JsonArray.

IndexOf(JsonValue) Determines the index of a specific value in the JsonArray.

METHOD NAME DESCRIPTION

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-insert-integer-date-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-insert-integer-time-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-insert-integer-datetime-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-insert-integer-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-add-jsontoken-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-add-jsonarray-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-add-jsonobject-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-add-jsonvalue-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-add-boolean-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-add-char-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-add-byte-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-add-option-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-add-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-add-biginteger-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-add-decimal-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-add-duration-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-add-date-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-add-time-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-add-datetime-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-add-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-indexof-jsontoken-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-indexof-jsonarray-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-indexof-jsonobject-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-indexof-jsonvalue-method

IndexOf(Boolean) Determines the index of a specific value in the JsonArray.

IndexOf(Char) Determines the index of a specific value in the JsonArray.

IndexOf(Byte) Determines the index of a specific value in the JsonArray.

IndexOf(Option) Determines the index of a specific value in the JsonArray.

IndexOf(Integer) Determines the index of a specific value in the JsonArray.

IndexOf(BigInteger) Determines the index of a specific value in the JsonArray.

IndexOf(Decimal) Determines the index of a specific value in the JsonArray.

IndexOf(Duration) Determines the index of a specific value in the JsonArray.

IndexOf(Date) Determines the index of a specific value in the JsonArray.

IndexOf(Time) Determines the index of a specific value in the JsonArray.

IndexOf(DateTime) Determines the index of a specific value in the JsonArray.

IndexOf(String) Determines the index of a specific value in the JsonArray.

METHOD NAME DESCRIPTION

NOTE

See Also

For performance reasons all HTTP, JSON, TextBuilder, and XML types are reference types, not value types. Reference types
holds a pointer to the data elsewhere in memory, whereas value types store its own data.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-indexof-boolean-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-indexof-char-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-indexof-byte-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-indexof-option-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-indexof-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-indexof-biginteger-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-indexof-decimal-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-indexof-duration-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-indexof-date-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-indexof-time-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-indexof-datetime-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonarray/jsonarray-indexof-string-method

JsonObject Data Type
3/31/2019 • 3 minutes to read

METHOD NAME DESCRIPTION

Path() Retrieves the JSON path of the object relative to the root of its
containing tree.

Keys() Gets a set of keys of the JsonObject.

Values() Gets a set of values of the JsonObject.

ReadFrom(String) Reads the JSON data from the string into a JsonObject
variable.

ReadFrom(InStream) Reads the JSON data from the stream into a JsonObject
variable.

WriteTo(var Text) Serializes and writes the JSON data of the JsonObject to a
given Text object.

WriteTo(OutStream) Serializes and writes the JSON data of the JsonObject to a
given OutStream object.

SelectToken(String, var JsonToken) Selects a JsonToken using a JPath expression.

Clone() Creates a deep-copy of the JsonToken value.

AsToken() Converts the value in a JsonObject to a JsonToken data type.

Contains(String) Verifies if a JsonObject contains a property with a given key.

Get(String, var JsonToken) Retrieves the value of a property with a given key from a
JsonObject.

Add(String, JsonToken) Adds a new property to a JsonObject.

Add(String, JsonObject) Adds a new property to a JsonObject.

Add(String, JsonValue) Adds a new property to a JsonObject.

Add(String, JsonArray) Adds a new property to a JsonObject.

Add(String, Boolean) Adds a new property to a JsonObject.

Add(String, Char) Adds a new property to a JsonObject.

Is a container for any well-formed JSON object. A default JsonObject contains an empty JSON object.

The following methods are available on instances of the JsonObject data type.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-path-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-keys-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-values-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-readfrom-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-readfrom-instream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-writeto-text-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-writeto-outstream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-selecttoken-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-clone-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-astoken-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-contains-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-get-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-add-string-jsontoken-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-add-string-jsonobject-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-add-string-jsonvalue-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-add-string-jsonarray-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-add-string-boolean-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-add-string-char-method

Add(String, Byte) Adds a new property to a JsonObject.

Add(String, Option) Adds a new property to a JsonObject.

Add(String, Integer) Adds a new property to a JsonObject.

Add(String, BigInteger) Adds a new property to a JsonObject.

Add(String, Decimal) Adds a new property to a JsonObject.

Add(String, Duration) Adds a new property to a JsonObject.

Add(String, String) Adds a new property to a JsonObject.

Add(String, Date) Adds a new property to a JsonObject.

Add(String, Time) Adds a new property to a JsonObject.

Add(String, DateTime) Adds a new property to a JsonObject.

Replace(String, JsonToken) Replaces the value of the property with the given key with the
new value.

Replace(String, JsonArray) Replaces the value of the property with the given key with the
new value.

Replace(String, JsonObject) Replaces the value of the property with the given key with the
new value.

Replace(String, JsonValue) Replaces the value of the property with the given key with the
new value.

Replace(String, Boolean) Replaces the value of the property with the given key with the
new value.

Replace(String, Char) Replaces the value of the property with the given key with the
new value.

Replace(String, Byte) Replaces the value of the property with the given key with the
new value.

Replace(String, Integer) Replaces the value of the property with the given key with the
new value.

Replace(String, Option) Replaces the value of the property with the given key with the
new value.

Replace(String, BigInteger) Replaces the value of the property with the given key with the
new value.

Replace(String, Decimal) Replaces the value of the property with the given key with the
new value.

METHOD NAME DESCRIPTION

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-add-string-byte-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-add-string-option-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-add-string-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-add-string-biginteger-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-add-string-decimal-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-add-string-duration-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-add-string-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-add-string-date-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-add-string-time-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-add-string-datetime-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-replace-string-jsontoken-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-replace-string-jsonarray-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-replace-string-jsonobject-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-replace-string-jsonvalue-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-replace-string-boolean-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-replace-string-char-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-replace-string-byte-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-replace-string-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-replace-string-option-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-replace-string-biginteger-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-replace-string-decimal-method

Replace(String, Duration) Replaces the value of the property with the given key with the
new value.

Replace(String, Date) Replaces the value of the property with the given key with the
new value.

Replace(String, Time) Replaces the value of the property with the given key with the
new value.

Replace(String, DateTime) Replaces the value of the property with the given key with the
new value.

Replace(String, String) Replaces the value of the property with the given key with the
new value.

Remove(String) Removes the property with the given key from the object.

METHOD NAME DESCRIPTION

NOTE

Remarks

jsonObject.Keys.Count = 0

See Also

For performance reasons all HTTP, JSON, TextBuilder, and XML types are reference types, not value types. Reference types
holds a pointer to the data elsewhere in memory, whereas value types store its own data.

An unitialized variable of JsonObject type represents an empty JSON object. Given a value of JsonObject type, you
can check if it is empty by checking that the number of keys in the object is 0.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-replace-string-duration-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-replace-string-date-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-replace-string-time-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-replace-string-datetime-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-replace-string-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonobject/jsonobject-remove-method

JsonToken Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

IsObject() Indicates whether a JsonToken contains a JSON object.

IsValue() Indicates whether a JsonToken contains a JSON value.

IsArray() Indicates whether a JsonToken represents a JSON array.

AsArray() Converts the value in a JsonToken to a JsonArray data type.

AsValue() Converts the value in a JsonToken to a JsonValue data type.

AsObject() Converts the value in a JsonToken to a JsonObject data type.

Path() Retrieves the JSON path of the token relative to the root of its
containing tree.

ReadFrom(String) Reads the JSON data from the string into a JsonToken
variable.

ReadFrom(InStream) Reads the JSON data from the stream into a JsonToken
variable.

WriteTo(var Text) Serializes and writes the JSON data of the JsonToken to a
given Text object.

WriteTo(OutStream) Serializes and writes the JSON data of the JsonToken to a
given OutStream object.

SelectToken(String, var JsonToken) Selects a JsonToken using a JPath expression.

Clone() Creates a deep-copy of the JsonToken value.

NOTE

See Also

Is a container for any well-formed JSON data. A default JsonToken object contains the JSON value of NULL.

The following methods are available on instances of the JsonToken data type.

For performance reasons all HTTP, JSON, TextBuilder, and XML types are reference types, not value types. Reference types
holds a pointer to the data elsewhere in memory, whereas value types store its own data.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsontoken/jsontoken-isobject-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsontoken/jsontoken-isvalue-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsontoken/jsontoken-isarray-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsontoken/jsontoken-asarray-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsontoken/jsontoken-asvalue-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsontoken/jsontoken-asobject-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsontoken/jsontoken-path-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsontoken/jsontoken-readfrom-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsontoken/jsontoken-readfrom-instream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsontoken/jsontoken-writeto-text-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsontoken/jsontoken-writeto-outstream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsontoken/jsontoken-selecttoken-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsontoken/jsontoken-clone-method

JsonValue Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

Path() Retrieves the JSON path of the value relative to its containing
tree.

ReadFrom(String) Reads the JSON data into a JsonValue variable.

ReadFrom(InStream) Reads the JSON data from the stream into a JsonValue
variable.

WriteTo(var Text) Serializes and writes the JSON data of the JsonValue to a given
object.

WriteTo(OutStream) Serializes and writes the JSON data of the JsonValue to a given
object.

SelectToken(String, var JsonToken) Selects a JsonToken using a JPath expression.

Clone() Creates a deep-copy of the JsonToken value.

AsToken() Converts the value in a JsonValue to a JsonToken data type.

IsNull() Indicates whether the JsonValue contains the JSON value of
NULL.

IsUndefined() Indicates whether the JsonValue contains the JSON value of
UNDEFINED.

AsBoolean() Converts the value in a JsonValue to a Boolean data type.

AsChar() Converts the value in a JsonValue to a Char data type.

AsByte() Converts the value in a JsonValue to a Byte data type.

AsOption() Converts the value in a JsonValue to an Option data type.

AsInteger() Converts the value in a JsonValue to an Integer data type.

AsBigInteger() Converts the value in a JsonValue to an BigInteger data type.

AsDecimal() Converts the value in a JsonValue to a Decimal data type.

Is a container for any well-formed fundamental JSON value. A default JsonValue is set to the JSON value of
NULL.

The following methods are available on instances of the JsonValue data type.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonvalue/jsonvalue-path-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonvalue/jsonvalue-readfrom-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonvalue/jsonvalue-readfrom-instream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonvalue/jsonvalue-writeto-text-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonvalue/jsonvalue-writeto-outstream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonvalue/jsonvalue-selecttoken-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonvalue/jsonvalue-clone-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonvalue/jsonvalue-astoken-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonvalue/jsonvalue-isnull-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonvalue/jsonvalue-isundefined-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonvalue/jsonvalue-asboolean-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonvalue/jsonvalue-aschar-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonvalue/jsonvalue-asbyte-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonvalue/jsonvalue-asoption-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonvalue/jsonvalue-asinteger-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonvalue/jsonvalue-asbiginteger-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonvalue/jsonvalue-asdecimal-method

AsDuration() Converts the value in a JsonValue to a Duration data type.

AsDate() Converts the value in a JsonValue to a Date data type.

AsTime() Converts the value in a JsonValue to a Time data type.

AsDateTime() Converts the value in a JsonValue to a DateTime data type.

AsText() Converts the value in a JsonValue to a Text data type.

AsCode() Converts the value in a JsonValue to a Code data type.

SetValue(Boolean) Set the contents of the JsonValue variable to the JSON
representation of the given value.

SetValue(Char) Set the contents of the JsonValue variable to the JSON
representation of the given value.

SetValue(Byte) Set the contents of the JsonValue variable to the JSON
representation of the given value.

SetValue(Option) Set the contents of the JsonValue variable to the JSON
representation of the given value.

SetValue(Integer) Set the contents of the JsonValue variable to the JSON
representation of the given value.

SetValue(BigInteger) Set the contents of the JsonValue variable to the JSON
representation of the given value.

SetValue(Decimal) Set the contents of the JsonValue variable to the JSON
representation of the given value.

SetValue(Duration) Set the contents of the JsonValue variable to the JSON
representation of the given value.

SetValue(Date) Set the contents of the JsonValue variable to the JSON
representation of the given value.

SetValue(Time) Set the contents of the JsonValue variable to the JSON
representation of the given value.

SetValue(DateTime) Set the contents of the JsonValue variable to the JSON
representation of the given value.

SetValue(String) Set the contents of the JsonValue variable to the JSON
representation of the given value.

SetValueToNull() Set the contents of the JsonValue variable to the JSON
representation of NULL.

SetValueToUndefined() Set the contents of the JsonValue variable to the JSON
representation of UNDEFINED.

METHOD NAME DESCRIPTION

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonvalue/jsonvalue-asduration-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonvalue/jsonvalue-asdate-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonvalue/jsonvalue-astime-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonvalue/jsonvalue-asdatetime-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonvalue/jsonvalue-astext-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonvalue/jsonvalue-ascode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonvalue/jsonvalue-setvalue-boolean-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonvalue/jsonvalue-setvalue-char-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonvalue/jsonvalue-setvalue-byte-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonvalue/jsonvalue-setvalue-option-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonvalue/jsonvalue-setvalue-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonvalue/jsonvalue-setvalue-biginteger-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonvalue/jsonvalue-setvalue-decimal-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonvalue/jsonvalue-setvalue-duration-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonvalue/jsonvalue-setvalue-date-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonvalue/jsonvalue-setvalue-time-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonvalue/jsonvalue-setvalue-datetime-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonvalue/jsonvalue-setvalue-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonvalue/jsonvalue-setvaluetonull-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/jsonvalue/jsonvalue-setvaluetoundefined-method

NOTE

See Also

For performance reasons all HTTP, JSON, TextBuilder, and XML types are reference types, not value types. Reference types
holds a pointer to the data elsewhere in memory, whereas value types store its own data.

Getting Started with AL
Developing Extensions

KeyRef Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

FieldCount() Gets the number of fields that have been defined in a key.
Returns an error if no key is selected.

FieldIndex(Integer) Gets the FieldRef of the field that has this index in the key
referred to by the KeyRef variable. Returns an error if no key is
selected.

Record() Returns a RecordRef for the current record referred to by the
key.

Active() Indicates whether the key is enabled.

See Also

Identifies a key in a table and the fields in this key.

The following methods are available on instances of the KeyRef data type.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/keyref/keyref-fieldcount-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/keyref/keyref-fieldindex-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/keyref/keyref-record-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/keyref/keyref-active-method

Label Data Type
4/24/2019 • 2 minutes to read

Parameters

ATTRIBUTE DESCRIPTION

Comment It is used for general comments about the label, specifically
about the placeholders in that label.

Locked When Locked is set to true, the label should not be
translated. Default value is false.

MaxLength It determines how much of the label is used.
Label 'ALLOWED POSTING DATE',
Comment='{MaxLength=30}';

If no maximum length is specified, the string can be any
length.

Syntax example
var
a:Label'LabelText',Comment='Foo',MaxLength=999,Locked=true;

Remarks

See Also

Denotes a string constant that can be optionally translated into multiple languages.

All of the parameters below are optional and the order is not enforced.

The Label data type is used in .xlf files for translations. For more information, see Working with Translation Files.

For information about naming, see CodeCop Rule AA0074.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/codecop-aa0074-textconstlabelvariablenamesshouldhaveapprovedsuffix

List Data Type
5/28/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

Count() Gets the number of elements contained in the List.

Add(T) Adds a value to the end of the List.

AddRange(T, [T,...]) Adds the elements of the specified collection to the end of the
list.

AddRange(List of [T]) Adds the elements of the specified collection to the end of the
list.

Get(Integer, var T) Gets the element at the specified index.

Get(Integer) Gets the element at the specified index. This method will raise
an error if the index is outside the valid range.

Set(Integer, T) Sets the element at the specified index.

Set(Integer, T, var T) Sets the element at the specified index.

Contains(T) Determines whether an element is in the List.

IndexOf(T) Searches for the specified value and returns the one-based
index of the first occurrence within the entire List.

Insert(Integer, T) Inserts an element into the List at the specified index.

LastIndexOf(T) Searches for the specified value and returns the one-based
index of the last occurrence within the entire List.

Remove(T) Removes the first occurrence of a specified value from the List.

RemoveAt(Integer) Removes the element at the specified index of the List.

RemoveRange(Integer, Integer) Removes a range of elements from the List.

GetRange(Integer, Integer) Get a shallow copy of a range of elements in the source.

GetRange(Integer, Integer, var List of [T]) Get a shallow copy of a range of elements in the source.

Reverse() Reverses the order of the elements in the entire List.

Represents a strongly typed list of objects that can be accessed by index.

The following methods are available on instances of the List data type.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/list/list-count-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/list/list-add-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/list/list-addrange-t-t-method
file:///T:/q4ru/developer/methods-auto/list/list-addrange-list%5Bt%5D-method.html
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/list/list-get-integer-t-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/list/list-get-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/list/list-set-integer-t-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/list/list-set-integer-t-t-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/list/list-contains-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/list/list-indexof-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/list/list-insert-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/list/list-lastindexof-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/list/list-remove-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/list/list-removeat-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/list/list-removerange-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/list/list-getrange-integer-integer-method
file:///T:/q4ru/developer/methods-auto/list/list-getrange-integer-integer-list%5Bt%5D-method.html
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/list/list-reverse-method

Remarks

Example

procedure WorkWithListOfCustomers();
var
 customerNames : List of [Text];
begin
 // Adding an element to the list
 customerNames.Add('John');

 // Checking if the list contains an element
 if customerNames.Contains('John') then
 Message('John is in the list')
 else
 Message('John is not in the list')
end;

See Also

The List can only be used with simple types i.e. you can have a List of [Integer] but cannot have a List of [Blob].

In the following example, the variable CustomerNames is a list of Text values which represent customer names. The
procedure WorkWithListOfCustomers displays how one would work with the List data type. The Add method is used
to add the string 'John' to the CustomerNames list. The Contains method is used to check whether the list
contains the specified value, in this case, the string 'John' . We continue by using the Message procedure to
display a relevant message.

Getting Started with AL
Developing Extensions

Media Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

HasValue() Checks whether a Media data type field in a record has been
initialized with a media object and that the specified media
object exists in the database.

ExportFile(String) Exports the media object (such as an image) that is currently
used on record to a file on your computer or network. On the
record, the media object is referenced in a Media data type
field.

ExportStream(OutStream) Exports the current media object (such as a JPEG image) that
is used on record to an OUTSTREAM object. The OUTSTREAM
object can be created from a BLOB field, a FILE or from a .NET
Framework interoperability object. In the record, the media is
referenced in a Media data type field.

ImportFile(Text, Text, [Text]) Adds a media type, such as a JPEG image, from a file to a
Media data type field of a record for displaying the media with
the record in the client. The media file is imported to the
application database, and a reference to the media is included
in the Media data type field.

ImportStream(InStream, Text, [Text]) Adds a media type (MIME), such as jpeg image, from an
InStream object to a Media data type field of a record for
displaying the media in the client. The media file is imported
to the application database and a reference to the media is
included in the Media data type field.

ImportStream(InStream, Text, Text, Text) Adds a media type (MIME), such as jpeg image, from an
InStream object to a Media data type field of a record for
displaying the media in the client. The media file is imported
to the application database and a reference to the media is
included in the Media data type field.

MediaId() Gets the unique identifier of a media object on a record.

See Also

Encapsulates media files, such as image .jpg and .png files, in application database tables. The Media data type can
be used as a table field data type, but cannot be used as a variable or parameter. The Media data type enables you
to import a media file to the application database and reference the file from records, making it possible to display
the media file in the client user interface. You can also export media from the database to files and streams.

The following methods are available on instances of the Media data type.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/media/media-hasvalue-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/media/media-exportfile-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/media/media-exportstream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/media/media-importfile-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/media/media-importstream-instream-text-text-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/media/media-importstream-instream-text-text-text-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/media/media-mediaid-method

MediaSet Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

Count() Gets the number of media objects that are included in the
MediaSet of a record.

ExportFile(String) Exports the media objects in the current media set of a record
to individual files on your computer or network. In the record,
the media set is referenced in a MediaSet data type field.

ImportFile(String, String, [String]) Adds a media, such as a JPEG image, to the MediaSet data
type field of a record for displaying the media in the client. The
media is imported to the database and included in a MediaSet
for the record.

ImportStream(InStream, String, [String]) Adds a media file, such as a JPEG image, from an InStream
object to the MediaSet of record for displaying in the client.
The media is imported to the database and included in a
MediaSet for the record.

Insert(Guid) Adds a media object that already exists in the database to a
MediaSet of a record.

Item(Integer) Gets the unique identifier (GUID) of a media object that is
assigned to a MediaSet on a record.

MediaId() Gets the unique identifier that is assigned to a MediaSet of a
record. The MediaSet is a collection of media objects that are
used on the record that can be displayed in the client.

Remove(Guid) Removes a media object from a MediaSet of a record.

See Also

Encapsulates media, such as images, in application database tables.

The following methods are available on instances of the MediaSet data type.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/mediaset/mediaset-count-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/mediaset/mediaset-exportfile-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/mediaset/mediaset-importfile-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/mediaset/mediaset-importstream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/mediaset/mediaset-insert-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/mediaset/mediaset-item-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/mediaset/mediaset-mediaid-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/mediaset/mediaset-remove-method

ModuleDependencyInfo Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

Id() Gets the app ID of the specified app.

Name() Gets the name of the specified application.

Publisher() Gets the publisher of the specified application.

See Also

Provides information about a dependent module.

The following methods are available on instances of the ModuleDependencyInfo data type.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/moduledependencyinfo/moduledependencyinfo-id-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/moduledependencyinfo/moduledependencyinfo-name-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/moduledependencyinfo/moduledependencyinfo-publisher-method

ModuleInfo Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

AppVersion() Gets the version of the specified application's metadata.

DataVersion() Gets the version of the specified application's data in the
context of a given tenant. This indicates the last version that
was installed or successfully upgraded to and will not match
the application version if the tenant is in a data upgrade
pending state.

Dependencies() Gets the collection of application dependencies.

Id() Gets the ID of the specified application.

Name() Gets the name of the specified application.

Publisher() Gets the publisher of the specified application.

See Also

Represents information about an application consumable from AL.

The following methods are available on instances of the ModuleInfo data type.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/moduleinfo/moduleinfo-appversion-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/moduleinfo/moduleinfo-dataversion-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/moduleinfo/moduleinfo-dependencies-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/moduleinfo/moduleinfo-id-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/moduleinfo/moduleinfo-name-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/moduleinfo/moduleinfo-publisher-method

NavApp Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

GetArchiveRecordRef(Integer, var RecordRef) Returns a RecordRef for the specified table.

GetArchiveVersion() Returns the version of the extension that the specified table is
part of.

RestoreArchiveData(Integer, [Boolean]) Restores archived data for a specified table of an extension
during installation.

DeleteArchiveData(Integer) Deletes the archived data for a specified table of an extension
during installation.

LoadPackageData(Integer) Loads default, or starting, table data into the specified table of
an extension during installation.

IsInstalling() Returns true if the application that contains the AL object that
is currently running is being installed, otherwise it returns
false.

GetCurrentModuleInfo(var ModuleInfo) Gets information about the application that contains the AL
object that is currently running.

GetModuleInfo(Guid, var ModuleInfo) Gets information about the specified AL application.

See Also

Provides information about a NavApp.

The following methods are available on the NavApp data type.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/navapp/navapp-getarchiverecordref-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/navapp/navapp-getarchiveversion-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/navapp/navapp-restorearchivedata-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/navapp/navapp-deletearchivedata-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/navapp/navapp-loadpackagedata-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/navapp/navapp-isinstalling-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/navapp/navapp-getcurrentmoduleinfo-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/navapp/navapp-getmoduleinfo-method

None Data Type
3/31/2019 • 2 minutes to read

See Also

Is used implicitly when a method does not return a value.

Getting Started with AL
Developing Extensions

Notification Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

Id([Guid]) Specifies the identifier for a notification.

AddAction(String, Integer, String) Specifies an action for the notification.

GetData(String) Retrieves data that was passed to a notification instance as
specified by a SETDATA method call.

Message([String]) Specifies the content of the notification.

Scope([NotificationScope]) Specifies the context in which the notification appears in the
client.

Send() Sends the notification to the client, where it will display in the
UI.

Recall() Recall a sent notification.

SetData(String, String) Specifies a data property value for the notification. The data is
specified as text in a key-value pair.

HasData(String) Checks if data was passed to a notification instance as
specified by a SETDATA method call.

See Also

Provides a programmatic way to send non-intrusive information to the user interface (UI) in the Business Central
Web client.

The following methods are available on instances of the Notification data type.

Notifications
Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/notification/notification-id-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/notification/notification-addaction-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/notification/notification-getdata-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/notification/notification-message-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/notification/notification-scope-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/notification/notification-send-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/notification/notification-recall-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/notification/notification-setdata-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/notification/notification-hasdata-method

NotificationScope Option Type
3/31/2019 • 2 minutes to read

Members
MEMBER DESCRIPTION

GlobalScope The notifications are not directly related to the user's current
task. Note: GlobalScope is currently not supported, so do not
use this value.

LocalScope The notification appears in context of the user's current task,
on the page the user is currently working on. This is the
default value.

See Also

Specifies the context in which the notification appears in the client.

Getting Started with AL
Developing Extensions

ObjectType Option Type
3/31/2019 • 2 minutes to read

Members
MEMBER DESCRIPTION

Codeunit The Codeunit object type

MenuSuite The Menusuite object type

Page The Page object type

Query The Query object type

Report The Report object type

Table The Table object type

XmlPort The XMLPort object type

See Also

The different types of objects.

Getting Started with AL
Developing Extensions

Option Data Type
3/31/2019 • 2 minutes to read

procedure HelloWithOptions(OptionParameter : Option Alpha, "Bra-vo")
 var
 OptionVariable : Option C, "or D";
 begin
 Message(OptionParameter::Alpha);
 Message(OptionVariable::C);
 end;

NOTE

Remarks

Example

NAME DATA TYPE SUBTYPE

Number Integer Not applicable

PurchHeaderRec Record Purchase Header

Number := PurchHeaderRec."Document Type";

Example

PurchHeaderRec."Document Type" := PurchHeaderRec."Document Type"::Invoice;

See Also

Denotes an option value. In the code snippet below, you can see how the Option data type is declared.

It is not possible to reference the members of the OptionParameter from outside the body of the procedure.

In the OptionString Property of the field or variable, you can enter the option values as a comma-separated list.
The Option type is a zero-based enumerator type, which means that the option values are assigned to sequential
numbers, starting with 0. You can convert option data types to integers.

In the Purchase Header table, the Status field is an Option data type. In the following example, the option value is
converted into an integer. This example requires that you create the following variables.

This example shows how you can use the value of an option field as a constant in your AL code.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-optionstring-property

OutStream Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

Write(Variant, [Integer]) Writes a specified number of bytes to the stream. Data is
written in binary format.

Write(Boolean, [Integer]) Writes a specified number of bytes to the stream. Data is
written in binary format.

Write(Byte, [Integer]) Writes a specified number of bytes to the stream. Data is
written in binary format.

Write(Char, [Integer]) Writes a specified number of bytes to the stream. Data is
written in binary format.

Write(Integer, [Integer]) Writes a specified number of bytes to the stream. Data is
written in binary format.

Write(BigInteger, [Integer]) Writes a specified number of bytes to the stream. Data is
written in binary format.

Write(Decimal, [Integer]) Writes a specified number of bytes to the stream. Data is
written in binary format.

Write(Guid, [Integer]) Writes a specified number of bytes to the stream. Data is
written in binary format.

Write(Text, [Integer]) Writes a specified number of bytes to the stream. Data is
written in binary format.

Write(Code, [Integer]) Writes a specified number of bytes to the stream. Data is
written in binary format.

Write(Label, [Integer]) Writes a specified number of bytes to the stream. Data is
written in binary format.

Write(TextConst, [Integer]) Writes a specified number of bytes to the stream. Data is
written in binary format.

Write(BigText, [Integer]) Writes a specified number of bytes to the stream. Data is
written in binary format.

Write(Date, [Integer]) Writes a specified number of bytes to the stream. Data is
written in binary format.

Is a generic stream object that you can use to write to files and BLOBs.

The following methods are available on instances of the OutStream data type.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/outstream/outstream-write-variant-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/outstream/outstream-write-boolean-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/outstream/outstream-write-byte-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/outstream/outstream-write-char-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/outstream/outstream-write-integer-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/outstream/outstream-write-biginteger-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/outstream/outstream-write-decimal-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/outstream/outstream-write-guid-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/outstream/outstream-write-text-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/outstream/outstream-write-code-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/outstream/outstream-write-label-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/outstream/outstream-write-textconst-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/outstream/outstream-write-bigtext-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/outstream/outstream-write-date-integer-method

Write(Time, [Integer]) Writes a specified number of bytes to the stream. Data is
written in binary format.

Write(DateTime, [Integer]) Writes a specified number of bytes to the stream. Data is
written in binary format.

Write(DateFormula, [Integer]) Writes a specified number of bytes to the stream. Data is
written in binary format.

Write(Duration, [Integer]) Writes a specified number of bytes to the stream. Data is
written in binary format.

Write(Option, [Integer]) Writes a specified number of bytes to the stream. Data is
written in binary format.

Write(Record, [Integer]) Writes a specified number of bytes to the stream. Data is
written in binary format.

Write(RecordId, [Integer]) Writes a specified number of bytes to the stream. Data is
written in binary format.

Write(String, [Integer]) Writes a specified number of bytes to the stream. Data is
written in binary format.

Write(Any, [Integer]) Writes a specified number of bytes to the stream. Data is
written in binary format.

WriteText([String], [Integer]) Writes text to an OutStream object.

METHOD NAME DESCRIPTION

See Also
Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/outstream/outstream-write-time-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/outstream/outstream-write-datetime-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/outstream/outstream-write-dateformula-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/outstream/outstream-write-duration-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/outstream/outstream-write-option-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/outstream/outstream-write-table-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/outstream/outstream-write-recordid-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/outstream/outstream-write-string-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/outstream/outstream-write-joker-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/outstream/outstream-writetext-method

Page Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

RunModal(Integer, [Record], [Any]) Creates, opens, and closes a page that you specify. When a
page is run modally, no input, such as a keyboard or mouse
click, can occur except for objects on the modal page.

RunModal(Integer, Record, Integer) Creates, opens, and closes a page that you specify. When a
page is run modally, no input, such as a keyboard or mouse
click, can occur except for objects on the modal page.

RunModal(Integer, Record, FieldRef) Creates, opens, and closes a page that you specify. When a
page is run modally, no input, such as a keyboard or mouse
click, can occur except for objects on the modal page.

Run(Integer, [Record], [Any]) Creates and launches a page that you specify. You can use
CLEAR method to remove the page.

Run(Integer, Record, Integer) Creates and launches a page that you specify. You can use
CLEAR method to remove the page.

SetBackgroundTaskResult(Dictionary of [Text, Text]) Sets the page background task result as a dictionary. When
the task is completed, the OnPageBackgroundCompleted
trigger will be invoked on the page with this result dictionary.

GetBackgroundParameters() Gets the page background task input parameters.

METHOD NAME DESCRIPTION

Editable([Boolean]) Gets or sets the default editability of the page.

Caption([String]) The caption shown in the title bar. For example, the default
value in English (United States) is the same as the name of the
page.

LookupMode([Boolean]) Gets or sets the default lookup mode for the page.

ObjectId([Boolean]) Returns a string in the "Page xxx" format, where xxx is the
caption or ID of the application object.

SaveRecord() Saves the current record as if performed by the client. If the
record does not exist it is inserted, otherwise it is modified.

Contains a number of simpler elements called controls. Controls are used to display information to the user or
receive information from the user.

The following methods are available on the Page data type.

The following methods are available on instances of the Page data type.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/page/page-runmodal-integer-table-joker-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/page/page-runmodal-integer-table-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/page/page-runmodal-integer-table-fieldref-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/page/page-run-integer-table-joker-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/page/page-run-integer-table-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/page/page-setbackgroundtaskresult-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/page/page-getbackgroundparameters-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/page/page-editable-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/page/page-caption-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/page/page-lookupmode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/page/page-objectid-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/page/page-saverecord-method

Update([Boolean]) Saves the current record and then updates the controls on the
page. If you set the SaveRecord parameter to false, this
method will not save the record before the page is updated.

GetRecord(var Record) Gets the current record of the page.

SetRecord(var Record) Sets the current record for the page.

SetTableView(var Record) Applies the table view on the current record as the table view
for the page, report, or XmlPort.

SetSelectionFilter(var Record) Notes the records that the user has selected on the page,
marks those records in the table specified, and sets the filter
to "marked only".

Activate([Boolean]) Activates the current page on the client if possible. The data
on the page will not be refreshed.

Close() Closes the current page.

RunModal() Creates, opens, and closes a page that you specify. When a
page is run modally, no input, such as a keyboard or mouse
click, can occur except for objects on the modal page.

Run() Creates and launches a page that you specify. You can use
CLEAR method to remove the page.

EnqueueBackgroundTask(var Integer, Integer, [var Dictionary
of [Text, Text]], [Boolean], [Integer])

Creates and queues a background task that runs the specified
codeunit (without a UI) in a child session of the page session.
If the task completes successfully, the
OnPageBackgroundTaskCompleted trigger is invoked. If an
error occurs, the OnPageBackgroundTaskError trigger is
invoked. If the page is closed before the task completes, the
task is cancelled.

CancelBackgroundTask(Integer) Attempt to cancel a page background task.

METHOD NAME DESCRIPTION

See Also
Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/page/page-update-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/page/page-getrecord-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/page/page-setrecord-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/page/page-settableview-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/page/page-setselectionfilter-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/page/page-activate-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/page/page-close-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/page/page-runmodal--method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/page/page-run--method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/page/page-enqueuebackgroundtask-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/page/page-cancelbackgroundtask-method

ProductName Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

Full() FULL returns a text string that contains the application's full
name.

Short() SHORT returns a text string that contains the application's
short name.

Marketing() MARKETING returns a text string that contains the
application's marketing name.

See Also

An application can have a full name, marketing name, and short name. The PRODUCTNAME functions enable you
to retrieve these name variations.

The following methods are available on the ProductName data type.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/productname/productname-full-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/productname/productname-short-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/productname/productname-marketing-method

Query Data Type
5/28/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

SaveAsCsv(Integer, String, [Integer], [String]) Saves the resulting data set of a query as a comma-separated
values (CSV) file.

SaveAsCsv(Integer, OutStream, [Integer], [String]) Saves the resulting data set of a query as a comma separated
values (CSV) file.

SaveAsXml(Integer, String) Saves the resulting data set of a query as an .xml file.

SaveAsXml(Integer, OutStream) Saves the resulting data set of a query as an .xml file.

METHOD NAME DESCRIPTION

SetFilter(Any, String, [Any,...]) Sets a filter on a column of a query to limit the records in the
resulting data set of a query.

Open() Runs a query object and generates a data set that can be
read. The following code shows the syntax of the OPEN
method. Query is a variable of the Query data type that
specifies the query object.

Read() Reads data from a row in the resulting data set of a query.

Close() Closes a query data set and returns the query instance to the
initialized state. The following code shows the syntax of the
CLOSE method. Query is a variable of the Query data type
that specifies the query object.

ColumnName(Any) Returns the name of a query column as a text string.

ColumnCaption(Any) Returns the current caption of a query column as a text string.

ColumnNo(Any) Returns the ID that is assigned to a query column in the
query definition.

GetFilter(Any) Returns the filters that are set on the field of a specified
column in the query. The following code shows the syntax of
the GETFILTER method. Query is a variable of the Query data
type that specifies the query object.

Enables you to retrieve data from multiple tables and combine the data in single dataset.

The following methods are available on the Query data type.

The following methods are available on instances of the Query data type.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/query/query-saveascsv-integer-string-integer-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/query/query-saveascsv-integer-outstream-integer-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/query/query-saveasxml-integer-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/query/query-saveasxml-integer-outstream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/query/queryinstance-setfilter-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/query/queryinstance-open-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/query/queryinstance-read-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/query/queryinstance-close-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/query/queryinstance-columnname-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/query/queryinstance-columncaption-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/query/queryinstance-columnno-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/query/queryinstance-getfilter-method

GetFilters() Returns the filters that are applied to all columns in the query.
The following code shows the syntax of the GETFILTERS
method. Query is a variable of the Query data type that
specifies the query object.

SetRange(Any, [Any], [Any]) Sets a filter on a range of values on a column of a query data
set.

SaveAsCsv(String, [Integer], [String]) Saves the resulting data set of a query as comma separated
values (CSV)

SaveAsCsv(OutStream, [Integer], [String]) Saves the resulting data set of a query as comma separated
values (CSV)

SaveAsXml(String) Saves the resulting data set of a query as XML

SaveAsXml(OutStream) Saves the resulting data set of a query as XML

TopNumberOfRows([Integer]) Specifies the maximum number of rows to include in the
resulting data set of a query.

SecurityFiltering([SecurityFilter]) Gets or sets how security filters are applied to the query.

METHOD NAME DESCRIPTION

See Also
Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/query/queryinstance-getfilters-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/query/queryinstance-setrange-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/query/queryinstance-saveascsv-string-integer-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/query/queryinstance-saveascsv-outstream-integer-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/query/queryinstance-saveasxml-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/query/queryinstance-saveasxml-outstream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/query/queryinstance-topnumberofrows-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/query/queryinstance-securityfiltering-method

Record Data Type
6/25/2019 • 6 minutes to read

METHOD NAME DESCRIPTION

FindFirst() Finds the first record in a table based on the current key and
filter.

FindLast() Finds the last record in a table based on the current key and
filter.

FindSet([Boolean], [Boolean]) Finds a set of records in a table based on the current key and
filter.

Get([Any,...]) Gets a record based on values stored in primary key fields.

Find([String]) Finds a record in a table that is based on the values stored in
keys.

Next([Integer]) Steps through a specified number of records and retrieves a
record.

Reset() Removes all filters, including any special filters set by
MARKEDONLY, and changes the current key to the primary
key. Also removes any marks on the record and clears any AL
variables on the record.

SetCurrentKey(Any, [Any,...]) Selects a key for a table.

Ascending([Boolean]) Gets or sets the order in which the system searches through a
table.

SetAscending(Any, Boolean) Sets the sort order for the records returned. Use this method
after you have set the keys to sort after, using
SETCURRENTKEY. The default sort order is ascending. You can
use SETASCENDING to change the sort order to descending
for a specific field, while the other fields in the specified key are
sorted in ascending order.

GetAscending(Any) Gets the sort order for the records returned. You can use
GETASCENDING to identify the sort order of the specified field
because fields can be sorted in ascending or descending order.
For example, you can read data from an ODATA web service
where the data is sorted in ascending order on the Name field
but in descending order on the City field.

LockTable([Boolean], [Boolean]) Locks a table to protect it from write transactions that conflict
with each other.

Is a complex data type.

The following methods are available on instances of the Record data type.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-findfirst-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-findlast-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-findset-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-get-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-find-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-next-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-reset-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-setcurrentkey-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-ascending-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-setascending-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-getascending-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-locktable-method

CalcFields(Any, [Any,...]) Calculates the FlowFields in a record. You specify which fields
to calculate by using parameters.

CalcSums(Any, [Any,...]) Calculates the total of a column in a table. You specify which
fields to calculate by using parameters.

SetAutoCalcFields([Any,...]) Sets the FlowFields that you specify to be automatically
calculated when the record is retrieved from the database.

Count() Counts the number of records in a table.

IsEmpty() Determines whether a table or a filtered set of records is
empty.

CountApprox() Returns an approximate count of the number of records in the
table, for example, for updating progress bars or displaying
informational messages.

TableName() Gets the name of a table.

TableCaption() Gets the current caption of a table as a string.

ChangeCompany([String]) Redirects references to table data from one company to
another.

CurrentKey() Gets the current key of a database table.

Consistent(Boolean) Marks a table as being consistent or inconsistent.

GetPosition([Boolean]) Gets a string that contains the primary key of the current
record.

SetPosition(String) Sets the fields in a primary key on a record to the values
specified in the supplied string. The remaining fields are not
changed.

Init() Initializes a record in a table.

Insert([Boolean]) Inserts a record into a table.

Modify([Boolean]) Modifies a record in a table.

Delete([Boolean]) Deletes a record in a table.

Rename(Any, [Any,...]) Changes the value of a primary key in a table.

ModifyAll(Any, Any, [Boolean]) Modifies a field in all records within a range that you specify.

DeleteAll([Boolean]) Deletes all records in a table that fall within a specified range.

METHOD NAME DESCRIPTION

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-calcfields-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-calcsums-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-setautocalcfields-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-count-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-isempty-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-countapprox-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-tablename-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-tablecaption-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-changecompany-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-currentkey-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-consistent-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-getposition-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-setposition-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-init-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-insert-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-modify-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-delete-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-rename-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-modifyall-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-deleteall-method

ReadPermission() Determines whether a user is granted read permission to the
table that contains a record. This method can test for both full
read permission and partial read permission that has been
granted with a security filter.

WritePermission() Determines whether a user can write to a table. This method
can test for both full write permission and partial write
permission that has been granted with a security filter. A write
permission consists of Insert, Delete, and Modify permissions.

ReadConsistency() Determines if the table supports read consistency.

RecordLevelLocking() Determines whether the table supports record-level locking.

Copy(var Record, [Boolean]) Copies a specified record's filters, views, automatically
calculated FlowFields, marks, fields and keys that are
associated with the record from a table or creates a reference
to a record.

AddLink(String, [String]) Adds a link to a record.

DeleteLink(Integer) Deletes a specified link from a record in a table.

DeleteLinks() Deletes all of the links that have been added to a record.

CopyLinks(var Record) Copies all the links from a specified record.

CopyLinks(RecordRef) Copies all the links from a specified record.

HasLinks() Determines whether a record contains any links.

SetRange(Any, [Any], [Any]) Sets a simple filter, such as a single range or a single value, on
a field.

SetFilter(Any, String, [Any,...]) Assigns a filter to a field that you specify.

GetFilter(Any) Gets a list of the filters within the current filter group that are
applied to a field.

GetFilters() Gets a string that contains a list of the filters within the
current filter group for all fields in a record. In addition, this
method also returns the state of the MARKEDONLY method
(Record).

GetView([Boolean]) Gets a string that describes the current sort order, key, and
filters on a table.

SetView(String) Sets the current sort order, key, and filters on a table.

GetRangeMin(Any) Gets the minimum value in a range for a field.

GetRangeMax(Any) Gets the maximum value in a range for a field.

METHOD NAME DESCRIPTION

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-readpermission-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-writepermission-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-readconsistency-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-recordlevellocking-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-copy-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-addlink-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-deletelink-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-deletelinks-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-copylinks-table-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-copylinks-recordref-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-haslinks-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-setrange-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-setfilter-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-getfilter-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-getfilters-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-getview-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-setview-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-getrangemin-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-getrangemax-method

CopyFilter(Any, Any) Copies the filter that has been set for one field and applies it
to another field.

CopyFilters(var Record) Copies all the filters set by the SETFILTER method (Record) or
the SETRANGE method (Record) from one record to another.

HasFilter() Determines whether a filter is attached to a record within the
current filter group.

SetRecFilter() Sets the values in the current key of the current record as a
record filter.

FilterGroup([Integer]) Gets or sets the filter group that is applied to a table.

SetPermissionFilter() Applies the user's security filter.

Mark([Boolean]) Marks a record. You can also use this method to determine
whether a record is marked.

ClearMarks() Removes all the marks from a record.

MarkedOnly([Boolean]) Activates a special filter. After you use this function, your view
of the table includes only records marked by this function.

Validate(Any, [Any]) Calls the OnValidate trigger for the field that you specify.

TestField(Any) Tests whether the contents of a field match a given value.

TestField(Any, Boolean) Tests whether the contents of a field match a given value.

TestField(Any, Integer) Tests whether the contents of a field match a given value.

TestField(Any, BigInteger) Tests whether the contents of a field match a given value.

TestField(Any, Decimal) Tests whether the contents of a field match a given value.

TestField(Any, Guid) Tests whether the contents of a field match a given value.

TestField(Any, Text) Tests whether the contents of a field match a given value.

TestField(Any, Label) Tests whether the contents of a field match a given value.

TestField(Any, TextConst) Tests whether the contents of a field match a given value.

TestField(Any, Code) Tests whether the contents of a field match a given value.

TestField(Any, String) Tests whether the contents of a field match a given value.

TestField(Any, Any) Tests whether the contents of a field match a given value.

METHOD NAME DESCRIPTION

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-copyfilter-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-copyfilters-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-hasfilter-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-setrecfilter-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-filtergroup-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-setpermissionfilter-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-mark-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-clearmarks-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-markedonly-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-validate-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-testfield-joker-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-testfield-joker-boolean-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-testfield-joker-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-testfield-joker-biginteger-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-testfield-joker-decimal-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-testfield-joker-guid-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-testfield-joker-text-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-testfield-joker-label-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-testfield-joker-textconst-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-testfield-joker-code-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-testfield-joker-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-testfield-joker-joker-method

FieldError(Any, [String]) Stops the execution of the code causing a run-time error, and
creates an error message for a field.

TransferFields(var Record, [Boolean]) Copies all matching fields in one record to another record.

FieldName(Any) Gets the name of a field as a string.

FieldCaption(Any) Gets the current caption of the specified field as a string.

FieldActive(Any) Checks whether a field is enabled.

FieldNo(Any) Gets the number assigned to a field in the table description.

Relation(Any) Determines the table relationship of a given field.

SecurityFiltering([SecurityFilter])

RecordId()

IsTemporary() Determines whether a record refers to a temporary table.

CurrentCompany() Gets the current company of a database table record.

METHOD NAME DESCRIPTION

See Also
Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-fielderror-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-transferfields-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-fieldname-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-fieldcaption-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-fieldactive-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-fieldno-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-relation-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-securityfiltering-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-recordid-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-istemporary-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-currentcompany-method

RecordId Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

TableNo() Gets the table number of the table that is identified by
RecordID. This function returns an error if the record is blank.

GetRecord() Gets a RecordRef that refers to the record identified by the
RecordID.

See Also

Contains the table number and the primary key of a table.

The following methods are available on instances of the RecordId data type.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordid/recordid-tableno-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordid/recordid-getrecord-method

RecordRef Data Type
3/31/2019 • 6 minutes to read

METHOD NAME DESCRIPTION

Open(Integer, [Boolean], [String]) Causes a RecordRef variable to refer to a table, which is
identified by its number in a particular company.

Close() Closes the current page or table.

GetTable(Record) Gets the table of a Record variable and causes the RecordRef
to refer to the same table.

SetTable(Record) Sets the table to which a Record variable refers as the same
table as a RecordRef variable.

Duplicate() Duplicates the table that contains the RecordRef.

IsTemporary() Determines whether a RecordRef refers to a temporary table.

CurrentCompany() Gets the current company of a database table referred to by a
RecordRef.

Get(RecordId) Gets a record based on the ID of the record.

Find([String]) Finds a record in a table based on the values stored in the key
fields.

Next([Integer]) Steps through a specified number of records and retrieves a
record.

FindFirst() Finds the first record in a table based on the current key and
filter.

FindLast() Finds the last record in a table based on the current key and
filter.

FindSet([Boolean], [Boolean]) Finds a set of records in a table based on the current key and
filter. FINDSET can only retrieve records in ascending order.

Reset() Removes all filters, including any special filters set by the
MARKEDONLY method (Record) and changes the current key
to the primary key. Also removes any marks on the record
and clears any AL variables on the record.

Ascending([Boolean]) Changes or checks the order in which a search through the
table that is referred to by RecordRef will be performed.

References a record in a table.

The following methods are available on instances of the RecordRef data type.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-open-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-close-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-gettable-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-settable-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-duplicate-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-istemporary-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-currentcompany-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-get-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-find-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-next-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-findfirst-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-findlast-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-findset-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-reset-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-ascending-method

LockTable([Boolean], [Boolean]) Locks a table to protect it from write transactions that conflict
with each other.

Count() Counts the number of records that are in the filters that are
currently applied to the table referred to by the RecordRef.

IsEmpty() Determines whether any records exist in a filtered set of
records in a table.

CountApprox() Gets an approximate count of the number of records in the
table

CurrentKey() Gets the current key of the table referred to by the RecordRef.
The current key is returned as a string.

CurrentKeyIndex([Integer]) Gets or sets the current key of the table referred to by the
RecordRef. The current key is set or returned as a number. This
first key = 1, and so on. If RecordRef does not have an active
record, CURRENTKEYINDEX will return -1. If this value is then
passed to KEYINDEX, an index out of bounds error will occur.
Therefore it is important to implement a check of the
RecordRef parameter.

GetPosition([Boolean]) Gets a string that contains the primary key of the current
record.

SetPosition(String) Sets the fields in a primary key on a record to the values
specified in the String parameter. The remaining fields are not
changed.

Number() Gets the table ID (number) of the table that contains the
record that was referred to by the RecordRef.

Name() Identifies the name of the table

Caption() Gets the caption of the table that is currently selected. Returns
an error if no table is selected.

RecordId() Gets the RecordID of the record that is currently selected in
the table. If no table is selected, an error is generated.

ChangeCompany([String]) Redirects references to table data from one company to
another.

Init() Initializes a record in a table.

Insert([Boolean]) Inserts a record into a table.

Modify([Boolean]) Modifies a record in a table.

Delete([Boolean]) Deletes a record in a table.

DeleteAll([Boolean]) Deletes all records in a table that fall within a specified range.

METHOD NAME DESCRIPTION

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-locktable-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-count-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-isempty-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-countapprox-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-currentkey-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-currentkeyindex-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-getposition-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-setposition-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-number-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-name-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-caption-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-recordid-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-changecompany-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-init-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-insert-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-modify-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-delete-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-deleteall-method

ReadPermission() Determines if you can read from a table.

WritePermission() Determines if you can write to a table.

ReadConsistency() Gets a value indicating whether read consistency is enabled.

RecordLevelLocking() Gets a value indicating whether record level locking is enabled.

AddLink(String, [String]) Adds a link to a record in a table.

DeleteLink(Integer) Deletes a specified link from a record in a table.

DeleteLinks() Deletes all of the links that have been added to a record.

CopyLinks(Record) Copies all the links from a particular record.

CopyLinks(RecordRef) Copies all the links from a particular record.

CopyLinks(Variant) Copies all the links from a particular record.

HasLinks() Determines whether a record contains any links.

FieldCount() Gets the number of fields in the table that are currently
selected or returns the number of fields that have been
defined in a key. Returns an error if no table or no key is
selected.

Field(Integer) Gets a FieldRef for the field that has the number FieldNo in
the table that is currently selected. If no field has this number,
the method returns an error.

FieldExist(Integer) Determines if the field that has the number FieldNo exists in
the table that is referred to by the RecordRef. Returns an error
if no table is currently selected.

FieldIndex(Integer) Gets the FieldRef of the field that has the specified index in the
table that is referred to by the RecordRef.

KeyCount() Gets the number of keys that exist in the table that is referred
to by the RecordRef. Returns an error if no table is selected.

KeyIndex(Integer) Gets the KeyRef of the key that has the index specified in the
table that is currently selected. The key can be composed of
fields of any supported data type. Data types that are not
supported include BLOBs, FlowFilters, variables, and functions.
If the sorting key is set to a field that is not part of a key, then
the KEYINDEX is -1.

GetFilters() Determines which filters have been applied to the table
referred to by the RecordRef.

GetView([Boolean]) Returns a string that describes the current sort order, key, and
filters on a table.

METHOD NAME DESCRIPTION

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-readpermission-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-writepermission-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-readconsistency-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-recordlevellocking-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-addlink-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-deletelink-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-deletelinks-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-copylinks-table-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-copylinks-recordref-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-copylinks-variant-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-haslinks-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-fieldcount-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-field-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-fieldexist-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-fieldindex-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-keycount-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-keyindex-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-getfilters-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-getview-method

SetView(String) Sets the current sort order, key, and filters on a table.

HasFilter() Determines whether a filter has been applied to the table that
the RecordRef refers to.

SetRecFilter() Sets a filter on a record that is referred to by a RecordRef.

FilterGroup([Integer]) Changes the filter group that is being applied to the table. You
can also use this method to return the number of the current
filtergroup. You cannot return the number of the filtergroup
and set a new filtergroup at the same time.

SetPermissionFilter() Applies the user's security filter to the referenced record. The
security filter is combined with any other filters that are placed
on the record with SetFilter or SetRange. The combined filter
will not include any records outside the range of the security
filter and this will prevent a runtime permission error from
occuring when the record is read. If the permission filter is not
set, an error can occur if you attempt to read a record that is
outside the range of the user's security filter.

Rename(Any, [Any,...]) Changes the value of a primary key in a table.

SecurityFiltering([SecurityFilter]) Gets or sets how security filters are applied to the RecordRef.

METHOD NAME DESCRIPTION

See Also

The RecordRef object can refer to any table in the database. Use the OPEN method to use the table number to
select the table that you want to access, or use the GETTABLE method to use another record variable to select the
table that you want to access.

If one RecordRef variable is assigned to another RecordRef variable, then they both refer to the same table
instance.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-setview-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-hasfilter-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-setrecfilter-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-filtergroup-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-setpermissionfilter-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-rename-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-securityfiltering-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-open-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/recordref/recordref-gettable-method

Report Data Type
3/31/2019 • 6 minutes to read

METHOD NAME DESCRIPTION

Run(Integer, [Boolean], [Boolean], [var Record]) Loads and executes the report that you specify.

RunModal(Integer, [Boolean], [Boolean], [var Record]) Loads and executes the report that you specify.

SaveAsHtml(Integer, String, [var Record]) Saves a report as an HTML file. The file is saved on the
computer where the server instance is running, and then
downloaded to the client when ready. > This method is only
supported when a report uses a Word report layout when it is
run.

SaveAsXml(Integer, String, [var Record]) Saves the resulting data set of a query as an .xml file. The
following code shows the syntax of the SAVEASXML function.
The first line of code is the syntax for an instance method call.
The second line of code is the syntax for a static method call.

SaveAsPdf(Integer, String, [var Record]) Saves a report as a .pdf file.

SaveAsExcel(Integer, String, [var Record]) Saves a report on the computer that is running the server as
a Microsoft Excel (.xls) workbook.

SaveAsWord(Integer, String, [var Record]) Saves a report on the computer that is running the server as
a Microsoft Word (.doc) document.

WordXmlPart(Integer, [Boolean]) Returns the report data structure as structured XML that is
compatible with Microsoft Word custom XML parts. The
method has an instance call and a static call. The following
code shows the syntax of the WORDXMLPART function. The
first line of code is the syntax for an instance method call. The
second line of code is the syntax for a static method call.

WordLayout(Integer, InStream) Gets the Word report layout that is used on a report and
returns it as a data stream. The method has an instance call
and a static call. The following code shows the syntax of the
WORDLAYOUT function. The first line of code is the syntax for
an instance method call. The second line of code is the syntax
for a static method call.

RdlcLayout(Integer, InStream) Gets the RDLC layout that is used on a report and returns it
as a data stream. The method has an instance call and a static
call. The following code shows the syntax of the RDLC
function. The first line of code is the syntax for an instance
method call. The second line of code is the syntax for a static
method call.

Is used to display, print, or process information from a database.

The following methods are available on the Report data type.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/report-run-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/report-runmodal-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/report-saveashtml-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/report-saveasxml-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/report-saveaspdf-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/report-saveasexcel-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/report-saveasword-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/report-wordxmlpart-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/report-wordlayout-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/report-rdlclayout-method

DefaultLayout(Integer) Gets the default built-in layout type that is used on a specified
report.

RunRequestPage(Integer, [String]) Runs the request page for a report without running the
report. Returns an XML string that contains the request page
parameters that are entered on the request page.

Execute(Integer, String, [RecordRef]) Runs a report in preview or processing-only mode without
showing the request page in the client. The method gets the
request page parameter values as an input parameter string
from a RUNREQUESTPAGE method call. The OnOpen and
OnClose triggers on the request page will run even though
the request page is not shown.

Print(Integer, String, [String], [RecordRef]) Prints a specified report without running the request page.
Instead of using the request page to obtain parameters at
runtime, the method gets the parameter values as an input
parameter string, typically from a RUNREQUESTPAGE method
call.

SaveAs(Integer, String, ReportFormat, var OutStream,
[RecordRef])

Runs a specific report without a request page and saves the
report as a PDF, Excel, Word, HTML, or XML file. Instead of
using the request page to obtain parameters at runtime, the
method gets the parameter values as an input parameter
string, typically from the return value of a RUNREQUESTPAGE
method call.

GetSubstituteReportId(Integer) Gets the ID of the report that will be run by the platform after
considering any substitutions made by extensions.

METHOD NAME DESCRIPTION

METHOD NAME DESCRIPTION

Break() Exits from a loop or a trigger in a data item trigger of a report
or XmlPort.

Skip() Skips the current iteration of the current report or XmlPort.

CreateTotals(var Decimal, [var Decimal,...]) Maintains totals for a variable in AL.

CreateTotals(Array of [Decimal]) Maintains totals for a variable in AL.

TotalsCausedBy() Determines which field caused a group total to be calculated.
This determines which field changed contents and thereby
concluded a group.

WordXmlPart([Boolean]) Gets the report data structure as structured XML that is
compatible with Microsoft Word custom XML parts.

ShowOutput() Returns the current setting of whether a section should be
printed, and changes this setting.

ShowOutput(Boolean) Returns the current setting of whether a section should be
printed, and changes this setting.

The following methods are available on instances of the Report data type.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/report-defaultlayout-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/report-runrequestpage-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/report-execute-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/report-print-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/report-saveas-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/report-getsubstitutereportid-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/reportinstance-break-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/reportinstance-skip-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/reportinstance-createtotals-decimal-decimal-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/reportinstance-createtotals-decimal-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/reportinstance-totalscausedby-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/reportinstance-wordxmlpart-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/reportinstance-showoutput--method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/reportinstance-showoutput-boolean-method

PageNo([Integer]) Gets or sets the current page number of a report.

NewPage() Forces a page break when printing a report.

Quit() Aborts the processing of a report or XmlPort.

Preview() Indicates whether a report is being printed in preview mode.

RunModal() Loads and executes the report that you specify.

Run() Loads and executes the report that you specify.

SaveAsHtml(String) Saves a report as an HTML file. The file is saved on the
computer where the server instance is running, and then
downloaded to the client when ready. > This method is only
supported when a report uses a Word report layout when it is
run.

SaveAsXml(String) Saves the resulting data set of a query as an .xml file.The
following code shows the syntax of the SAVEASXML method.
The first line of code is the syntax for an instance method call.
The second line of code is the syntax for a static method call.

SaveAsPdf(String) Saves a report as a .pdf file.

SaveAsExcel(String) Saves a report on the computer that is running the server as
a Microsoft Excel (.xls) workbook.

SaveAsWord(String) Saves a report on the computer that is running the server as
a Microsoft Word (.doc) document.

WordLayout(var InStream) Gets the Word report layout that is used on a report and
returns it as a data stream. The method has an instance call
and a static call. The following code shows the syntax of the
WORDLAYOUT method. The first line of code is the syntax for
an instance method call. The second line of code is the syntax
for a static method call.

RDLCLayout(var InStream) Gets the RDLC layout that is used on a report and returns it
as a data stream.The method has an instance call and a static
call. The following code shows the syntax of the RDLC method.
The first line of code is the syntax for an instance method call.
The second line of code is the syntax for a static method call.

DefaultLayout() Gets the default built-in layout type that is used on a specified
report.

RunRequestPage([String]) Runs the request page for a report without running the
report. Returns an XML string that contains the request page
parameters that are entered on the request page.

METHOD NAME DESCRIPTION

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/reportinstance-pageno-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/reportinstance-newpage-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/reportinstance-quit-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/reportinstance-preview-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/reportinstance-runmodal-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/reportinstance-run-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/reportinstance-saveashtml-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/reportinstance-saveasxml-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/reportinstance-saveaspdf-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/reportinstance-saveasexcel-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/reportinstance-saveasword-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/reportinstance-wordlayout-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/reportinstance-rdlclayout-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/reportinstance-defaultlayout-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/reportinstance-runrequestpage-method

Execute(String, [RecordRef]) Runs a report in preview or processing-only mode without
showing the request page in the client. The method gets the
request page parameter values as an input parameter string
from a RUNREQUESTPAGE method call. The OnOpen and
OnClose triggers on the request page will run even though
the request page is not shown.

Print(String, [String], [RecordRef]) Prints a specified report without running the request page.
Instead of using the request page to obtain parameters at
runtime, the method gets the parameter values as an input
parameter string, typically from a RUNREQUESTPAGE method
call.

SaveAs(String, ReportFormat, var OutStream, [RecordRef]) Runs a specific report without a request page and saves the
report as a PDF, Excel, Word, or XML file. Instead of using the
request page to obtain parameters at runtime, the method
gets the parameter values as an input parameter string,
typically from the return value of a RUNREQUESTPAGE
method call.

SetTableView(var Record) Applies the table view on the current record as the table view
for the page, report, or XmlPort.

PrintOnlyIfDetail([Boolean]) Gets or sets the current settings of the PrintOnlyIfDetail
property.

UseRequestPage([Boolean]) Gets or sets whether a request page is presented to the user.

NewPagePerRecord([Boolean]) Gets or sets the current setting of the NewPagePerRecord
property.

Language([Integer]) Gets or sets the current language setting for the report.

ObjectId([Boolean]) Gets or sets the name or number of the report.

PaperSource(Integer, [Integer]) Gets or sets the paper source used for the current page or a
specified page.

METHOD NAME DESCRIPTION

See Also
Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/reportinstance-execute-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/reportinstance-print-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/reportinstance-saveas-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/reportinstance-settableview-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/reportinstance-printonlyifdetail-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/reportinstance-userequestpage-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/reportinstance-newpageperrecord-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/reportinstance-language-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/reportinstance-objectid-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/report/reportinstance-papersource-method

ReportFormat Option Type
5/28/2019 • 2 minutes to read

Members
MEMBER DESCRIPTION

Excel Saves the report as an Excel file.

Html Saves the report in HTML format.

Pdf Saves the report in PDF format.

Word Saves the report in Word format.

Xml Saves the report in XML format.

See Also

Specifies the format of the report.

Getting Started with AL
Developing Extensions

RequestPage Data Type
5/28/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

Editable([Boolean]) Gets or sets the default editability of the page.

Caption([String]) Shows the caption in the title bar. For example, the default
value in English (United States) is the same as the name of the
page.

LookupMode([Boolean]) Gets or sets the default lookup mode for the page.

ObjectId([Boolean]) Returns a string in the "Page xxx" format, where xxx is the
caption or ID of the application object.

SaveRecord() Saves the current record as if performed by the client. If the
record does not exist, it is inserted, otherwise it is modified.

Update([Boolean]) Saves the current record and then updates the controls on the
page. If you set the SaveRecord parameter to false, this
method will not save the record before the page is updated.

SetSelectionFilter(var Record)

Activate([Boolean]) Activates the current page on the client if possible. The data
on the page will not be refreshed.

Close() Closes the current page.

See Also

Is a page that is run before the report starts to execute. Request pages enable end-users to specify options and
filters for a report.

The following methods are available on instances of the RequestPage data type.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/requestpage/requestpage-editable-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/requestpage/requestpage-caption-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/requestpage/requestpage-lookupmode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/requestpage/requestpage-objectid-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/requestpage/requestpage-saverecord-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/requestpage/requestpage-update-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/requestpage/requestpage-setselectionfilter-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/requestpage/requestpage-activate-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/requestpage/requestpage-close-method

SecurityFilter Option Type
3/31/2019 • 2 minutes to read

Members
MEMBER DESCRIPTION

Validated All security filters are applied to this instance of the record and
if any code tries to access a record that is outside the range of
the security filters, then an error occurs.

Filtered All security filters are applied to this instance of the record.

Ignored All security filters are ignored for this instance of the record.

Disallowed Security filters are not allowed on the record. If any security
filters are set, then you receive an error when you run the
object that uses this instance of the record.

See Also

Specifies how security filters are applied to the record.

Getting Started with AL
Developing Extensions

Session Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

ApplicationArea([String]) Gets or sets the application areas for the current session.

StartSession(var Integer, Integer, [String], [var Record]) Starts a session without a UI and runs the specified codeunit.

IsSessionActive(Integer) Tests if the specified SessionID is active on the server instance
where it was started.

CurrentExecutionMode() Specifies the mode in which the session is running.

StopSession(Integer, [String]) Stops a session.

CurrentClientType() Gets the client type that is running in current session.

DefaultClientType() Gets the default client that is configured for the server
instance that is used by the current session.

BindSubscription(Codeunit) Binds the event subscriber methods in the codeunit to the
current codeunit instance for handling the events that they
subscribe to. This essentially activates the subscriber functions
for the codeunit instance.

UnbindSubscription(Codeunit) Unbinds the event subscriber methods from in the codeunit
instance. This essentially deactivates the subscriber methods
for the codeunit instance.

ApplicationIdentifier() Gets the application ID associated with the current thread.

SendTraceTag(String, String, Verbosity, String,
[DataClassification])

Send a trace tag to the telemetry service.

GetExecutionContext() Gets the current session's execution context.

GetModuleExecutionContext([Guid]) Gets the current session's execution context scoped to a
specific module.

GetCurrentModuleExecutionContext() Gets the current session's execution context for the currently
executing module.

See Also

Represents a Microsoft Dynamics Business Central session.

The following methods are available on the Session data type.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/session/session-applicationarea-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/session/session-startsession-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/session/session-issessionactive-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/session/session-currentexecutionmode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/session/session-stopsession-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/session/session-currentclienttype-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/session/session-defaultclienttype-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/session/session-bindsubscription-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/session/session-unbindsubscription-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/session/session-applicationidentifier-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/session/session-sendtracetag-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/session/session-getexecutioncontext-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/session/session-getmoduleexecutioncontext-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/session/session-getcurrentmoduleexecutioncontext-method

SessionSettings Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

Company([String]) Gets or sets the company property in a SessionSettings
object.

ProfileId([String]) Gets or sets the profile ID property in a SessionSettings
object.

ProfileAppId([Guid]) Gets or sets the ID of an extension, which provides a profile, in
a SessionSettings object.

ProfileSystemScope([Boolean]) Gets or sets the profile scope property in a SessionSettings
object.

LanguageId([Integer]) Gets or sets the language ID property in a SessionSettings
object.

LocaleId([Integer]) Gets or sets the locale ID property in a SessionSettings object.

TimeZone([String]) Gets or sets the time zone property in a SessionSettings
object.

Init() Populates the instance of a SessionsSettings with the current
client user's personalization properties (such as Profile ID and
Company) that are stored in the database.

RequestSessionUpdate(Boolean) Passes a SessionSettings object to the client to request a new
session that uses the user personalization properties that are
set in the object. The current client session is abandoned and
a new session is started.

See Also

Is a complex data type for passing user personalization settings for a client session as an object. The object
contains properties that correspond to the fields in the system table 2000000073 User Personalization,
including: App ID, Company, Language ID, Locale ID, Profile ID, Scope, and Time Zone. You can use the AL
methods of the SessionSettings data type to get, set, and send the user personalization settings for the current
client session.

The following methods are available on instances of the SessionSettings data type.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/sessionsettings/sessionsettings-company-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/sessionsettings/sessionsettings-profileid-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/sessionsettings/sessionsettings-profileappid-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/sessionsettings/sessionsettings-profilesystemscope-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/sessionsettings/sessionsettings-languageid-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/sessionsettings/sessionsettings-localeid-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/sessionsettings/sessionsettings-timezone-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/sessionsettings/sessionsettings-init-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/sessionsettings/sessionsettings-requestsessionupdate-method

String Data Type
3/31/2019 • 2 minutes to read

See Also

Denotes a sequence of characters. It can be represented by a string literal, a text value or a code value.

Getting Started with AL
Developing Extensions

System Data Type
4/10/2019 • 6 minutes to read

METHOD NAME DESCRIPTION

Round(Decimal, [Decimal], [String]) Rounds the value of a numeric variable.

Abs(Decimal) Calculates the absolute value of a number (Decimal, Integer or
BigInteger). ABS always returns a positive numeric value or
zero.

Power(Decimal, Decimal) Raises a number to a power. For example, you can use this
method to square the number 2 to get the result of 4.

Randomize([Integer]) Generates a set of random numbers from which the RANDOM
method (Integer) will select a random number.

Random(Integer) Returns a pseudo-random number.

Today() Gets the current date set in the operating system.

Time() Gets the current time from the operating system.

WorkDate([Date]) Gets and sets the work date for the current session.

CalcDate(String, [Date]) Calculates a new date that is based on a date expression and a
reference date.

CalcDate(DateFormula, [Date]) Calculates a new date that is based on a date expression and a
reference date.

NormalDate(Date) Gets the regular date (instead of the closing date) for the
argument Date.

ClosingDate(Date) Gets the closing date for a Date Data Type.

Date2DMY(Date, Integer) Gets the day, month, or year of a Date Data Type.

Date2DWY(Date, Integer) Gets the day of the week, week number, or year of a Date
Data Type.

DMY2Date(Integer, [Integer], [Integer]) Gets a Date object based on a day, month, and year.

DWY2Date(Integer, [Integer], [Integer]) Gets a Date that is based on a week day, a week, and a year.

Hyperlink(String) Passes a URL as an argument to an Internet browser, such as
Windows Internet Explorer.

Is a complex data type.

The following methods are available on the System data type.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-round-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-abs-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-power-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-randomize-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-random-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-today-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-time-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-workdate-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-calcdate-string-date-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-calcdate-dateformula-date-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-normaldate-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-closingdate-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-date2dmy-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-date2dwy-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-dmy2date-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-dwy2date-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-hyperlink-method

Sleep(Integer) Returns control to the operating system for a specified time.

GuiAllowed() Checks whether the AL code can show any information on the
screen.

ArrayLen(Array of [Any], [Integer]) Returns the total number of elements in an array or the
number of elements in a specific dimension.

CompressArray(Array of [String]) Moves all non-empty strings (text) in an array to the
beginning of the array. The resulting StringArray has the same
number of elements as the input array, but empty entries
appear at the end of the array.

CopyArray(Array of [Any], Array of [Any], Integer, [Integer]) Copies one or more elements in an array to a new array.

Clear(var Array of [Any]) Clears the value of a single variable. Also, it clears all the filters
that were set if the variable is a record and resets the key to
the primary key and the company on a record variable.

Clear(var Any) Clears the value of a single variable. Also, it clears all the filters
that were set if the variable is a record and resets the key to
the primary key and the company on a record variable.

ClearAll() Clears all internal variables (except REC variables), keys, and
filters in the object and in any associated objects, such as
reports, pages, codeunits, and so on that contain AL code.

Evaluate(var Any, String, [Integer]) Evaluates a string representation of a value into its typical
representation. The result is assigned to a variable.

Format(Any, [Integer], [Integer]) Formats a value into a string.

Format(Any, Integer, String) Formats a value into a string.

WindowsLanguage() Gets the current Windows language setting.

GlobalLanguage([Integer]) Gets and sets the current global language setting.

DaTi2Variant(Date, Time) Creates a variant that contains an encapsulation of a COM
VT_DATE.

Variant2Date(Variant) Gets a date from a variant.

Variant2Time(Variant) Gets a time from a variant.

CopyStream(OutStream, InStream, [Integer]) Copies the information that is contained in an InStream to an
OutStream.

CreateGuid() Creates a new unique GUID. The value can then be assigned
to a GUID data type or a text data type. Use the text data
type if you want to compare the GUID to another text string.

CurrentDateTime() Gets the current DateTime.

METHOD NAME DESCRIPTION

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-sleep-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-guiallowed-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-arraylen-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-compressarray-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-copyarray-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-clear-joker-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-clear-joker-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-clearall-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-evaluate-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-format-joker-integer-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-format-joker-integer-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-windowslanguage-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-globallanguage-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-dati2variant-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-variant2date-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-variant2time-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-copystream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-createguid-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-currentdatetime-method

IsNullGuid(Guid) Indicates whether a value has been assigned to a GUID. A null
GUID that consists only of zeros is valid but must never be
used for references.

RoundDateTime(DateTime, [BigInteger], [String]) Rounds a DateTime.

CreateDateTime(Date, Time) Creates a DateTime object from a date and a time.

DT2Date(DateTime) Gets the date part of a DateTime object.

DT2Time(DateTime) Gets the time part of a DateTime object.

GetLastErrorText() Gets the last error that occurred in the debugger.

GetLastErrorCode() Gets the classification of the last error that occurred.

GetLastErrorObject() Gets the last System.Exception object that occurred.

ClearLastError() Removes the last error message from memory.

ApplicationPath() Returns the path of the directory where the executable file for
the product is installed.

TemporaryPath() Gets the path of the directory where the temporary file is
stored.

IsServiceTier() Gets a value indicating whether the runtime is a service tier.

ExportObjects(String, var Record, [Integer]) Exports application objects to a file.

ImportObjects(String, [Integer]) Imports application objects from a file.

IsNull(DotNet) Gets a value indicating whether a DotNet object has been
created or not.

GetLastErrorCallStack() Gets the call stack from where the last error occurred.

CodeCoverageLog([Boolean], [Boolean]) Starts and stops the logging of code. You can also use this
method to retrieve the current logging status.

CodeCoverageInclude(var Record) Includes the code that has been logged.

CodeCoverageRefresh() Refreshes the code that has been logged.

CodeCoverageLoad() Loads the code that has been logged.

GetDotNetType(Any) Gets the System.Type that corresponds to the given value.

CanLoadType(DotNet) Tests if the specified .NET Framework type can be loaded.

METHOD NAME DESCRIPTION

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-isnullguid-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-rounddatetime-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-createdatetime-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-dt2date-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-dt2time-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-getlasterrortext-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-getlasterrorcode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-getlasterrorobject-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-clearlasterror-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-applicationpath-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-temporarypath-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-isservicetier-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-exportobjects-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-importobjects-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-isnull-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-getlasterrorcallstack-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-codecoveragelog-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-codecoverageinclude-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-codecoveragerefresh-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-codecoverageload-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-getdotnettype-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-canloadtype-method

CaptionClassTranslate(String) Returns a translated version of the caption string. The string is
translated to the current local language.

GetUrl(ClientType, [String], [ObjectType], [Integer], [Record],
[Boolean])

Generates a URL for the specified client target that is based on
the configuration of the server instance. If the code runs in a
multitenant deployment architecture, the generated URL will
automatically apply to the tenant ID of the current user.

GetUrl(ClientType, String, ObjectType, Integer, RecordRef,
[Boolean])

Generates a URL for the specified client target that is based on
the configuration of the server instance. If the code runs in a
multitenant deployment architecture, the generated URL will
automatically apply to the tenant ID of the current user.

Encrypt(String) Takes a string as input and returns the encrypted value of the
string.

Decrypt(String) Takes a string as input and returns the decrypted value of the
string.

ExportEncryptionKey(String) Returns a password protected temporary filepath containing
the encryption key. When encrypting or decrypting data in
Dynamics 365 Business Central, an encryption key is used. A
single key is used per tenant and every tenant will have a
different key. Keys can be exported to a file which may be
necessary in the case of upgrading or migrating a system
from one set of hardware to another. The
EXPORTENCRYPTIONKEY method allows an administrator to
specify a destination file for the key and specify a password
protection for the file.

ImportEncryptionKey(String, String) Points to a password protected file that contains the key on
the current server. When encrypting or decrypting data in
Dynamics 365 Business Central, an encryption key is used. A
single key is used per tenant, and every tenant will have a
different key. Keys can be created or imported if one exists
already, as may be the case if upgrading or migrating a system
from one set of hardware to another. The
IMPORTENCRYPTIONKEY method allows an administrator to
specify a file (password protected) which contains a key and
imports it to the current Dynamics 365 Business Central
service.

CreateEncryptionKey() Creates an encryption key for the current tenant.

DeleteEncryptionKey() Deletes an encryption key for the current tenant.

EncryptionKeyExists() Checks whether an encryption key for the current tenant is
present on the server tenant.

EncryptionEnabled() Checks if the tenant is configured to allow encryption.

GetDocumentUrl(Guid) Gets the URL for the specified temporary media object ID.

ImportStreamWithUrlAccess(InStream, String, [Integer]) Imports an object into a media container to be used in a
temporary URL with a default expiration time.

METHOD NAME DESCRIPTION

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-captionclasstranslate-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-geturl-clienttype-string-objecttype-integer-table-boolean-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-geturl-clienttype-string-objecttype-integer-recordref-boolean-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-encrypt-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-decrypt-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-exportencryptionkey-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-importencryptionkey-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-createencryptionkey-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-deleteencryptionkey-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-encryptionkeyexists-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-encryptionenabled-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-getdocumenturl-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-importstreamwithurlaccess-method

See Also
Getting Started with AL
Developing Extensions

TableConnectionType Option Type
3/31/2019 • 2 minutes to read

Members
MEMBER DESCRIPTION

CRM Specifies the table as an integration table for integrating
Dynamics 365 Business Central with Dynamics 365 for Sales.
The table is typically based on an entity in Dynamics 365 for
Sales, such as the Accounts entity.

ExternalSQL Specifies the table as a table or view in SQL Server that is not
in the Dynamics 365 Business Central database.

Exchange This is for internal use only.

MicrosoftGraph This is for internal use only.

See Also

Use variables of this data type to specify the type of connection to an external database.

Getting Started with AL
Developing Extensions

TaskScheduler Data Type
5/24/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

CreateTask(Integer, Integer, [Boolean], [String], [DateTime],
[RecordId])

Adds a task to ensure that a codeunit is not run before the
specified time.

TaskExists(Guid) Checks whether a specific task exists.

CancelTask(Guid) Cancels and deletes a scheduled task that runs a specific
codeunit.

SetTaskReady(Guid, [DateTime]) Sets a task that runs a codeunit to the ready state. The task
will not run unless it is in the ready state.

CanCreateTask() Checks whether it is possible to schedule tasks in this session.

See Also

Is a complex data type for creating and managing tasks in the task scheduler, which runs codeunits at scheduled
times.

The following methods are available on the TaskScheduler data type.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/taskscheduler/taskscheduler-createtask-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/taskscheduler/taskscheduler-taskexists-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/taskscheduler/taskscheduler-canceltask-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/taskscheduler/taskscheduler-settaskready-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/taskscheduler/taskscheduler-cancreatetask-method

TestAction Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

Invoke() Invokes an action on a test page.

Enabled() Enables an action on a test page.

Visible() Sets whether to display the action on a test page.

See Also

Represents a test action on a page.

The following methods are available on instances of the TestAction data type.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testaction/testaction-invoke-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testaction/testaction-enabled-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testaction/testaction-visible-method

TestField Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

Lookup() Provides a lookup window for a text box on a test page.

AssistEdit() Provides assist-edit functionality to a field on a test page.

Drilldown() Applies drill-down capability for a field on a test page.

AssertEquals(Any) Asserts that the value in a field on a test page equals a
specified value.

SetValue(Any) Sets a value for a field on a test page.

Invoke() Invokes the default action on the field.

Activate() Activates a field on a test page.

AsInteger() Converts the value of the field on a test page to an Integer
data type.

AsBoolean() Converts the value in a field on a test page to a Boolean data
type.

AsDecimal() Converts the value in a field on a test page to a Date data
type.

AsDate() Converts the value in a field on a test page to a Date data
type.

AsTime() Converts the value in a field on a test page to a Time data
type.

AsDateTime() Converts the value in a field on a test page to a DateTime
data type.

Value([String]) Gets or sets the value of this field.

ValidationErrorCount() Gets the number of validation errors that occurred on the test
page.

GetValidationError([Integer]) Gets the validation error that occurred on a test page.

Visible() Gets the visible state for the field.

Represents a testable field on a page.

The following methods are available on instances of the TestField data type.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testfield/testfield-lookup-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testfield/testfield-assistedit-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testfield/testfield-drilldown-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testfield/testfield-assertequals-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testfield/testfield-setvalue-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testfield/testfield-invoke-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testfield/testfield-activate-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testfield/testfield-asinteger-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testfield/testfield-asboolean-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testfield/testfield-asdecimal-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testfield/testfield-asdate-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testfield/testfield-astime-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testfield/testfield-asdatetime-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testfield/testfield-value-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testfield/testfield-validationerrorcount-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testfield/testfield-getvalidationerror-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testfield/testfield-visible-method

Enabled() Gets the enabled state for the field.

Editable() Gets the editable state for the field.

HideValue() Gets the hide value state for the field.

Caption() Gets the current caption of the field as a String.

OptionCount() Gets the number of options in a field on a test page.

GetOption([Integer]) Gets the options for a field on a test page.

ShowMandatory() Gets the ShowMandatory state for the field.

METHOD NAME DESCRIPTION

See Also
Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testfield/testfield-enabled-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testfield/testfield-editable-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testfield/testfield-hidevalue-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testfield/testfield-caption-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testfield/testfield-optioncount-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testfield/testfield-getoption-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testfield/testfield-showmandatory-method

TestFilter Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

SetFilter(TestFilterField, String) Applies a filter to the specified field on a test page.

GetFilter(TestFilterField) Gets the filter that is applied to the specified field in a data set
that is displayed on a test page.

SetCurrentKey(TestFilterField, [TestFilterField,...]) Sets the specified fields in a data set on a test page as the
current key.

Ascending([Boolean]) Gets or sets the order in which to search through a data set
on a test page.

CurrentKey() Gets the current key of a data set that is displayed on a test
page.

See Also

Represents a test filter on a page.

The following methods are available on instances of the TestFilter data type.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testfilter/testfilter-setfilter-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testfilter/testfilter-getfilter-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testfilter/testfilter-setcurrentkey-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testfilter/testfilter-ascending-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testfilter/testfilter-currentkey-method

TestFilterField Data Type
3/31/2019 • 2 minutes to read

See Also

Represents the type of a field filter in a test filter on a page or on a request page.

Getting Started with AL
Developing Extensions

TestPage Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

OpenNew() Opens a blank test page in edit mode.

OpenEdit() Opens a test page in edit mode.

OpenView() Opens a test page in view mode.

Close() Closes an open test page.

New() Sets the current row of the test page to an empty row in a
data set.

GetField(Integer) Gets a field on a test page.

ValidationErrorCount() Gets the number of validation errors that occurred on the test
page.

GetValidationError([Integer]) Gets the list of all validation error that occurred on a test page
as a string.

Caption() Gets the caption of the test page.

Trap() Traps the next test page that is invoked and assigns it to the
test page variable.

Next() Sets the current row of the test page as the next row in the
data set.

Previous() Sets the current row of the test page as the previous row in
the data set.

Prev() Sets the current row of the test page as the previous row in
the data set.

First() Sets the current row of the test page as the first row in the
data set.

Last() Sets the current row of the test page as the last row in the
data set.

IsExpanded() Specifies if rows on a test page are expanded.

Expand(Boolean) Expands rows on a test page.

Represents a variable type that can be used to test Page Application Objects.

The following methods are available on instances of the TestPage data type.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpage/testpage-opennew-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpage/testpage-openedit-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpage/testpage-openview-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpage/testpage-close-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpage/testpage-new-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpage/testpage-getfield-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpage/testpage-validationerrorcount-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpage/testpage-getvalidationerror-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpage/testpage-caption-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpage/testpage-trap-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpage/testpage-next-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpage/testpage-previous-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpage/testpage-prev-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpage/testpage-first-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpage/testpage-last-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpage/testpage-isexpanded-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpage/testpage-expand-method

GoToRecord(Record) Finds the specified record in a data set on a test page.

GoToKey([Any,...]) Finds the row in a data set on the test page that is identified
by the specified values.

FindFirstField(TestField, Any) Finds the first field in the data set that is displayed on a test
page.

FindNextField(TestField, Any) Finds the next field in the data set that is displayed on a test
page.

FindPreviousField(TestField, Any) Finds the previous field in the data set that is displayed on a
test page.

Editable() Gets the runtime value of the Editable property on a test
page.

View() Gets the View system action.

Edit() Gets the Edit system action.

OK() Gets the OK system action.

Cancel() Gets the Cancel system action.

Yes() Gets the Yes system action.

No() Gets the No system action.

RunPageBackgroundTask(Integer, [var Dictionary of [Text,
Text]])

Runs the page background task codeunit in the current
session. Note that no triggers are invoked at this point.

METHOD NAME DESCRIPTION

See Also
Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpage/testpage-gotorecord-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpage/testpage-gotokey-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpage/testpage-findfirstfield-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpage/testpage-findnextfield-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpage/testpage-findpreviousfield-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpage/testpage-editable-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpage/testpage-view-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpage/testpage-edit-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpage/testpage-ok-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpage/testpage-cancel-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpage/testpage-yes-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpage/testpage-no-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpage/testpage-runpagebackgroundtask-method

TestPart Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

New() Sets the current row of the test page to an empty row in a
data set.

ValidationErrorCount() Gets the number of validation errors that occurred on the test
page.

GetValidationError([Integer]) Gets the list of all validation error that occurred on a test page
as a string.

GetField(Integer) Gets a field on a test page.

Caption() Gets the caption of the test page.

Next() Sets the current row of the test page as the next row in the
data set.

Previous() Sets the current row of the test page as the previous row in
the data set.

Prev() Sets the current row of the test page as the previous row in
the data set.

First() Sets the current row of the test page as the first row in the
data set.

Last() Sets the current row of the test page as the last row in the
data set.

IsExpanded() Specifies if the current row on the test page is expanded.

Expand(Boolean) Expands rows on a test page.

GoToRecord(Record) Finds the specified record in a data set on a test page.

GoToKey([Any,...]) Finds the row in a data set on the test page that is identified
by the specified values.

FindFirstField(TestField, Any) Finds the first field in the data set that is displayed on a test
page.

FindNextField(TestField, Any) Finds the next field in the data set that is displayed on a test
page.

Represents a variable type that can be used to test Page Application Objects of type Part.

The following methods are available on instances of the TestPart data type.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpart/testpart-new-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpart/testpart-validationerrorcount-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpart/testpart-getvalidationerror-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpart/testpart-getfield-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpart/testpart-caption-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpart/testpart-next-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpart/testpart-previous-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpart/testpart-prev-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpart/testpart-first-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpart/testpart-last-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpart/testpart-isexpanded-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpart/testpart-expand-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpart/testpart-gotorecord-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpart/testpart-gotokey-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpart/testpart-findfirstfield-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpart/testpart-findnextfield-method

FindPreviousField(TestField, Any) Finds the previous field in the data set that is displayed on a
test page.

Editable() Gets the runtime value of the Editable property on a test
page.

METHOD NAME DESCRIPTION

See Also
Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpart/testpart-findpreviousfield-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testpart/testpart-editable-method

TestPermissions Option Type
3/31/2019 • 2 minutes to read

Members
MEMBER DESCRIPTION

InheritFromTestCodeunit Is only relevant for test methods; not test codeunits. It
specifies that a test method uses the TestPermissions property
setting of the test codeunit to which it belongs. If you use this
value on a test codunit, the property will resolve to Restrictive
at runtime.

Restrictive Does not perform any operations or have any specific
behavior. Instead, you programmatically define what each
value does, and the permissions sets it applies at runtime, by
adding code in a test runner codeunit.

NonRestrictive Does not perform any operations or have any specific
behavior. Instead, you programmatically define what each
value does, and the permissions sets it applies at runtime, by
adding code in a test runner codeunit.

Disabled Does not perform any operations or have any specific
behavior. Instead, you programmatically define what each
value does, and the permissions sets it applies at runtime, by
adding code in a test runner codeunit.

See Also

Specifies a value that can be used to determine which permission sets are used on tests that are run by test
codunits or test functions.

Getting Started with AL
Developing Extensions

TestRequestPage Data Type
3/31/2019 • 3 minutes to read

METHOD NAME DESCRIPTION

New() Sets the current row of the test page to an empty row in a
data set.

ValidationErrorCount() Gets the number of validation errors that occurred on the test
page.

GetValidationError([Integer]) Gets the validation error that occurred on a test page.

Caption() Gets the caption of the test page.

Next() Sets the current row of the test page as the next row in the
data set.

Previous() Sets the current row of the test page as the previous row in
the data set.

First() Sets the current row of the test page as the first row in the
data set.

Last() Sets the current row of the test page as the last row in the
data set.

IsExpanded() Specifies if rows on a test page are expanded.

Expand(Boolean) Expands rows on a test page.

GoToRecord(Record) Finds the specified record in a data set on a test page. The
record is searched from the beginning of the dataset defined
by the current filter. The search is performed by iterating
across the rows, comparing the primary key with the primary
key fields of the record. For large dataset, use SetFilter to limit
the dataset.

GoToKey([Any,...]) Finds the row in a data set on the test page that is identified
by the specified values. The key is searched from the
beginning of the dataset defined by the current filter. The
search is performed by iterating across the rows, comparing
the primary key with the primary key fields of the record. For
large dataset, use SetFilter to limit the dataset.

Stores test request pages. A test request page part is a logical representation of a request page on a report. A test
request page does not display a user interface (UI). The subtype of a test request page is the report whose request
page you want to test.

The following methods are available on instances of the TestRequestPage data type.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testrequestpage/testrequestpage-new-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testrequestpage/testrequestpage-validationerrorcount-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testrequestpage/testrequestpage-getvalidationerror-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testrequestpage/testrequestpage-caption-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testrequestpage/testrequestpage-next-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testrequestpage/testrequestpage-previous-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testrequestpage/testrequestpage-first-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testrequestpage/testrequestpage-last-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testrequestpage/testrequestpage-isexpanded-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testrequestpage/testrequestpage-expand-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testrequestpage/testrequestpage-gotorecord-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testrequestpage/testrequestpage-gotokey-method

FindFirstField(TestField, Any) Finds the first field in the data set that is displayed on a test
page. The row is searched from the beginning of the dataset
defined by the current filter. The search is performed by
iterating across the rows, comparing the primary key with the
primary key fields of the record. For large dataset, use SetFilter
to limit the dataset.

FindNextField(TestField, Any) Finds the next field in the data set that is displayed on a test
page.The row is searched from the beginning of the dataset
defined by the current filter. The search is performed by
iterating across the rows, comparing the primary key with the
primary key fields of the record. For large dataset, use SetFilter
to limit the dataset.

FindPreviousField(TestField, Any) Finds the previous field in the data set that is displayed on a
test page. The row is searched from the beginning of the
dataset defined by the current filter. The search is performed
by iterating across the rows, comparing the primary key with
the primary key fields of the record. For large dataset, use
SetFilter to limit the dataset.

Editable() Gets the runtime value of the Editable property on a test
page.

SaveAsPdf(String) Saves a report as an Adobe Acrobat (.pdf) file.

SaveAsWord(String) Saves a report as a Microsoft Word (.doc) file.

SaveAsExcel(String) Saves a report as a Microsoft Excel (.xls) file.

SaveAsXml(String, String) Saves a report data set and the labels on a report as two XML
(.xml) files.

OK() Gets a TestAction representing an action on the Page under
Test.

Cancel() Gets a TestAction representing an action on the Page under
Test.

Print() Gets a the Print representing an action on the Page under
Test.

Preview() Gets a TestAction representing an action on the Page under
Test.

Schedule() Gets a TestAction representing an action on the Page under
Test.

METHOD NAME DESCRIPTION

See Also
Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testrequestpage/testrequestpage-findfirstfield-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testrequestpage/testrequestpage-findnextfield-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testrequestpage/testrequestpage-findpreviousfield-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testrequestpage/testrequestpage-editable-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testrequestpage/testrequestpage-saveaspdf-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testrequestpage/testrequestpage-saveasword-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testrequestpage/testrequestpage-saveasexcel-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testrequestpage/testrequestpage-saveasxml-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testrequestpage/testrequestpage-ok-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testrequestpage/testrequestpage-cancel-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testrequestpage/testrequestpage-print-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testrequestpage/testrequestpage-preview-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/testrequestpage/testrequestpage-schedule-method

Text Data Type
3/31/2019 • 4 minutes to read

METHOD NAME DESCRIPTION

StrSubstNo(String, [Any,...]) Replaces %1, %2, %3... and #1, #2, #3... fields in a string with
the values you provide as optional parameters.

StrPos(String, String) Searches for the first occurrence of substring inside a string.

StrLen(String) Gets the length of a string you define.

IncStr(String) Increases a positive number or decrease a negative number
inside a string by one (1).

CopyStr(String, Integer, [Integer]) Copies a substring of any length from a specific position in a
string (text or code) to a new string.

MaxStrLen(String) Gets the maximum defined length of a string variable.

MaxStrLen(Variant) Gets the maximum defined length of a variant variable. Calling
this method always results in a run-time exception.

PadStr(String, Integer, [String]) Changes the length of a string to a specified length. If the
string is shorter than the specified length, length spaces are
added at the end of the string to match the length. If the
string is longer than the specified length, the string is
truncated. If the specified length is less than 0, an exception is
thrown.

DelChr(String, [String], [String]) Deletes chars contained in the which parameter in a string
based on the contents on the where parameter. If the where
parameter contains an equal-sign, then all occurrences of
characters in which is deleted from the current value. If the
where parameter contains a less-than, then the characters are
only deleted when they are first in the string. If the where
parameter contains a greater-than, then the characters are
only deleted when they are the last in the string. If the where
parameter contains any other char, an exception is thrown. If
the where parameter or the which parameter is empty, the
source is returned unmodified. The which parameter is to be
considered as an array of chars to delete where the order does
not matter.

Denotes a text string.

The following methods are available on the Text data type.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/text/text-strsubstno-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/text/text-strpos-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/text/text-strlen-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/text/text-incstr-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/text/text-copystr-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/text/text-maxstrlen-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/text/text-maxstrlen-variant-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/text/text-padstr-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/text/text-delchr-method

StrCheckSum(String, [String], [Integer]) Calculates a checksum for a string that contains a number. If
the source is empty, 0 is returned. Each char in the source and
in the weight must be a numeric character 0-9, otherwise an
exception is thrown. If the WeightString parameter is shorter
then the source, it is padded with '1' up until the length of
source. If the WeightString parameter is longer than the
source, an exception is thrown.

ConvertStr(String, String, String) Replaces all chars in source found in FromCharacters with the
corresponding char in ToCharacters and returns the converted
string. If the length of the FromCharacters parameter and the
ToChars parameter are different, an exception is thrown. If the
parameter FromCharacters or the parameter ToChars is
empty, the source is returned unmodified. Each element in
source is only converted ONCE a double-replacement cannot
happen.

LowerCase(String) Converts all letters in a string to lowercase.

UpperCase(String) Converts all letters in a string to uppercase.

SelectStr(Integer, String) Retrieves a substring from a comma-separated string.

DelStr(String, Integer, [Integer]) Deletes a substring inside a string (text or code).

InsStr(String, String, Integer) Inserts a substring into a string.

METHOD NAME DESCRIPTION

METHOD NAME DESCRIPTION

Contains(Text) Returns a value indicating whether a specified substring occurs
within this string.

EndsWith(Text) Determines whether the end of this string instance matches
the specified string.

IndexOf(Text, [Integer]) Reports the one-based index of the first occurrence of the
specified string in this instance.

IndexOfAny(Text, [Integer]) Reports the one-based index of the first occurrence of the
specified string in this instance. The search starts at a specified
character position.

IndexOfAny(List of [Char], [Integer]) Reports the one-based index of the first occurrence in this
instance of any character in a specified array of Unicode
characters. The search starts at a specified character position.

LastIndexOf(Text, [Integer]) Reports the one-based index position of the last occurrence of
a specified string in this instance.

PadLeft(Integer, [Char]) Returns a new Text that right-aligns the characters in this
instance by padding them on the left, for a specified total
length.

The following methods are available on instances of the Text data type.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/text/text-strchecksum-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/text/text-convertstr-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/text/text-lowercase-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/text/text-uppercase-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/text/text-selectstr-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/text/text-delstr-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/text/text-insstr-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/text/text-contains-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/text/text-endswith-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/text/text-indexof-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/text/text-indexofany-text-integer-method
file:///T:/q4ru/developer/methods-auto/text/text-indexofany-list%5Bchar%5D-integer-method.html
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/text/text-lastindexof-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/text/text-padleft-method

PadRight(Integer, [Char]) Returns a new string that left-aligns the characters in this
string by padding them with spaces on the right, for a
specified total length.

Remove(Integer, [Integer]) Returns a new Text in which a specified number of characters
from the current string are deleted.

Replace(Text, Text) Returns a new Text in which all occurrences of a specified
string in the current instance are replaced with another
specified string.

StartsWith(Text) Determines whether the beginning of this instance matches a
specified string.

Split([Text,...]) Splits a string into a maximum number of substrings based on
a collection of separators.

Split(List of [Text]) Splits a string into a maximum number of substrings based on
a collection of separators.

Split(List of [Char]) Splits a string into a maximum number of substrings based on
a collection of separators.

Substring(Integer, [Integer]) Retrieves a substring from this instance.

ToLower() Returns a copy of this string converted to lowercase.

ToUpper() Returns a copy of this string converted to uppercase.

Trim() Returns a new Text in which all leading and trailing white-
space characters from the current Text object are removed.

TrimStart([Text]) Removes all leading occurrences of a set of characters
specified in an array from the current Text object.

TrimEnd([Text]) Removes all trailing occurrences of a set of characters specified
in an array from the current Text object.

METHOD NAME DESCRIPTION

See Also
Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/text/text-padright-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/text/text-remove-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/text/text-replace-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/text/text-startswith-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/text/text-split-text-method
file:///T:/q4ru/developer/methods-auto/text/text-split-list%5Btext%5D-method.html
file:///T:/q4ru/developer/methods-auto/text/text-split-list%5Bchar%5D-method.html
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/text/text-substring-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/text/text-tolower-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/text/text-toupper-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/text/text-trim-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/text/text-trimstart-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/text/text-trimend-method

TextBuilder Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

Append(Text) Appends a copy of the specified string to this TextBuilder
instance.

AppendLine([Text]) Appends a copy of the specified string followed by the default
line terminator to the end of the current TextBuilder object. If
this parameter is omitted, only the line terminator will be
appended.

Capacity([Integer]) Gets or sets the maximum number of characters that can be
contained in the memory allocated by the current instance.

Clear() Removes all characters from the current TextBuilder instance.

EnsureCapacity(Integer) Ensures that the capacity of this TextBuilder instance is at least
the specified value.

Insert(Integer, Text) Inserts a string into this TextBuilder instance at the specified
character position.

Length([Integer]) Gets or sets the length of this TextBuilder instance.

MaxCapacity() Gets the maximum capacity of this TextBuilder instance.

Remove(Integer, Integer) Removes the specified range of characters from this
TextBuilder instance.

Replace(Text, Text) Replaces all occurrences of a specified string in this TextBuilder
instance with another specified string.

Replace(Text, Text, Integer, Integer) Replaces, within a substring of this instance, all occurrences of
a specified string in this TextBuilder instance with another
specified string.

ToText() Converts the value of this TextBuilder instance to a Text.

ToText(Integer, Integer) Converts the value of a substring of this TextBuilder instance
to a Text.

NOTE

Represents a lighweight wrapper for the .Net implementation of StringBuilder.

The following methods are available on instances of the TextBuilder data type.

For performance reasons all HTTP, JSON, TextBuilder, and XML types are reference types, not value types. Reference types
holds a pointer to the data elsewhere in memory, whereas value types store its own data.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/textbuilder/textbuilder-append-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/textbuilder/textbuilder-appendline-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/textbuilder/textbuilder-capacity-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/textbuilder/textbuilder-clear-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/textbuilder/textbuilder-ensurecapacity-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/textbuilder/textbuilder-insert-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/textbuilder/textbuilder-length-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/textbuilder/textbuilder-maxcapacity-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/textbuilder/textbuilder-remove-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/textbuilder/textbuilder-replace-text-text-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/textbuilder/textbuilder-replace-text-text-integer-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/textbuilder/textbuilder-totext--method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/textbuilder/textbuilder-totext-integer-integer-method

See Also
Getting Started with AL
Developing Extensions

TextConst Data Type
4/8/2019 • 2 minutes to read

Remarks

IMPORTANT

codeunit 50100 MyCodeunit
{
 procedure MyProcedure()
 var
 localTextConst: TextConst ENU = 'My text', DAN = 'Min tekst';
 begin
 Message(localTextConst);
 end;

 var
 globalTextConst: TextConst ENU = 'My text', DAN = 'Min tekst';
}

See Also

Denotes a multi-language string constant.

The TextConst data type is typically used for UI messages; process or error messages. Keeping the TextConst

data type in global scope, makes it easier to reuse the same message for several situations. For information about
naming, see CodeCop Rule AA0074.

The TextConst data type is not included in the .xlf files for translation. Make sure to use the Label Data Type instead.

The data type can be declared with the syntax as shown below:

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/analyzers/codecop-aa0074-textconstlabelvariablenamesshouldhaveapprovedsuffix

TextEncoding Option Type
3/31/2019 • 2 minutes to read

Members
MEMBER DESCRIPTION

MSDos MSDos encoding.

UTF8 UTF8 encoding.

UTF16 UTF16 encoding.

Windows Windows encoding.

See Also

Represents a file encoding.

Getting Started with AL
Developing Extensions

Time Data Type
4/24/2019 • 2 minutes to read

MyTime := 0T;
MyTime := 115900T;
MESSAGE(FORMAT(MyTime));
MyTime := 115934T;
MESSAGE(FORMAT(MyTime));
MyTime := 115934.444T;
MESSAGE(FORMAT(MyTime));
MyTime := 235900T;
MESSAGE(FORMAT(MyTime));
MyTime := 030000T;
MESSAGE(FORMAT(MyTime));

SQL Server

See Also

Denotes a time ranging from 00:00:00.000 to 23:59:59.999. An undefined or blank time is specified by 0T.

The displayed text format of the time is determined by your Regional and Language Options in Windows.

The following are examples of valid assignments of times to a Time variable MyTime. Time must be set by
specifying hours, minutes, and seconds.

The following shows what the message windows display on a computer with the regional format set to English
(United States).

11:59:00 AM

11:59:34 AM

11:59:34.444 AM

11:59:00 PM

3:00:00 AM

Microsoft SQL Server stores information about both date and time in columns of the DATETIME type. Dynamics
365 uses only the time part and inserts a constant value for the date: 01-01-1754.

The Dynamics 365 undefined time is represented by the same value as an undefined date. The undefined date is
represented by the earliest valid DATETIME in SQL Server, which is 01-01-1753 00:00:00:000.

Getting Started with AL
Developing Extensions

TransactionModel Option Type
3/31/2019 • 2 minutes to read

Members
MEMBER DESCRIPTION

AutoCommit The transaction automatically commits after the Test method
has run.

AutoRollback The transaction is automatically rolled back after the Test
method has run.

None No write-transaction is open in the test-method code, and
writes will fail. The transaction model mirrors the model used
by the "real" client. Every call from the TestPage to the "server"
has its own transaction.

See Also

Represents a test transaction model.

Getting Started with AL
Developing Extensions

TransactionType Option Type
3/31/2019 • 2 minutes to read

Members
MEMBER DESCRIPTION

UpdateNoLocks This is an update transaction. Modifications can occur within
the transaction. All read operations are performed with READ
UNCOMMITTED locking until the table is either modified by a
write operation or locked with the LOCKTABLE Method
(Record). From this point until the end of the transaction, all
read operations are performed with UPDLOCK locking. This
transaction type improves concurrency for all tables that users
access within the transaction by delaying locking as much as it
can. However, the disadvantage is that you must know when
to lock the tables for the required transaction behavior.

Update This is an update transaction. Modifications can occur within
the transaction. All read operations are performed with
REPEATABLE READ locking until the table is either modified by
any write operation or locked with the LOCKTABLE method.
From this point forward, all read operations are performed
with UPDLOCK locking. This transaction type provides full
transaction isolation from the start of the transaction,
regardless of the lock status of tables that users access within
the transaction.

Snapshot This is a read-only transaction. Modifications cannot occur
within the transaction. All read operations are performed with
REPEATABLE READ locking. Therefore, shared locks are added
on all data and are maintained until the end of the
transaction. This prevents other transactions from modifying
any rows that have been read by the current transaction.

Browse This is a read-only transaction. Modifications cannot occur
within the transaction. All read operations are performed with
READ UNCOMMITTED locking. Therefore, no locks are added
and locks that are added by other sessions are not honored.
This means that the transaction may read uncommitted data.

Report Report option maps to one of the basic options. This enables a
report to use the most concurrent read-only form of data
access for the connected server. When you use Dynamics 365
Business Central database server, it maps to Snapshot and
when you use SQL Server, it maps to Browse.

See Also

Represents a transaction type.

Getting Started with AL
Developing Extensions

Variant Data Type
3/31/2019 • 3 minutes to read

METHOD NAME DESCRIPTION

IsRecord() Indicates whether an AL variant contains a Record variable.

IsFile() Indicates whether an AL variant contains a File variable.

IsAction() Indicates whether an AL variant contains an Action variable.

IsCodeunit() Indicates whether an AL variant contains a Codeunit variable.

IsAutomation() Indicates whether an AL variant contains an Automation
variable.

IsBoolean() Indicates whether an AL variant contains a Boolean variable.

IsOption() Indicates whether an AL variant contains an Option variable.

IsInteger() Indicates whether an AL variant contains an Integer variable.

IsDecimal() Indicates whether an AL variant contains a Decimal variable.

IsChar() Indicates whether an AL variant contains a Char variable.

IsText() Indicates whether an AL variant contains a Text variable.

IsCode() Indicates whether an AL variant contains a Code variable.

IsDate() Indicates whether an AL variant contains a Date variable.

IsTime() Indicates whether an AL variant contains a Time variable.

IsBinary() Indicates whether an AL variant contains a Binary variable.

IsDateFormula() Indicates whether an AL variant contains a DateFormula
variable.

IsTransactionType() Indicates whether an AL variant contains a TransactionType
variable.

IsInStream() Indicates whether an AL variant contains an InStream variable.

IsOutStream() Indicates whether an AL variant contains an OutStream
variable.

Represents an AL variable object. The AL variant data type can contain many AL data types.

The following methods are available on instances of the Variant data type.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isrecord-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isfile-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isaction-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-iscodeunit-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isautomation-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isboolean-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isoption-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isinteger-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isdecimal-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-ischar-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-istext-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-iscode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isdate-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-istime-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isbinary-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isdateformula-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-istransactiontype-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isinstream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isoutstream-method

IsDotNet() Indicates whether an AL variant contains a DotNet variable.

IsWideChar() Indicates whether an AL variant contains a WideChar variable.

IsExecutionMode() Indicates whether an AL variant contains an ExecutionMode
variable.

IsDateTime() Indicates whether an AL variant contains a DateTime variable.

IsGuid() Indicates whether an AL variant contains a Guid variable.

IsRecordId() Indicates whether an AL variant contains a RecordId variable.

IsDuration() Indicates whether an AL variant contains a Duration variable.

IsBigInteger() Indicates whether an AL variant contains a BigInteger variable.

IsRecordRef() Indicates whether an AL variant contains a RecordRef variable.

IsFieldRef() Indicates whether an AL variant contains a FieldRef variable.

IsFilterPageBuilder() Indicates whether an AL variant contains a FilterPageBuilder
variable.

IsClientType() Indicates whether an AL variant contains a ClientType variable.

IsObjectType() Indicates whether an AL variant contains an ObjectType
variable.

IsTextEncoding() Indicates whether an AL variant contains a TextEncoding
variable.

IsReportFormat() Indicates whether an AL variant contains a RecordFormat
variable.

IsDefaultLayout() Indicates whether an AL variant contains a DefaultLayout
variable.

IsTableConnectionType() Indicates whether an AL variant contains a
TableConnectionType variable.

IsSecurityFiltering() Indicates whether an AL variant contains a SecurityFiltering
variable.

IsDataClassificationType() Indicates whether a AL variant contains a DataClassification
variable.

IsTextConstant() Indicates whether an AL variant contains a Text constant.

IsByte() Indicates whether an AL variant contains a Byte data type
variable.

METHOD NAME DESCRIPTION

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isdotnet-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-iswidechar-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isexecutionmode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isdatetime-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isguid-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isrecordid-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isduration-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isbiginteger-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isrecordref-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isfieldref-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isfilterpagebuilder-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isclienttype-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isobjecttype-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-istextencoding-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isreportformat-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isdefaultlayout-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-istableconnectiontype-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-issecurityfiltering-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isdataclassificationtype-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-istextconstant-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isbyte-method

IsNotification() Indicates whether an AL variant contains a Notification
variable.

IsTestPermissions() Indicates whether an AL variant contains a TestPermissions
variable.

IsJsonArray() Indicates whether an AL variant contains a JsonArray variable.

IsJsonObject() Indicates whether an AL variant contains a JsonObject
variable.

IsJsonToken() Indicates whether an AL variant contains a JsonToken variable.

IsJsonValue() Indicates whether an AL variant contains a JsonValue variable.

IsXmlAttribute() Indicates whether an AL variant contains an XmlAttribute
variable.

IsXmlAttributeCollection() Indicates whether an AL variant contains an
XmlAttributeCollection variable.

IsXmlCData() Indicates whether an AL variant contains an XmlCData
variable.

IsXmlComment() Indicates whether an AL variant contains an XmlComment
variable.

IsXmlDeclaration() Indicates whether an AL variant contains an XmlDeclaration
variable.

IsXmlDocument() Indicates whether an AL variant contains an XmlDocument
variable.

IsXmlDocumentType() Indicates whether an AL variant contains an
XmlDocumentType variable.

IsXmlElement() Indicates whether an AL variant contains an XmlElement
variable.

IsXmlNamespaceManager() Indicates whether an AL variant contains an
XmlNamespaceManager variable.

IsXmlNameTable() Indicates whether an AL variant contains an XmlNameTable
variable.

IsXmlNode() Indicates whether an AL variant contains an XmlNode variable.

IsXmlNodeList() Indicates whether an AL variant contains an XmlNodeList
variable.

IsXmlProcessingInstruction() Indicates whether an AL variant contains an
XmlProcessingInstruction variable.

METHOD NAME DESCRIPTION

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isnotification-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-istestpermissions-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isjsonarray-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isjsonobject-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isjsontoken-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isjsonvalue-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isxmlattribute-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isxmlattributecollection-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isxmlcdata-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isxmlcomment-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isxmldeclaration-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isxmldocument-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isxmldocumenttype-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isxmlelement-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isxmlnamespacemanager-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isxmlnametable-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isxmlnode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isxmlnodelist-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isxmlprocessinginstruction-method

IsXmlReadOptions() Indicates whether an AL variant contains an XmlReadOptions
variable.

IsXmlText() Indicates whether an AL variant contains an XmlText variable.

IsXmlWriteOptions() Indicates whether an AL variant contains an XmlWriteOptions
variable.

IsTextBuilder() Indicates whether an AL variant contains a TextBuilder
variable.

METHOD NAME DESCRIPTION

See Also
Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isxmlreadoptions-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isxmltext-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-isxmlwriteoptions-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/variant/variant-istextbuilder-method

Verbosity Option Type
3/31/2019 • 2 minutes to read

Members
MEMBER DESCRIPTION

Critical Identifies an abnormal exit or termination event.

Error Identifies a severe error event.

Warning Identifies a warning event such as an allocation failure.

Normal Identifies a non-error event such as an entry or exit event.

Verbose Identifies a detailed trace event.

See Also

Represents the security level of events.

Getting Started with AL
Developing Extensions

Version Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

Create(String) Creates a version object from the provided string. The string
should be in the format W.X.Y.Z, where W, X, Y and Z
represent positive integers and where Y and Z are optional. If
the input string is not in the expected format, an exception is
thrown.

Create(Integer, Integer, [Integer], [Integer]) Creates a version object from the major, minor, build and
revision numbers provided.

METHOD NAME DESCRIPTION

Major() Gets the major number of the version.

Minor() Gets the minor number of the version.

Build() Gets the build number of the version.

Revision() Gets the revision number from the version.

See Also

Represents a version matching the format: Major.Minor.Build.Revision .

The following methods are available on the Version data type.

The following methods are available on instances of the Version data type.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/version/version-create-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/version/version-create-integer-integer-integer-integer-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/version/version-major-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/version/version-minor-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/version/version-build-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/version/version-revision-method

WebServiceActionContext Data Type
4/24/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

AddEntityKey(Integer, Any) Add a new <fieldId, value> pair to the collection of entity
keys.

SetObjectType(ObjectType) Sets the object type.

GetObjectType() Gets the object type.

SetObjectId(Integer) Sets the object ID.

GetObjectId() Gets the object ID.

SetResultCode(WebServiceActionResultCode) Sets the web service action result status code.

GetResultCode() Gets the web service action result status code.

See Also

Represents an AL WebServiceActionContext.

The following methods are available on instances of the WebServiceActionContext data type.

Creating and Interacting with an OData V4 Bound Action
Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/webserviceactioncontext/webserviceactioncontext-addentitykey-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/webserviceactioncontext/webserviceactioncontext-setobjecttype-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/webserviceactioncontext/webserviceactioncontext-getobjecttype-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/webserviceactioncontext/webserviceactioncontext-setobjectid-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/webserviceactioncontext/webserviceactioncontext-getobjectid-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/webserviceactioncontext/webserviceactioncontext-setresultcode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/webserviceactioncontext/webserviceactioncontext-getresultcode-method

WebServiceActionResultCode Option Type
3/31/2019 • 2 minutes to read

Members
MEMBER DESCRIPTION

None No status code.

Get Item read.

Created Item created.

Updated Item updated.

Deleted Item deleted.

See Also

Represents a web service action status code.

Getting Started with AL
Developing Extensions

XmlAttribute Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

Create(String, String) Creates an XmlAttribute node.

Create(String, String, String) Creates an XmlAttribute node.

CreateNamespaceDeclaration(String, String) Creates an attribute that represents a namespace declaration.

METHOD NAME DESCRIPTION

Name() The qualified name of the attribute.

LocalName() Gets the local name of the attribute.

NamespaceUri() Gets the namespace URI of the attribute.

NamespacePrefix() Gets the prefix of the attribute (if any).

IsNamespaceDeclaration() Determines if this attribute is a namespace declaration.

Value([String]) Gets or sets the value of the attribute.

AsXmlNode() Converts the node to an XmlNode.

GetParent(var XmlElement) Gets the parent XmlElement of this node.

GetDocument(var XmlDocument) Gets the XmlDocument for this node.

AddAfterSelf(Any,...) Adds the specified content immediately after this node.

AddBeforeSelf(Any,...) Adds the specified content immediately before this node.

ReplaceWith(Any,...) Replaces this node with the specified content.

Remove() Removes this node from its parent element.

WriteTo(OutStream) Serializes and saves the current node to the given variable.

WriteTo(XmlWriteOptions, OutStream) Serializes and saves the current node to the given variable.

Represents an XML attribute.

The following methods are available on the XmlAttribute data type.

The following methods are available on instances of the XmlAttribute data type.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlattribute/xmlattribute-create-string-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlattribute/xmlattribute-create-string-string-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlattribute/xmlattribute-createnamespacedeclaration-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlattribute/xmlattribute-name-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlattribute/xmlattribute-localname-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlattribute/xmlattribute-namespaceuri-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlattribute/xmlattribute-namespaceprefix-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlattribute/xmlattribute-isnamespacedeclaration-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlattribute/xmlattribute-value-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlattribute/xmlattribute-asxmlnode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlattribute/xmlattribute-getparent-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlattribute/xmlattribute-getdocument-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlattribute/xmlattribute-addafterself-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlattribute/xmlattribute-addbeforeself-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlattribute/xmlattribute-replacewith-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlattribute/xmlattribute-remove-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlattribute/xmlattribute-writeto-outstream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlattribute/xmlattribute-writeto-xmlwriteoptions-outstream-method

WriteTo(var Text) Serializes and saves the current node to the given variable.

WriteTo(XmlWriteOptions, var Text) Serializes and saves the current node to the given variable.

SelectSingleNode(String, var XmlNode) Selects the first XmlNode that matches the XPath expression.

SelectSingleNode(String, XmlNamespaceManager, var
XmlNode)

Selects the first XmlNode that matches the XPath expression.

SelectNodes(String, var XmlNodeList) Selects a list of nodes matching the XPath expression.

SelectNodes(String, XmlNamespaceManager, var XmlNodeList) Selects a list of nodes matching the XPath expression.

METHOD NAME DESCRIPTION

See Also
Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlattribute/xmlattribute-writeto-text-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlattribute/xmlattribute-writeto-xmlwriteoptions-text-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlattribute/xmlattribute-selectsinglenode-string-xmlnode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlattribute/xmlattribute-selectsinglenode-string-xmlnamespacemanager-xmlnode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlattribute/xmlattribute-selectnodes-string-xmlnodelist-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlattribute/xmlattribute-selectnodes-string-xmlnamespacemanager-xmlnodelist-method

XmlAttributeCollection Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

Count() Gets the number of attributes in the XmlAttributeCollection.

Get(Integer, var XmlAttribute) Gets the specified attribute.

Get(String, var XmlAttribute) Gets the specified attribute.

Get(String, String, var XmlAttribute) Gets the specified attribute.

RemoveAll() Removes all attributes from the collection.

Remove(XmlAttribute) Removes the specified attribute from the collection.

Remove(String) Removes the specified attribute from the collection.

Remove(String, String) Removes the specified attribute from the collection.

Set(String, String) Sets the value of the specified attribute or creates it if is not
part of the collection.

Set(String, String, String) Sets the value of the specified attribute or creates it if is not
part of the collection.

See Also

Represents a collection of XML attributes.

The following methods are available on instances of the XmlAttributeCollection data type.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlattributecollection/xmlattributecollection-count-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlattributecollection/xmlattributecollection-get-integer-xmlattribute-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlattributecollection/xmlattributecollection-get-string-xmlattribute-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlattributecollection/xmlattributecollection-get-string-string-xmlattribute-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlattributecollection/xmlattributecollection-removeall-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlattributecollection/xmlattributecollection-remove-xmlattribute-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlattributecollection/xmlattributecollection-remove-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlattributecollection/xmlattributecollection-remove-string-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlattributecollection/xmlattributecollection-set-string-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlattributecollection/xmlattributecollection-set-string-string-string-method

XmlCData Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

Create(String) Creates an XmlCData node.

METHOD NAME DESCRIPTION

Value([String]) Gets or sets the value of this node.

AsXmlNode() Converts the node to an XmlNode.

GetParent(var XmlElement) Gets the parent XmlElement of this node.

GetDocument(var XmlDocument) Gets the XmlDocument for this node.

AddAfterSelf(Any,...) Adds the specified content immediately after this node.

AddBeforeSelf(Any,...) Adds the specified content immediately before this node.

ReplaceWith(Any,...) Replaces this node with the specified content.

Remove() Removes this node from its parent element.

WriteTo(OutStream) Serializes and saves the current node to the given variable.

WriteTo(XmlWriteOptions, OutStream) Serializes and saves the current node to the given variable.

WriteTo(var Text) Serializes and saves the current node to the given variable.

WriteTo(XmlWriteOptions, var Text) Serializes and saves the current node to the given variable.

SelectSingleNode(String, var XmlNode) Selects the first XmlNode that matches the XPath expression.

SelectSingleNode(String, XmlNamespaceManager, var
XmlNode)

Selects the first XmlNode that matches the XPath expression.

SelectNodes(String, var XmlNodeList) Selects a list of nodes matching the XPath expression.

SelectNodes(String, XmlNamespaceManager, var XmlNodeList) Selects a list of nodes matching the XPath expression.

See Also

Represents a CData section.

The following methods are available on the XmlCData data type.

The following methods are available on instances of the XmlCData data type.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlcdata/xmlcdata-create-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlcdata/xmlcdata-value-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlcdata/xmlcdata-asxmlnode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlcdata/xmlcdata-getparent-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlcdata/xmlcdata-getdocument-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlcdata/xmlcdata-addafterself-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlcdata/xmlcdata-addbeforeself-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlcdata/xmlcdata-replacewith-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlcdata/xmlcdata-remove-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlcdata/xmlcdata-writeto-outstream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlcdata/xmlcdata-writeto-xmlwriteoptions-outstream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlcdata/xmlcdata-writeto-text-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlcdata/xmlcdata-writeto-xmlwriteoptions-text-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlcdata/xmlcdata-selectsinglenode-string-xmlnode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlcdata/xmlcdata-selectsinglenode-string-xmlnamespacemanager-xmlnode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlcdata/xmlcdata-selectnodes-string-xmlnodelist-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlcdata/xmlcdata-selectnodes-string-xmlnamespacemanager-xmlnodelist-method

Getting Started with AL
Developing Extensions

XmlComment Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

Create(String) Creates an XmlComment node.

METHOD NAME DESCRIPTION

Value([String]) Gets or sets the string value of this comment.

AsXmlNode() Converts the node to an XmlNode.

GetParent(var XmlElement) Gets the parent XmlElement of this node.

GetDocument(var XmlDocument) Gets the XmlDocument for this node.

AddAfterSelf(Any,...) Adds the specified content immediately after this node.

AddBeforeSelf(Any,...) Adds the specified content immediately before this node.

ReplaceWith(Any,...) Replaces this node with the specified content.

Remove() Removes this node from its parent element.

WriteTo(OutStream) Serializes and saves the current node to the given variable.

WriteTo(XmlWriteOptions, OutStream) Serializes and saves the current node to the given variable.

WriteTo(var Text) Serializes and saves the current node to the given variable.

WriteTo(XmlWriteOptions, var Text) Serializes and saves the current node to the given variable.

SelectSingleNode(String, var XmlNode) Selects the first XmlNode that matches the XPath expression.

SelectSingleNode(String, XmlNamespaceManager, var
XmlNode)

Selects the first XmlNode that matches the XPath expression.

SelectNodes(String, var XmlNodeList) Selects a list of nodes matching the XPath expression.

SelectNodes(String, XmlNamespaceManager, var XmlNodeList) Selects a list of nodes matching the XPath expression.

See Also

Represents an XML comment.

The following methods are available on the XmlComment data type.

The following methods are available on instances of the XmlComment data type.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlcomment/xmlcomment-create-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlcomment/xmlcomment-value-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlcomment/xmlcomment-asxmlnode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlcomment/xmlcomment-getparent-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlcomment/xmlcomment-getdocument-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlcomment/xmlcomment-addafterself-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlcomment/xmlcomment-addbeforeself-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlcomment/xmlcomment-replacewith-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlcomment/xmlcomment-remove-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlcomment/xmlcomment-writeto-outstream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlcomment/xmlcomment-writeto-xmlwriteoptions-outstream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlcomment/xmlcomment-writeto-text-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlcomment/xmlcomment-writeto-xmlwriteoptions-text-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlcomment/xmlcomment-selectsinglenode-string-xmlnode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlcomment/xmlcomment-selectsinglenode-string-xmlnamespacemanager-xmlnode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlcomment/xmlcomment-selectnodes-string-xmlnodelist-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlcomment/xmlcomment-selectnodes-string-xmlnamespacemanager-xmlnodelist-method

Getting Started with AL
Developing Extensions

XmlDeclaration Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

Create(String, String, String) Creates an XmlDeclaration node.

METHOD NAME DESCRIPTION

Encoding([String]) Gets or sets the encoding of the XML document.

Standalone([String]) Gets or sets the standalone property for this document.

Version([String]) Gets or sets the version property for this document.

AsXmlNode() Converts the node to an XmlNode.

GetParent(var XmlElement) Gets the parent XmlElement of this node.

GetDocument(var XmlDocument) Gets the XmlDocument for this node.

AddAfterSelf(Any,...) Adds the specified content immediately after this node.

AddBeforeSelf(Any,...) Adds the specified content immediately before this node.

ReplaceWith(Any,...) Replaces this node with the specified content.

Remove() Removes this node from its parent element.

WriteTo(OutStream) Serializes and saves the current node to the given variable.

WriteTo(XmlWriteOptions, OutStream) Serializes and saves the current node to the given variable.

WriteTo(var Text) Serializes and saves the current node to the given variable.

WriteTo(XmlWriteOptions, var Text) Serializes and saves the current node to the given variable.

SelectSingleNode(String, var XmlNode) Selects the first XmlNode that matches the XPath expression.

SelectSingleNode(String, XmlNamespaceManager, var
XmlNode)

Selects the first XmlNode that matches the XPath expression.

SelectNodes(String, var XmlNodeList) Selects a list of nodes matching the XPath expression.

Represents an XML declaration.

The following methods are available on the XmlDeclaration data type.

The following methods are available on instances of the XmlDeclaration data type.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldeclaration/xmldeclaration-create-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldeclaration/xmldeclaration-encoding-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldeclaration/xmldeclaration-standalone-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldeclaration/xmldeclaration-version-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldeclaration/xmldeclaration-asxmlnode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldeclaration/xmldeclaration-getparent-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldeclaration/xmldeclaration-getdocument-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldeclaration/xmldeclaration-addafterself-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldeclaration/xmldeclaration-addbeforeself-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldeclaration/xmldeclaration-replacewith-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldeclaration/xmldeclaration-remove-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldeclaration/xmldeclaration-writeto-outstream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldeclaration/xmldeclaration-writeto-xmlwriteoptions-outstream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldeclaration/xmldeclaration-writeto-text-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldeclaration/xmldeclaration-writeto-xmlwriteoptions-text-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldeclaration/xmldeclaration-selectsinglenode-string-xmlnode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldeclaration/xmldeclaration-selectsinglenode-string-xmlnamespacemanager-xmlnode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldeclaration/xmldeclaration-selectnodes-string-xmlnodelist-method

SelectNodes(String, XmlNamespaceManager, var XmlNodeList) Selects a list of nodes matching the XPath expression.

METHOD NAME DESCRIPTION

See Also
Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldeclaration/xmldeclaration-selectnodes-string-xmlnamespacemanager-xmlnodelist-method

XmlDocument Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

ReadFrom(String, var XmlDocument) Reads and parses the XML document from the given data
source.

ReadFrom(String, XmlReadOptions, var XmlDocument) Reads and parses the XML document from the given data
source.

ReadFrom(InStream, var XmlDocument) Reads and parses the XML document from the given data
source.

ReadFrom(InStream, XmlReadOptions, var XmlDocument) Reads and parses the XML document from the given data
source.

Create() Creates an XmlDocument.

Create(Any,...) Creates an XmlDocument.

METHOD NAME DESCRIPTION

GetRoot(var XmlElement) Gets the root element of the XML tree for this document.

GetDeclaration(var XmlDeclaration) Gets the XML declaration for this document.

SetDeclaration(XmlDeclaration) Sets the XML declaration for this document.

GetDocumentType(var XmlDocumentType) Gets the Document Type Definition (DTD) for this document.

NameTable() Gets the XmlNameTable associated with this document.

AsXmlNode() Converts the node to an XmlNode.

GetParent(var XmlElement) Gets the parent XmlElement of this node.

GetDocument(var XmlDocument) Gets the XmlDocument for this node.

AddAfterSelf(Any,...) Adds the specified content immediately after this node.

AddBeforeSelf(Any,...) Adds the specified content immediately before this node.

ReplaceWith(Any,...) Replaces this node with the specified content.

Represents an XML document.

The following methods are available on the XmlDocument data type.

The following methods are available on instances of the XmlDocument data type.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-readfrom-string-xmldocument-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-readfrom-string-xmlreadoptions-xmldocument-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-readfrom-instream-xmldocument-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-readfrom-instream-xmlreadoptions-xmldocument-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-create--method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-create-joker-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-getroot-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-getdeclaration-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-setdeclaration-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-getdocumenttype-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-nametable-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-asxmlnode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-getparent-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-getdocument-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-addafterself-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-addbeforeself-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-replacewith-method

Remove() Removes this node from its parent element.

WriteTo(OutStream) Serializes and saves the current node to the given variable.

WriteTo(XmlWriteOptions, OutStream) Serializes and saves the current node to the given variable.

WriteTo(var Text) Serializes and saves the current node to the given variable.

WriteTo(XmlWriteOptions, var Text) Serializes and saves the current node to the given variable.

SelectSingleNode(String, var XmlNode) Selects the first XmlNode that matches the XPath expression.

SelectSingleNode(String, XmlNamespaceManager, var
XmlNode)

Selects the first XmlNode that matches the XPath expression.

SelectNodes(String, var XmlNodeList) Selects a list of nodes matching the XPath expression.

SelectNodes(String, XmlNamespaceManager, var XmlNodeList) Selects a list of nodes matching the XPath expression.

Add(Any,...) Adds the specified content as a child of this document.

AddFirst(Any,...) Adds the specified content at the start of the child list of this
document.

ReplaceNodes(Any,...) Replaces the children nodes of this document with the
specified content.

RemoveNodes() Removes the child nodes from this document.

GetChildNodes() Gets a list containing the child elements for this document, in
document order.

GetChildElements() Gets a list containing the child elements for this document, in
document order.

GetChildElements(String) Gets a list containing the child elements for this document, in
document order.

GetChildElements(String, String) Gets a list containing the child elements for this document, in
document order.

GetDescendantNodes() Gets a list containing the descendant nodes for this
document, in document order.

GetDescendantElements() Gets a list containing the descendant elements for this
document, in document order.

GetDescendantElements(String) Gets a list containing the descendant elements for this
document, in document order.

GetDescendantElements(String, String) Gets a list containing the descendant elements for this
document, in document order.

METHOD NAME DESCRIPTION

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-remove-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-writeto-outstream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-writeto-xmlwriteoptions-outstream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-writeto-text-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-writeto-xmlwriteoptions-text-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-selectsinglenode-string-xmlnode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-selectsinglenode-string-xmlnamespacemanager-xmlnode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-selectnodes-string-xmlnodelist-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-selectnodes-string-xmlnamespacemanager-xmlnodelist-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-add-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-addfirst-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-replacenodes-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-removenodes-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-getchildnodes-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-getchildelements--method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-getchildelements-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-getchildelements-string-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-getdescendantnodes-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-getdescendantelements--method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-getdescendantelements-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocument/xmldocument-getdescendantelements-string-string-method

See Also
Getting Started with AL
Developing Extensions

XmlDocumentType Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

Create(String) Creates an XmlDocumentType node.

Create(String, String) Creates an XmlDocumentType node.

Create(String, String, String) Creates an XmlDocumentType node.

Create(String, String, String, String) Creates an XmlDocumentType node.

METHOD NAME DESCRIPTION

GetName(var Text) Gets the name for this Document Type Definition (DTD).

SetName(String) Sets the name for this Document Type Definition (DTD).

GetSystemId(var Text) Gets the system identifier for this Document Type Definition
(DTD).

SetSystemId(String) Sets the system identifier for this Document Type Definition
(DTD).

GetInternalSubset(var Text) Gets the internal subset for this Document Type Definition
(DTD).

SetInternalSubset(String) Sets the internal subset for this Document Type Definition
(DTD).

GetPublicId(var Text) Gets the public identifier for this Document Type Definition
(DTD).

SetPublicId(String) Sets the public identifier for this Document Type Definition
(DTD).

AsXmlNode() Converts the node to an XmlNode.

GetParent(var XmlElement) Gets the parent XmlElement of this node.

GetDocument(var XmlDocument) Gets the XmlDocument for this node.

AddAfterSelf(Any,...) Adds the specified content immediately after this node.

Represents an XML document type.

The following methods are available on the XmlDocumentType data type.

The following methods are available on instances of the XmlDocumentType data type.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocumenttype/xmldocumenttype-create-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocumenttype/xmldocumenttype-create-string-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocumenttype/xmldocumenttype-create-string-string-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocumenttype/xmldocumenttype-create-string-string-string-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocumenttype/xmldocumenttype-getname-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocumenttype/xmldocumenttype-setname-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocumenttype/xmldocumenttype-getsystemid-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocumenttype/xmldocumenttype-setsystemid-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocumenttype/xmldocumenttype-getinternalsubset-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocumenttype/xmldocumenttype-setinternalsubset-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocumenttype/xmldocumenttype-getpublicid-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocumenttype/xmldocumenttype-setpublicid-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocumenttype/xmldocumenttype-asxmlnode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocumenttype/xmldocumenttype-getparent-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocumenttype/xmldocumenttype-getdocument-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocumenttype/xmldocumenttype-addafterself-method

AddBeforeSelf(Any,...) Adds the specified content immediately before this node.

ReplaceWith(Any,...) Replaces this node with the specified content.

Remove() Removes this node from its parent element.

WriteTo(OutStream) Serializes and saves the current node to the given variable.

WriteTo(XmlWriteOptions, OutStream) Serializes and saves the current node to the given variable.

WriteTo(var Text) Serializes and saves the current node to the given variable.

WriteTo(XmlWriteOptions, var Text) Serializes and saves the current node to the given variable.

SelectSingleNode(String, var XmlNode) Selects the first XmlNode that matches the XPath expression.

SelectSingleNode(String, XmlNamespaceManager, var
XmlNode)

Selects the first XmlNode that matches the XPath expression.

SelectNodes(String, var XmlNodeList) Selects a list of nodes matching the XPath expression.

SelectNodes(String, XmlNamespaceManager, var XmlNodeList) Selects a list of nodes matching the XPath expression.

METHOD NAME DESCRIPTION

See Also
Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocumenttype/xmldocumenttype-addbeforeself-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocumenttype/xmldocumenttype-replacewith-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocumenttype/xmldocumenttype-remove-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocumenttype/xmldocumenttype-writeto-outstream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocumenttype/xmldocumenttype-writeto-xmlwriteoptions-outstream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocumenttype/xmldocumenttype-writeto-text-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocumenttype/xmldocumenttype-writeto-xmlwriteoptions-text-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocumenttype/xmldocumenttype-selectsinglenode-string-xmlnode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocumenttype/xmldocumenttype-selectsinglenode-string-xmlnamespacemanager-xmlnode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocumenttype/xmldocumenttype-selectnodes-string-xmlnodelist-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmldocumenttype/xmldocumenttype-selectnodes-string-xmlnamespacemanager-xmlnodelist-method

XmlElement Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

Create(String) Creates an XmlElement node.

Create(String, String) Creates an XmlElement node.

Create(String, String, Any,...) Creates an XmlElement node.

Create(String, Any,...) Creates an XmlElement node.

METHOD NAME DESCRIPTION

HasAttributes() Gets a boolean value indicating whether this element has at
least one attribute.

HasElements() Gets a value indicating whether this element has at least one
child element.

IsEmpty() Gets a value indicating whether this element contains no
content.

Name() Gets the fully qualified name of this element.

LocalName() Gets the local name of this element.

NamespaceUri() Gets the namespace URI of this element.

InnerXml() Gets the markup representing only the child nodes of this
node.

InnerText() Gets the concatenated values of the node and all its child
nodes.

GetNamespaceOfPrefix(String, var Text) Gets the namespace associated with a particular prefix for this
element.

GetPrefixOfNamespace(String, var Text) Gets the prefix associated with a namespace URI for this
element.

RemoveAllAttributes() Removes the attributes of this element.

RemoveAttribute(String) Removes the specified attribute from this element.

Represents an XML element.

The following methods are available on the XmlElement data type.

The following methods are available on instances of the XmlElement data type.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-create-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-create-string-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-create-string-string-joker-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-create-string-joker-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-hasattributes-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-haselements-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-isempty-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-name-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-localname-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-namespaceuri-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-innerxml-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-innertext-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-getnamespaceofprefix-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-getprefixofnamespace-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-removeallattributes-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-removeattribute-string-method

RemoveAttribute(String, String) Removes the specified attribute from this element.

RemoveAttribute(XmlAttribute) Removes the specified attribute from this element.

SetAttribute(String, String) Sets the value of the specified attribute or create it if is not
part of the element's attribute collection.

SetAttribute(String, String, String) Sets the value of the specified attribute or create it if is not
part of the element's attribute collection.

Attributes() Gets a collection of the attributes of this element.

AsXmlNode() Converts the node to an XmlNode.

GetParent(var XmlElement) Gets the parent XmlElement of this node.

GetDocument(var XmlDocument) Gets the XmlDocument for this node.

AddAfterSelf(Any,...) Adds the specified content immediately after this node.

AddBeforeSelf(Any,...) Adds the specified content immediately before this node.

ReplaceWith(Any,...) Replaces this node with the specified content.

Remove() Removes this node from its parent element.

WriteTo(OutStream) Serializes and saves the current node to the given variable.

WriteTo(XmlWriteOptions, OutStream) Serializes and saves the current node to the given variable.

WriteTo(var Text) Serializes and saves the current node to the given variable.

WriteTo(XmlWriteOptions, var Text) Serializes and saves the current node to the given variable.

SelectSingleNode(String, var XmlNode) Selects the first XmlNode that matches the XPath expression.

SelectSingleNode(String, XmlNamespaceManager, var
XmlNode)

Selects the first XmlNode that matches the XPath expression.

SelectNodes(String, var XmlNodeList) Selects a list of nodes matching the XPath expression.

SelectNodes(String, XmlNamespaceManager, var XmlNodeList) Selects a list of nodes matching the XPath expression.

Add(Any,...) Adds the specified content as a child of this element.

AddFirst(Any,...) Adds the specified content at the start of the child list of this
element.

ReplaceNodes(Any,...) Replaces the children nodes of this element with the specified
content.

METHOD NAME DESCRIPTION

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-removeattribute-string-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-removeattribute-xmlattribute-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-setattribute-string-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-setattribute-string-string-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-attributes-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-asxmlnode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-getparent-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-getdocument-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-addafterself-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-addbeforeself-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-replacewith-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-remove-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-writeto-outstream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-writeto-xmlwriteoptions-outstream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-writeto-text-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-writeto-xmlwriteoptions-text-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-selectsinglenode-string-xmlnode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-selectsinglenode-string-xmlnamespacemanager-xmlnode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-selectnodes-string-xmlnodelist-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-selectnodes-string-xmlnamespacemanager-xmlnodelist-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-add-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-addfirst-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-replacenodes-method

RemoveNodes() Removes the child nodes from this element.

GetChildNodes() Gets a list containing the child elements for this element, in
document order.

GetChildElements() Gets a list containing the child elements for this element, in
document order.

GetChildElements(String) Gets a list containing the child elements for this element, in
document order.

GetChildElements(String, String) Gets a list containing the child elements for this element, in
document order.

GetDescendantNodes() Gets a list containing the descendant nodes for this element,
in document order.

GetDescendantElements() Gets a list containing the descendant elements for this
element, in document order.

GetDescendantElements(String) Gets a list containing the descendant elements for this
element, in document order.

GetDescendantElements(String, String) Gets a list containing the descendant elements for this
element, in document order.

METHOD NAME DESCRIPTION

See Also
Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-removenodes-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-getchildnodes-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-getchildelements--method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-getchildelements-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-getchildelements-string-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-getdescendantnodes-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-getdescendantelements--method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-getdescendantelements-string-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlelement/xmlelement-getdescendantelements-string-string-method

XmlNamespaceManager Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

NameTable([XmlNameTable]) Gets or sets the XmlNameTable associated with this object.

AddNamespace(String, String) Adds the given namespace to the collection.

HasNamespace(String) Gets a value indicating whether the supplied prefix has a
namespace defined for the current scope.

LookupNamespace(String, var Text) Gets the namespace URI for the specified prefix.

LookupPrefix(String, var Text) Finds the prefix declared for the given namespace URI.

RemoveNamespace(String, String) Removes the given namespace for the given prefix.

PushScope() Pushes a namespace scope onto the stack.

PopScope() Pops a namespace scope off the stack.

See Also

Represents a namespace manager that can be used to resolve, add and remove namespaces to a collection. It also
provides scope management for these namespaces.

The following methods are available on instances of the XmlNamespaceManager data type.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnamespacemanager/xmlnamespacemanager-nametable-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnamespacemanager/xmlnamespacemanager-addnamespace-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnamespacemanager/xmlnamespacemanager-hasnamespace-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnamespacemanager/xmlnamespacemanager-lookupnamespace-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnamespacemanager/xmlnamespacemanager-lookupprefix-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnamespacemanager/xmlnamespacemanager-removenamespace-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnamespacemanager/xmlnamespacemanager-pushscope-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnamespacemanager/xmlnamespacemanager-popscope-method

XmlNameTable Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

Add(String) Atomizes the specified string and adds it to the
XmlNameTable.

Get(String, var Text) Gets the atomized string with the specified value.

See Also

Represents a table of atomized string objects.

The following methods are available on instances of the XmlNameTable data type.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnametable/xmlnametable-add-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnametable/xmlnametable-get-method

XmlNode Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

IsXmlAttribute() Gets a value indicating whether this node is an XmlAttribute.

IsXmlCData() Gets a value indicating whether this node is an XmlCData.

IsXmlComment() Gets a value indicating whether this node is an XmlComment.

IsXmlDeclaration() Gets a value indicating whether this node is an
XmlDeclaration.

IsXmlDocument() Gets a value indicating whether this node is an XmlDocument.

IsXmlDocumentType() Gets a value indicating whether this node is an
XmlDocumentType.

IsXmlElement() Gets a value indicating whether this node is an XmlElement.

IsXmlProcessingInstruction() Gets a value indicating whether this node is an
XmlProcessingInstruction.

IsXmlText() Gets a value indicating whether this node is an XmlText.

GetParent(var XmlElement) Gets the parent XmlElement of this node.

GetDocument(var XmlDocument) Gets the XmlDocument for this node.

AddAfterSelf(Any,...) Adds the specified content immediately after this node.

AddBeforeSelf(Any,...) Adds the specified content immediately before this node.

ReplaceWith(Any,...) Replaces this node with the specified content.

Remove() Removes this node from its parent element.

WriteTo(OutStream) Serializes and saves the current node to the given variable.

WriteTo(XmlWriteOptions, OutStream) Serializes and saves the current node to the given variable.

WriteTo(var Text) Serializes and saves the current node to the given variable.

WriteTo(XmlWriteOptions, var Text) Serializes and saves the current node to the given variable.

Represents a XML node which can either be for instance an XML attribute, an XML element or a XML document.

The following methods are available on instances of the XmlNode data type.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnode/xmlnode-isxmlattribute-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnode/xmlnode-isxmlcdata-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnode/xmlnode-isxmlcomment-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnode/xmlnode-isxmldeclaration-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnode/xmlnode-isxmldocument-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnode/xmlnode-isxmldocumenttype-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnode/xmlnode-isxmlelement-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnode/xmlnode-isxmlprocessinginstruction-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnode/xmlnode-isxmltext-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnode/xmlnode-getparent-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnode/xmlnode-getdocument-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnode/xmlnode-addafterself-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnode/xmlnode-addbeforeself-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnode/xmlnode-replacewith-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnode/xmlnode-remove-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnode/xmlnode-writeto-outstream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnode/xmlnode-writeto-xmlwriteoptions-outstream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnode/xmlnode-writeto-text-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnode/xmlnode-writeto-xmlwriteoptions-text-method

SelectSingleNode(String, var XmlNode) Selects the first XmlNode that matches the XPath expression.

SelectSingleNode(String, XmlNamespaceManager, var
XmlNode)

Selects the first XmlNode that matches the XPath expression.

SelectNodes(String, var XmlNodeList) Selects a list of nodes matching the XPath expression.

SelectNodes(String, XmlNamespaceManager, var XmlNodeList) Selects a list of nodes matching the XPath expression.

AsXmlAttribute() Converts the node to an XmlAttribute node. The operation will
fail if the node is not an XmlAttribute.

AsXmlCData() Converts the node to an XmlCData node. The operation will
fail if the node is not an XmlCData.

AsXmlComment() Converts the node to an XmlComment node. The operation
will fail if the node is not an XmlComment.

AsXmlDeclaration() Converts the node to an XmlDeclaration node. The operation
will fail if the node is not an XmlDeclaration.

AsXmlDocument() Converts the node to an XmlDocument node. The operation
will fail if the node is not an XmlDocument.

AsXmlDocumentType() Converts the node to an XmlDocumentType node. The
operation will fail if the node is not an XmlDocumentType.

AsXmlElement() Converts the node to an XmlElement node. The operation will
fail if the node is not an XmlElement.

AsXmlProcessingInstruction() Converts the node to an XmlProcessingInstruction node. The
operation will fail if the node is not an
XmlProcessingInstruction.

AsXmlText() Converts the node to an XmlText node. The operation will fail
if the node is not an XmlText.

METHOD NAME DESCRIPTION

See Also
Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnode/xmlnode-selectsinglenode-string-xmlnode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnode/xmlnode-selectsinglenode-string-xmlnamespacemanager-xmlnode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnode/xmlnode-selectnodes-string-xmlnodelist-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnode/xmlnode-selectnodes-string-xmlnamespacemanager-xmlnodelist-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnode/xmlnode-asxmlattribute-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnode/xmlnode-asxmlcdata-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnode/xmlnode-asxmlcomment-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnode/xmlnode-asxmldeclaration-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnode/xmlnode-asxmldocument-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnode/xmlnode-asxmldocumenttype-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnode/xmlnode-asxmlelement-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnode/xmlnode-asxmlprocessinginstruction-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnode/xmlnode-asxmltext-method

XmlNodeList Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

Count() Gets the number of nodes in the XmlNodeList.

Get(Integer, var XmlNode) Gets a node at the given index.

See Also

Represents a collection of XML nodes.

The following methods are available on instances of the XmlNodeList data type.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnodelist/xmlnodelist-count-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlnodelist/xmlnodelist-get-method

Xmlport Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

Import(Integer, var InStream, [var Record]) Reads and parses an incoming XML data stream (XML
document).

Export(Integer, var OutStream, [var Record]) Creates an XML data stream (XML document) and sends it to
a chosen destination.

Run(Integer, [Boolean], [Boolean], [var Record]) Loads and executes the XmlPort that you specify.

METHOD NAME DESCRIPTION

CurrentPath() Returns the CurrentPath for a given node, used when
exporting an XmlPort.

Export() Creates an XML data stream (XML document) and sends it to
a chosen destination.

Import() Reads and parses an incoming XML data stream (XML
document).

Run() Loads and executes the XmlPort that you specify.

FieldDelimiter([String]) Gets and sets the FiledDelimiter used when running,
importing or exporting the XmlPort.

FieldSeparator([String]) Gets and sets the FieldSeparator used when running,
importing or exporting the XmlPort.

RecordSeparator([String]) Gets and sets the RecordSeparator used when running,
importing or exporting the XmlPort.

TableSeparator([String]) Gets and sets the TableSeparator used when running,
importing or exporting the XmlPort.

Filename([String]) Gets the current value of the FileName Property of an XmlPort
and sets this property to a new value.

TextEncoding([TextEncoding]) Gets and sets the TextEncoding used when running, importing
or exporting the XmlPort.

XmlPorts are used to export or import data between an external source and a Microsoft Dynamics Business
Central database.

The following methods are available on the Xmlport data type.

The following methods are available on instances of the Xmlport data type.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlport/xmlport-import-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlport/xmlport-export-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlport/xmlport-run-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlport/xmlportinstance-currentpath-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlport/xmlportinstance-export-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlport/xmlportinstance-import-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlport/xmlportinstance-run-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlport/xmlportinstance-fielddelimiter-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlport/xmlportinstance-fieldseparator-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlport/xmlportinstance-recordseparator-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlport/xmlportinstance-tableseparator-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlport/xmlportinstance-filename-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlport/xmlportinstance-textencoding-method

SetSource(var InStream) Sets the source InStream of the XmlPort.

SetDestination(var OutStream) Sets the destination OutStream of the XmlPort.

ImportFile([Boolean]) Gets or sets the ImportFile property.

SetTableView(var Record) Applies the table view on the current record as the table view
for the page, report, or XmlPort.

Break() Exits from a loop or a trigger in a data item trigger of a report
or XmlPort.

BreakUnbound() Exits from a loop on records in an XmlPort trigger.

Skip() Skips the current iteration of the current report or XmlPort.

Quit() Aborts the processing of a report or XmlPort.

METHOD NAME DESCRIPTION

See Also
Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlport/xmlportinstance-setsource-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlport/xmlportinstance-setdestination-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlport/xmlportinstance-importfile-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlport/xmlportinstance-settableview-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlport/xmlportinstance-break-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlport/xmlportinstance-breakunbound-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlport/xmlportinstance-skip-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlport/xmlportinstance-quit-method

XmlProcessingInstruction Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

Create(String, String) Creates an XmlProcessingInstruction node.

METHOD NAME DESCRIPTION

GetData(var Text) Gets the content of the processing instruction, excluding the
target.

SetData(String) Sets the content of the processing instruction, excluding the
target.

GetTarget(var Text) Gets the target of the processing instruction.

SetTarget(String) Sets the target of the processing instruction.

AsXmlNode() Converts the node to an XmlNode.

GetParent(var XmlElement) Gets the parent XmlElement of this node.

GetDocument(var XmlDocument) Gets the XmlDocument for this node.

AddAfterSelf(Any,...) Adds the specified content immediately after this node.

AddBeforeSelf(Any,...) Adds the specified content immediately before this node.

ReplaceWith(Any,...) Replaces this node with the specified content.

Remove() Removes this node from its parent element.

WriteTo(OutStream) Serializes and saves the current node to the given variable.

WriteTo(XmlWriteOptions, OutStream) Serializes and saves the current node to the given variable.

WriteTo(var Text) Serializes and saves the current node to the given variable.

WriteTo(XmlWriteOptions, var Text) Serializes and saves the current node to the given variable.

SelectSingleNode(String, var XmlNode) Selects the first XmlNode that matches the XPath expression.

Represents a processing instruction, which XML defines to keep processor-specific information in the text of the
document.

The following methods are available on the XmlProcessingInstruction data type.

The following methods are available on instances of the XmlProcessingInstruction data type.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlprocessinginstruction/xmlprocessinginstruction-create-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlprocessinginstruction/xmlprocessinginstruction-getdata-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlprocessinginstruction/xmlprocessinginstruction-setdata-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlprocessinginstruction/xmlprocessinginstruction-gettarget-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlprocessinginstruction/xmlprocessinginstruction-settarget-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlprocessinginstruction/xmlprocessinginstruction-asxmlnode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlprocessinginstruction/xmlprocessinginstruction-getparent-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlprocessinginstruction/xmlprocessinginstruction-getdocument-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlprocessinginstruction/xmlprocessinginstruction-addafterself-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlprocessinginstruction/xmlprocessinginstruction-addbeforeself-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlprocessinginstruction/xmlprocessinginstruction-replacewith-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlprocessinginstruction/xmlprocessinginstruction-remove-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlprocessinginstruction/xmlprocessinginstruction-writeto-outstream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlprocessinginstruction/xmlprocessinginstruction-writeto-xmlwriteoptions-outstream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlprocessinginstruction/xmlprocessinginstruction-writeto-text-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlprocessinginstruction/xmlprocessinginstruction-writeto-xmlwriteoptions-text-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlprocessinginstruction/xmlprocessinginstruction-selectsinglenode-string-xmlnode-method

SelectSingleNode(String, XmlNamespaceManager, var
XmlNode)

Selects the first XmlNode that matches the XPath expression.

SelectNodes(String, var XmlNodeList) Selects a list of nodes matching the XPath expression.

SelectNodes(String, XmlNamespaceManager, var XmlNodeList) Selects a list of nodes matching the XPath expression.

METHOD NAME DESCRIPTION

See Also
Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlprocessinginstruction/xmlprocessinginstruction-selectsinglenode-string-xmlnamespacemanager-xmlnode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlprocessinginstruction/xmlprocessinginstruction-selectnodes-string-xmlnodelist-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlprocessinginstruction/xmlprocessinginstruction-selectnodes-string-xmlnamespacemanager-xmlnodelist-method

XmlReadOptions Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

PreserveWhitespace([Boolean]) Gets or sets a value that indicates whether insignificant white
space should be preserved during parsing.

See Also

Represents the options configuring how XML is loaded from a data source.

The following methods are available on instances of the XmlReadOptions data type.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlreadoptions/xmlreadoptions-preservewhitespace-method

XmlText Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

Create(String) Creates an XmlText node.

METHOD NAME DESCRIPTION

Value([String]) Gets or sets the value of this node.

AsXmlNode() Converts the node to an XmlNode.

GetParent(var XmlElement) Gets the parent XmlElement of this node.

GetDocument(var XmlDocument) Gets the XmlDocument for this node.

AddAfterSelf(Any,...) Adds the specified content immediately after this node.

AddBeforeSelf(Any,...) Adds the specified content immediately before this node.

ReplaceWith(Any,...) Replaces this node with the specified content.

Remove() Removes this node from its parent element.

WriteTo(OutStream) Serializes and saves the current node to the given variable.

WriteTo(XmlWriteOptions, OutStream) Serializes and saves the current node to the given variable.

WriteTo(var Text) Serializes and saves the current node to the given variable.

WriteTo(XmlWriteOptions, var Text) Serializes and saves the current node to the given variable.

SelectSingleNode(String, var XmlNode) Selects the first XmlNode that matches the XPath expression.

SelectSingleNode(String, XmlNamespaceManager, var
XmlNode)

Selects the first XmlNode that matches the XPath expression.

SelectNodes(String, var XmlNodeList) Selects a list of nodes matching the XPath expression.

SelectNodes(String, XmlNamespaceManager, var XmlNodeList) Selects a list of nodes matching the XPath expression.

See Also

Represents the text content of an element or attribute.

The following methods are available on the XmlText data type.

The following methods are available on instances of the XmlText data type.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmltext/xmltext-create-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmltext/xmltext-value-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmltext/xmltext-asxmlnode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmltext/xmltext-getparent-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmltext/xmltext-getdocument-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmltext/xmltext-addafterself-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmltext/xmltext-addbeforeself-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmltext/xmltext-replacewith-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmltext/xmltext-remove-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmltext/xmltext-writeto-outstream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmltext/xmltext-writeto-xmlwriteoptions-outstream-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmltext/xmltext-writeto-text-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmltext/xmltext-writeto-xmlwriteoptions-text-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmltext/xmltext-selectsinglenode-string-xmlnode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmltext/xmltext-selectsinglenode-string-xmlnamespacemanager-xmlnode-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmltext/xmltext-selectnodes-string-xmlnodelist-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmltext/xmltext-selectnodes-string-xmlnamespacemanager-xmlnodelist-method

Getting Started with AL
Developing Extensions

XmlWriteOptions Data Type
3/31/2019 • 2 minutes to read

METHOD NAME DESCRIPTION

PreserveWhitespace([Boolean]) Gets or sets a value that indicates whether insignificant white
space should be preserved during serialization.

See Also

Represents the options configuring how XML is saved.

The following methods are available on instances of the XmlWriteOptions data type.

Getting Started with AL
Developing Extensions

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/xmlwriteoptions/xmlwriteoptions-preservewhitespace-method

Properties Overview
5/21/2019 • 2 minutes to read

See Also

This section describes the properties that are available to developers in Dynamics 365 Business Central.
Properties can be set explicitly in AL code using syntax such as:
Promoted = true;

PromotedCategory = Process;

ApplicationArea = All;

In the sections below, properties are sorted according to the object(s) they apply to.

Table and Table Extension Properties
Page and Page Extension Properties- Codeunit Properties
Query Properties
Report Properties
XMLPort Properties
Control Add-In Properties
View Properties
Integrating with Dynamics 365 for Sales

Methods
Triggers

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-al-method-reference

Table and Table Extension Properties
5/21/2019 • 10 minutes to read

PROPERTY NAME
AVAILABLE FOR TABLE EX TENSION
OBJECT APPLIES TO

AccessByPermission Property

AutoFormatExpression Property

The following topic lists properties that apply to the Table Object and, in some cases, to the Table Extension
Object as specified below.

BLOB field
BigInteger field
Boolean field
Code field
Date field
DateFormula field
DateTime field
Decimal field
Duration field
GUID field
Integer field
OemCode field
OemText field
Option field
RecordID field
TableFilter field
Text field
Time field

BigInteger field
Boolean field
Code field
Date field
DateFormula field
DateTime field
Decimal field
Duration field
GUID field
Integer field
OemCode field
OemText field
Option field
RecordID field
Text field
Time field

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-accessbypermission-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-autoformatexpression-property

AutoFormatType Property

AutoIncrement Property

BlankNumbers Property

BlankZero Property

PROPERTY NAME
AVAILABLE FOR TABLE EX TENSION
OBJECT APPLIES TO

BigInteger field
Boolean field
Code field
Date field
DateFormula field
DateTime field
Decimal field
Duration field
GUID field
Integer field
OemCode field
OemText field
Option field
RecordID field
Text field
Time field

BigInteger field

BigInteger field
Boolean field
Date field
DateTime field
Decimal field
Duration field
Integer field
Option field
Time field

BigInteger field
Boolean field
Decimal field
Duration field
Integer field
Option

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-autoformattype-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-autoincrement-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-blanknumbers-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-blankzero-property

CalcFormula Property

Caption Property X

CaptionClass Property X

PROPERTY NAME
AVAILABLE FOR TABLE EX TENSION
OBJECT APPLIES TO

BigInteger field
Boolean field
Code field
Date field
DateTime field
Decimal field
Duration field
GUID field
Integer field
Media field
MediaSet field
Option field
RecordID field
Text field
Time field

Table object
BLOB Field
BigInteger field
Boolean field
Code field
Date field
DateFormula field
DateTime field
Decimal field
Duration field
GUID field
Integer field
OemCode field
OemText field
Option field
RecordID field
TableFilter field
Text field
Time field

BigInteger field
Boolean field
Code field
Date field
DateFormula field
DateTime field
Decimal field
Duration field
GUID field
Integer field
OemCode field
OemText field
Option field
RecordID field
Text field
Time field

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-calcformula-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-caption-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-captionclass-property

CaptionML Property X

CharAllowed Property

ClosingDates Property X

Compressed Property

Data Type

DataClassification

DataCaptionFields Property X

DataPerCompany Property

DateFormula Property

PROPERTY NAME
AVAILABLE FOR TABLE EX TENSION
OBJECT APPLIES TO

Table object
BLOB Field
BigInteger field
Boolean field
Code field
Date field
DateFormula field
DateTime field
Decimal field
Duration field
GUID field
Integer field
OemCode field
OemText field
Option field
RecordID field
TableFilter field
Text field
Time field

Code field
OemCode field
OemText field
Text field

Date field

BLOB field

Table fields

Table object

Table object

Table object

Code
OemCode field
OemText field
Text field

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-captionml-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-charallowed-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-closingdates-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-compressed-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-data-type-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-dataclassification-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-datacaptionfields-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-datapercompany-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-dateformula-property

Description Property X

DrillDownPageID Property

Editable Property

PROPERTY NAME
AVAILABLE FOR TABLE EX TENSION
OBJECT APPLIES TO

Table object
BLOB field
BigInteger field
Boolean field
Code field
Date field
DateFormula field
DateTime field
Decimal field
Duration field
GUID field
Integer field
OemCode field
OemText field
Option field
RecordID field
TableFilter field
Text field
Time field

Table object

BigInteger field
Boolean field
Code field
Date field
DateFormula field
DateTime field
Decimal field
Duration field
GUID field
Integer field
OemCode field
OemText field
Option field
RecordID field
Text field
Time field

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-description-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-drilldownpageid-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-editable-property

Enabled Property

ExtendedDataType Property

ExternalName Property

ExternalSchema Property

PROPERTY NAME
AVAILABLE FOR TABLE EX TENSION
OBJECT APPLIES TO

BLOB field
BigInteger field
Boolean field
Code field
Date field
DateFormula field
DateTime field
Decimal field
Duration field
GUID field
Integer field
OemCode field
OemText field
Option field
RecordID field
TableFilter field
Text field
Time field

BigInteger field
Boolean field
Code field
Date field
DateFormula field
DateTime field
Decimal field
Duration field
GUID field
Integer field
OemCode field
OemText field
Option field
RecordID field
Text field
Time field

Table object

Table object

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-enabled-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-extendeddatatype-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-externalname-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-externalschema-property

FieldClass Property

ID Property

InitValue Property

LinkedInTransaction Property

LinkedObject Property

LookupPageID Property

PROPERTY NAME
AVAILABLE FOR TABLE EX TENSION
OBJECT APPLIES TO

BigInteger field
Boolean field
Code field
Date field
DateFormula field
DateTime field
Decimal field
Duration field
GUID field
Integer field
OemCode field
OemText field
Option field
RecordID field
Text field
Time field

Table object

BigInteger field
Boolean field
Code field
Date field
DateFormula field
Decimal field
Duration field
GUID field
Integer field
OemCode field
OemText field
Option field
RecordID field
Text field
Time field

Table object

Table object

Table object

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-fieldclass-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-id-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-initvalue-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-linkedintransaction-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-linkedobject-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-lookuppageid-property

MaxValue Property

MinValue Property

Name Property

NotBlank Property

Numeric Property

ObsoleteReason

PROPERTY NAME
AVAILABLE FOR TABLE EX TENSION
OBJECT APPLIES TO

BigInteger field
Boolean field
Date field
DateTime field
Decimal field
Duration field
Integer field
Option field
Time field

BigInteger field
Boolean field
Date field
DateTime field
Decimal field
Duration field
Integer field
Option field
Time field

Table object

BigInteger field
Boolean field
Code field
Date field
DateFormula field
DateTime field
Decimal field
Duration field
GUID field
Integer field
OemCode field
OemText field
Option field
RecordID field
Text field
Time field

Code field
OemCode field
OemText field
Text field

Table object
Table keys
Text field

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-maxvalue-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-minvalue-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-name-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-notblank-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-numeric-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-obsoletereason-property

ObsoleteState

OptionCaption Property X

OptionMembers Property

PasteIsValid Property

Permissions Property

ReplicateData Property

SignDisplacement Property

SQLDataType Property

SqlTimeStamp Property

SubType Property (BLOB)

PROPERTY NAME
AVAILABLE FOR TABLE EX TENSION
OBJECT APPLIES TO

Table object
Table keys
Text field

Option field

Option field

Table object

Table object

Table object

BigInteger field
Boolean field
Date field
DateTime field
Decimal field
Duration field
Integer field
Option field
Time field

Code field
OemCode field

BigInteger

BLOB field

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-obsoletestate-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-optioncaption-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-optionmembers-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-pasteIsvalid-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-permissions-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-replicatedata-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-signdisplacement-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-sql-data-type-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-sql-timestamp-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-subtype-blob-property

TableRelation Property

TableType Property

ValidateTableRelation Property

PROPERTY NAME
AVAILABLE FOR TABLE EX TENSION
OBJECT APPLIES TO

BigInteger field
Boolean field
Code field
Date field
DateFormula field
DateTime field
Decimal field
Duration field
GUID field
Integer field
OemCode field
OemText field
Option field
RecordID field
Text field
Time field

Table object

BigInteger field
Boolean field
Code field
Date field
DateFormula field
DateTime field
Decimal field
Duration field
GUID field
Integer field
OemCode field
OemText field
Option field
RecordID field
Text field
Time field

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-tablerelation-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-tabletype-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-validatetablerelation-property

ValuesAllowed Property

Width Property X

PROPERTY NAME
AVAILABLE FOR TABLE EX TENSION
OBJECT APPLIES TO

See Also

BigInteger field
Boolean field
Code field
Date field
DateFormula field
DateTime field
Decimal field
Duration field
GUID field
Integer field
OemCode field
OemText field
Option field
RecordID field
Text field
Time field

BigInteger field
Code field
Decimal field
Duration field
Integer field
OemCode field
OemText field
Text field

Properties
Page and Page Extension Properties

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-valuesallowed-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-width-property

Page and Page Extension Properties Overview
5/21/2019 • 4 minutes to read

Page object properties

PROPERTY NAME
AVAILABLE FOR PAGE EX TENSION
OBJECT APPLIES TO

AccessByPermission Property

AdditionalSearchTerms Property

AdditionalSearchTermsML Property

ApplicationArea Property X

AssistEdit Property

AutoFormatExpression Property

AutoFormatType Property

AutoSplitKey Property

BlankNumbers Property

BlankZero Property

This topic lists properties that apply to the Page Object and Page Extension Object.

The following properties all apply to the page object, only some of these properties can be set for a page
extension object as specified below.

Page object
Field control
Part control
Action

Page object

Page object

Page object
Field control
Part control
Action

Field control

Field control

Field control

Page object

Field control

Field control

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-accessbypermission-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-additionalsearchterms-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-additionalsearchtermsml-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-applicationarea-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-assistedit-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-autoformatexpression-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-autoformattype-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-autosplitkey-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-blanknumbers-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-blankzero-property

CaptionML Property X

CaptionClass Property X

CharAllowed Property

ClosingDates Property X

ColumnSpan Property

ContextSensitiveHelpPage Property X

ContainerType Property X

DataCaptionExpression Property X

DateFormula Property

DecimalPlaces Property

DelayedInsert Property

DeleteAllowed Property

Description Property X

DrillDown Property

PROPERTY NAME
AVAILABLE FOR PAGE EX TENSION
OBJECT APPLIES TO

Page object
Container control
Group control
Field control
Part control
ActionGroup
Action
Separator

Field control

Field control

Field control

Field control

Page object

Container control

Page object

Field control

Field control

Page object

Page object

Page object
Container control
Group control
Field control
Part control
ActionGroup
Action

Field control

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-captionml-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-captionclass-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-charallowed-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-closingdates-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-columnspan-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-contextsensitivehelppage-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-containertype-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-datacaptionexpr-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-dateformula-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-decimalplaces-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-delayedinsert-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-deleteallowed-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-description-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-drilldown-property

DrillDownPageId Property

Editable Property

Ellipsis Property

Enabled Property X

EntityName Property

EntitySetName Property

ExtendedDataType Property

FreezeColumn Property X

GridLayout Property

Gesture Property

HideValue Property X

IndentationColumn Property

IndentationControls Property

InFooterBar Property X

InsertAllowed Property

PROPERTY NAME
AVAILABLE FOR PAGE EX TENSION
OBJECT APPLIES TO

Field control

Page object
Group control
Field control
Part control

Action

Group control
Field control
Part control
ActionGroup
Action

Page object
Part control

Page object
Part control

Field control

Group control

Group control

Action

Field control

Group control

Group control

Action

Page object

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-drilldownpageid-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-editable-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-ellipsis-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-enabled-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-entityname-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-entitysetname-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-extendeddatatype-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-freezecolumnid-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-gridlayout-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-gesture-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-hidevalue-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-indentationcolumnname-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-indentationcontrols-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-infooterbar-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-insertallowed-property

InstructionalTextML Property X

Image Property

Importance Property X

LinksAllowed Property

LookupPageId Property

Lookup Property

ModifyAllowed Property

MultipleNewLines Property

MinValue Property

MaxValue Property

MultiLine Property

NotBlank Property

Numeric Property

ODataEDMType Property X

ODataKeyFields Property

OptionCaptionML Property

PageType Property

PROPERTY NAME
AVAILABLE FOR PAGE EX TENSION
OBJECT APPLIES TO

Page object
Group control

Field control
ActionGroup
Action

Field control

Page object

Field control

Field control

Page object

Page object

Field control

Field control

Field control

Field control

Field control

Page object
Field control

Page object

Field control

Page object

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-instructionaltextml-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-image-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-importance-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-linksallowed-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-lookuppageid-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-lookup-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-modifyallowed-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-multiplenewlines-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-minvalue-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-maxvalue-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-multiline-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-notblank-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-numeric-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-odataedmtype-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-odatakeyfields-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-optioncaptionml-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-pagetype-property

Permissions Property

PopulateAllFields Property

Promoted Property X

PromotedActionCategoriesML
Property

X

PromotedCategory Property X

PromotedIsBig Property X

PromotedOnly Property X

Provider Property

QuickEntry Property X

RefreshOnActivate Property

RowSpan property

RunObject Property

RunPageLink Property

RunPageMode Property

RunPageOnRec Property

RunPageView Property

SaveValues Property

Scope Property

ShortcutKey Property

PROPERTY NAME
AVAILABLE FOR PAGE EX TENSION
OBJECT APPLIES TO

Page object

Page object

Action

Page object

Action

Action

Action

Part control

Field control

Page object

Field control

Action

Action

Action

Action

Action

Page object

Action

Action

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-permissions-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-populateallfields-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-promoted-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-promotedactioncategoriesml-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-promotedcategory-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-promotedisbig-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-promotedonly-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-providerid-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-quickentry-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-refreshonactivate-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-rowspan-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-runobject-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-runpagelink-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-runpagemode-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-runpageonrec-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-runpageview-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-savevalues-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-scope-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-shortcutkey-property

ShowAsTree Property

ShowCaption Property X

ShowFilter Property

ShowMandatory Property

SignDisplacement Property

SourceTable Property

SourceTableTemporary Property

SourceTableView Property

Style Property X

StyleExpr Property X

SubPageView Property

SubPageLink Property

TableRelation Property

ToolTipML Property X

UpdatePropagation Property

UsageCategory Property

ValuesAllowed Property

PROPERTY NAME
AVAILABLE FOR PAGE EX TENSION
OBJECT APPLIES TO

Group control

Group control
Field control

Page object
Part control

Field control

Field control

Page object

Page object

Page object

Field control

Field control

Part control

Part control

Field control

Field control
Part control
ActionGroup
Action

Part control

Page object

Field control

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-showastree-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-showcaption-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-showfilter-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-showmandatory-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-signdisplacement-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-sourcetable-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-sourcetabletemporary-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-sourcetableview-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-style-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-styleexpr-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-subpageview-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-subpagelink-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-tablerelation-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-tooltipml-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-updatepropagation-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-usagecategory-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-valuesallowed-property

Visible Property X

Width Property X

PROPERTY NAME
AVAILABLE FOR PAGE EX TENSION
OBJECT APPLIES TO

See Also

Group control
Field control
Part control
ActionGroup
Action

Field control

Properties
Page Object
Page Extension Object
Report Object
Table and Table Extension Properties

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-visible-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-width-property

Codeunit Properties
5/21/2019 • 2 minutes to read

PROPERTY NAME APPLIES TO

ConstValue Property

ConstValueML Property

Dimensions Property

Event Property

EventMethod Property

EventPublisherElement Property

EventPublisherObject Property

EventSubscriberInstance Property

EventType Property

GlobalVarAccess Property

HandlerFunctions Property

ID Property

This topic lists properties that apply to the Codeunit object, variables, text constants, methods, parameters, and
return values.

Global Text Constants
AL Locals Text Constants

Global Text Constants
AL Locals Text Constants

Global Variables
AL Locals Variables
AL Locals Parameters
AL Locals Return Values

Global Methods

Global Methods

Global Methods

Global Methods

Codeunit Object

Global Methods

Global Methods

Global Methods

Global Variables
Global Text Constants
Global Methods
AL Locals Variables
AL Locals Text Constants
AL Locals Parameters
AL Locals Return Values

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-constvalue-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-constvalueml-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-dimensions-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-event-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-eventmethod-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-eventpublisherelement-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-eventpublisherobject-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-eventsubscriberinstance-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-eventtype-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-globalvaraccess-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-handlermethods-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-id-property

IncludeInDataSet Property

IncludeSender Property

Local Property

MethodType Property (Upgrade Codeunits)

MethodType Property (Test Codeunits)

Name Property

OptionString Property

Permissions Property

RunOnClient Property

SingleInstance Property

SubType Property (Codeunit)

SuppressDispose Property

TableNo Property

Temporary Property

TestIsolation Property

TransactionModel Property

TryMethod Property

WithEvents Property

PROPERTY NAME APPLIES TO

See Also

Global Variables

Global Methods

Global Methods

Global Methods

Global Methods

Codeunit Object

Global Variables
AL Locals Variables

Codeunit Object

AL Locals variables

Codeunit Object

Codeunit Object

AL Locals variables

Codeunit Object

AL Locals Variables

Codeunit Object

Global Methods

Global Methods

Global Variables

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-includeindataset-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-includesender-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-local-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-methodtype-property-upgrade-codeunits
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-methodtype-property-test-codeunits
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-name-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-optionstring-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-permissions-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-runonclient-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-singleinstance-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-subtype-property-codeunit
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-suppressdispose-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-tableno-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-temporary-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-testisolation-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-transactionmodel-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-trymethod-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-withevents-property

Developing Extensions
AL Development Environment
Table and Table Extension Properties
Page and Page Extension Properties Overview

Query Properties
5/28/2019 • 2 minutes to read

PROPERTY NAME APPLIES TO

APIPublisher Property

APIVersion Property (Query)

APIGroup Property

Caption Property

CaptionML Property

ColumnFilter Property

DataItemLink Property (Query)

DataItemLinkType Property

DataItemTable Property

DataItemTableFilter Property

DataSource Property

Description Property

EntityName Property

This topic lists properties that apply to the query object.

Query Object

Query Object

Query Object

Query Object
Column control
Filter control

Query Object
Column control
Filter control

Column control
Filter control

DataItem control

DataItem control

DataItem control

DataItem control

Column control
Filter control

Query Object
DataItem control
Column control
Filter control

Query Object

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-apipublisher-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-apiversion-query-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-apigroup-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-caption-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-captionml-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-columnfilter-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-dataitemlink-query-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-dataitemlink-type-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-dataitemtable-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-dataitemtable-filter-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-datasource-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-description-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-entityname-property

EntitySetName Property

ID Property

Indentation Property (Query)

Method Property

MethodType Property

Name Property

OrderBy Property

Permissions Property

QueryCategory Property

QueryType Property

ReadState Property

ReverseSign Property

TopNumberOfRows Property

PROPERTY NAME APPLIES TO

See Also

Query Object

Query Object
DataItem control
Column control
Filter control

DataItem control
Column control
Filter control

Column control

Column control

Query Object
DataItem control
Column control
Filter control

Query Object

Query Object

Query Object

Query Object

Query Object

Column control

Query Object

Properties
Table and Table Extension Properties
Page and Page Extension Properties Overview

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-entitysetname-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-id-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-indentation-query-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-method-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-methodtype-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-name-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-orderby-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-permissions-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-querycategory-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-querytype-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-readstate-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-reversesign-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-topnumberofrows-property

Report Properties
6/17/2019 • 2 minutes to read

PROPERTY NAME APPLIES TO

AccessByPermission Property

AdditionalSearchTerms Property

AdditionalSearchTermsML Property

ApplicationArea Property

AutoCalcField Property

AutoFormatExpr Property

AutoFormatType Property

Caption Property

CaptionML Property

CalcFields Property

ContextSensitiveHelpPage Property

DataItemLink Property (Reports)

DataItemLinkReference Property

DataItemTable Property

DataItemTableView Property

This topic lists properties of the report object.

Report Object

Report object

Report object

Report Object

Column controls

Column controls

Column controls

Report Object
Report Labels

Report Object
Report Labels

DataItem control

Report Object

DataItem controls

DataItem controls

DataItem controls

DataItem controls

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-accessbypermission-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-additionalsearchterms-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-additionalsearchtermsml-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-applicationarea-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-autocalcfield-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-autoformatexpr-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-autoformattype-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-caption-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-captionml-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-calcfields-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-contextsensitivehelppage-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-dataitemlink-reports-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-dataitemlink-reference-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-dataitemtable-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-dataitemtableview-property

DecimalPlaces Property

Description Property

EnableExternalAssemblies Property

EnableExternalImages Property

EnableHyperlinks Property

ID Property

IncludeCaption Property

Indentation Property (Reports)

MaxIteration Property

Name Property

OptionCaption Property

OptionCaptionML Property

OptionString Property

PaperSourceDefaultPage Property

PaperSourceFirstPage Property

PaperSourceLastPage Property

PROPERTY NAME APPLIES TO

Column controls

Report Object
Column controls
Report Labels

Report Object

Report Object

Report Object

Report Object
DataItem controls
Column controls
Report Labels

Column controls

DataItem controls
Column controls

DataItem controls

Report Object
DataItem controls
Column controls
Report Labels

Column controls

Column controls

Column controls

Report Object

Report Object

Report Object

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-decimalplaces-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-description-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-enableexternalassemblies-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-enableexternalimages-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-enablehyperlinks-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-id-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-includecaption-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-indentation-reports-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-maxIteration-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-name-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-optioncaption-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-optioncaptionml-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-optionstring-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-papersourcedefaultpage-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-papersourcefirstpage-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-papersourcelastpage-property

PDFFontEmbedding Property

Permissions Property

PrintOnlyIfDetail Property

ProcessingOnly Property

ReqFilterFields Property

ReqFilterHeading Property

ReqFilterHeadingML Property

ShowPrintStatus Property

SourceExpr Property

TransactionType Property

UsageCategory Property

UseRequestPage Property

UseTemporary Property (Reports)

UseSystemPrinter Property

PROPERTY NAME APPLIES TO

See Also

Report Object

Report Object

DataItem controls

Report Object

DataItem controls

DataItem controls

DataItem controls

Report Object

Column controls

Report Object

Report Object

Report Object

DataItem controls

Report Object

Properties
Table and Table Extension Properties
Page and Page Extenstion Properties Overview

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-PDF-fontembedding-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-permissions-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-printonlyifdetail-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-processingonly-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-reqfilterfields-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-reqfilterheading-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-reqfilterheadingml-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-showprintstatus-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-sourceexpr-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-transactiontype-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-usagecategory-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-userequestpage-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-usetemporary-report-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-usesystemprinter-property

XMLport Properties
6/17/2019 • 3 minutes to read

PROPERTY NAME XMLPORT OBJECT

AutoCalcField Property

AutoReplace Property

AutoSave Property

AutoUpdate Property

CalcFields Property

Caption Property

CaptionML Property

ContextSensitiveHelpPage Property

CurrentPath Property

DefaultFieldsValidation Property

DefaultNamespace Property

Direction Property

Encoding Property

FieldValidate Property

This topic lists properties of the XMLport object, element, and attribute.

Field elements
Field attributes

Table elements
Table attributes

Table elements
Table attributes

Table elements
Table attributes

Table elements
Table attributes

XMLport object

XMLport object

Report Object

XMLport object

XMLport object

XMLport object

XMLport object

XMLport object

Field elements
Field attributes

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-autocalcfield-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-autoreplace-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-autosave-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-autoupdate-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-calcfields-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-caption-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-captionml-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-contextsensitivehelppage-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-currentpath-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-defaultfieldsvalidation-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-defaultnamespace-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-direction-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-encoding-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-fieldvalidate-property

FileName Property

Format Property

Format-Evaluate Property

ID Property

Indentation Property (XMLports)

InlineSchema Property

LinkFields Property

LinkTable Property

LinkTableForceInsert Property

MaxOccurs Property

MinOccurs Property

Name Property

NamespacePrefix Property

Namespaces Property

PROPERTY NAME XMLPORT OBJECT

XMLport object

XMLport object

XMLport object

XMLport object

Text elements
Table elements
Field elements
Text attributes
Table attributes
Field attributes

XMLport object

Table elements
Table attributes

Table elements
Table attributes

Table elements
Table attributes

Text elements
Table elements
Field elements

Text elements
Table elements
Field elements

XMLport object

XMLport object

XMLport object

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-filename-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-format-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-format-evaluate-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-id-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-indentation-xmlports-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-inlineschema-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-linkfields-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-linktable-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-linktableforceinsert-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-maxoccurs-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-minoccurs-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-name-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-namespaceprefix-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-namespaces-property

NodeName Property

NodeType Property

Occurrence Property

Permissions Property

PreserveWhiteSpace Property

ReqFilterFields Property

ReqFilterHeading Property

ReqFilterHeadingML Property

SourceField Property

SourceTable Property (XMLports)

SourceTableView Property (XMLports)

PROPERTY NAME XMLPORT OBJECT

Text elements
Table elements
Field elements
Text attributes
Table attributes
Field attributes

Text elements
Table elements
Field elements
Text attributes
Table attributes
Field attributes

Text attributes
Table attributes
Field attributes

XMLport object

XMLport object

Table elements
Table attributes

Table elements
Table attributes

Table elements
Table attributes

Field elements
Field attributes

Table elements
Table attributes

Table elements
Table attributes

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-nodename-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-nodetype-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-occurrence-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-permissions-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-preservewhitespace-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-reqfilterfields-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-reqfilterheading-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-reqfilterheadingml-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-sourcefield-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-sourcetable-xmlports-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-sourcetableview-property

SourceType Property

TextEncoding Property (XMLports)

TextType Property

TransactionType Property

Unbound Property

UseDefaultNamespace Property

UseLax Property

UseRequestPage Property

UseTemporary Property (XMLports)

VariableName Properties

Width Property (XMLport)

PROPERTY NAME XMLPORT OBJECT

See Also

Text elements
Table elements
Field elements
Text attributes
Table attributes
Field attributes

XMLport object

Text elements
Text attributes

XMLport object

Text elements
Field elements

XMLport object

XMLport object

XMLport object

Table elements
Table attributes

Text elements
Table elements
Text attributes
Table attributes

Text elements
Table elements
Field elements
Text attributes
Table attributes
Field attributes

Properties
Table and Table Extension Properties
Page and Page Extension Properties Overview

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-sourcetype-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-textencoding-xmlports-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-texttype-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-transactiontype-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-unbound-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-usedefaultnamespace-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-uselax-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-userequestpage-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-usetemporary-xmlport-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-variablename-properties
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-width-xmlports-property

Control Add-In Properties
5/28/2019 • 2 minutes to read

See also

The following topic lists properties that apply to the Control Add-In Object.

VerticalShrink
HorizontalShrink
MinimumHeight
MinimumWidth
MaximumHeight
MaximumWidth
VerticalStretch
HorizontalStretch
RequestedHeight
RequestedWidth

Codeunit Properties
Page Properties
Query Properties
Report Properties
Table Properties
XMLPort Properties

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-verticalshrink-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-horizontalshrink-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-minimumheight-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-minimumwidth-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-maximumheight-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-maximumwidth-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-verticalstretch-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-horizontalstretch-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-requestedheight-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-requestedwidth-property

View Properties
5/28/2019 • 2 minutes to read

See also

The following topic lists properties that apply to Views.

Filters
OrderBy

Codeunit Properties
Page Properties
Query Properties
Report Properties
Table Properties
XMLPort Properties

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-filters-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-orderby-property

Integrating Dynamics 365 for Sales for Extension
Development
3/31/2019 • 2 minutes to read

IMPORTANT

Associated table and field properties

PROPERTIES APPLIES TO DESCRIPTION

TableType Property Tables Specifies the table type. This enables the
table to integrate with the external
database. For example, CRM .

ExternalName Property Tables, Fields Specifies the name of the original table
in the external database when used as a
table property.

Specifies the field name of the
corresponding field specified in the
external table when used as a field
property.

ExternalAccess Property Fields Specifies the access to the underlying
CRM entity when CRM tables are
generated using the cmdlet.

ExternalType Property Fields Specifies the data type of the
corresponding field in Dynamics 365 for
Sales table.

OptionMembers Property Fields Sets the option values for a field, text
box or variable.

OptionOrdinalValues Property Fields Specifies the list of option values. You
can set this property, if the ExternalType
is set to Picklist.

Enabling the entity

Develop extensions and streamline the workflow by synchronizing the Sales data from Microsoft Dynamics 365
for Sales with Dynamics 365 Business Central.

For developing extensions to integrate with sales data, you simply enable the tables used in Dynamics 365 for
Sales. The extension development process includes the following set of properties to enable field mapping. You
can enable the field mapping by using the following properties.

Extending tables from Dynamics 365 for Sales is currently not supported.

The following properties are used for integrating with Microsoft Dynamics 365 for Sales:

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-tabletype-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-externalname-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-externalaccess-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-externaltype-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-optionstring-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-optionordinalvalues-property

Snippet support

Example

table 50100 SalesIntegration
{
 TableType = CRM;
 ExternalName = 'Sales';

 fields
 {
 field(1; ActualSales; Integer)
 {
 ExternalName = 'ActualSale';
 ExternalAccess = Full;
 ExternalType = 'String';
 }

 field(2; SalesCategories; Option)
 {
 ExternalName='SalesCategory';
 ExternalAccess = Read;
 ExternalType = 'Picklist';
 OptionMembers = Manufacturing, Marketing, Support;
 OptionOrdinalValues = -1, 1, 2;
 }
 }
}

See Also

Typically in Dynamics 365 for Sales, entities handle the internal processes. In order to access to the underlying
CRM entity, you use the TableType property and select the value called CRM. This enables the table as an
integration table for integrating Dynamics 365 Business Central with Dynamics 365 for Sales. The table is mainly
based on an entity in Dynamics 365 for Sales, such as the Accounts entity.

Typing the shortcut ttable will create the basic layout for a table object when using the AL Language extension in
Visual Studio Code.

In the following example, the SalesIntegration table uses the TableType and ExternalName properties to link the
underlying CRM entity for mapping the fields from the Sales table with the specified fields.

Table Properties
TableType Property

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-tabletype-property

Triggers Overview
4/24/2019 • 2 minutes to read

See Also

The following sections describe the triggers that are available for the different AL objects:

Table and Field Triggers
Page and Action Triggers
Codeunit Triggers
Report and Data Item Triggers
XMLport Triggers
Query Triggers

AL Method Reference
Properties

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-al-method-reference

Table and Field Triggers
5/21/2019 • 2 minutes to read

TABLE TRIGGER RUNS WHEN

OnInsert Trigger A new record is inserted into the table.

OnModify Trigger A record in the table is modified.

OnDelete Trigger A record in the table is deleted.

OnRename Trigger A record is modified in a primary key field.

FIELD TRIGGER RUNS WHEN

OnValidate (Fields) Trigger Data is entered in a field or when the VALIDATE (Record) is
executed.

OnLookup (Fields) Trigger Lookup is activated.

OnBeforeValidate (Fields) Trigger Before data is entered in a field.

OnAfterValidate (Fields) Trigger After data is entered in a field.

See Also

Dynamics 365 Business Central recognizes certain actions that happen to a table when you use it, for example,
when you insert or modify data. In response, you specify to execute AL code defined in a trigger. Triggers are
predefined methods that are executed when certain actions happen. The bodies of these methods are initially
empty and must be defined by the developer. Defining AL code in triggers allows you to change the default
behavior of Dynamics 365 Business Central.

The triggers in a table can be divided into two categories:

Table triggers

Field triggers

Tables have the following triggers.

Fields have the following triggers.

Table Object
Table Extension Object
Triggers
Table and Table Extension Properties

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-oninsert-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onmodify-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-ondelete-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onrename-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onvalidate-fields-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/record/record-validate-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onlookup-fields-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onbeforevalidate-fields-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onaftervalidate-fields-trigger

Page and Action Triggers
3/31/2019 • 2 minutes to read

IMPORTANT

General Triggers

PAGE TRIGGER NAME RUNS

OnInit Trigger When the page is loaded, but before the controls are available.

OnOpenPage Trigger When the page is initialized and the controls are available.

OnClosePage Trigger When the page about to close and after OnQueryClosePage
Trigger trigger.

OnFindRecord Trigger When the page is opened and a record is retrieved from a
table.

OnNextRecord Trigger When the page changes from displaying one record to
another record in a table. For example, on a Customer card
page, this happens when a user selects Next (Ctrl+Page
Down) or Previous (Ctrl+Page Up).

OnAfterGetCurrRecord Trigger After the current record is retrieved from the table.

OnAfterGetRecord Trigger When a record has been retrieved but not yet displayed.

OnNewRecord Trigger When a new record has been initialized but not yet displayed.

OnInsertRecord Trigger When a new record is about to be inserted in the table.

OnModifyRecord Trigger When a record is about to be modified in the table.

Page triggers allow you to use AL code to control the behavior of the system as a result of an event on the page,
such as a page opening or a field changing its value. You typically use page triggers for advanced validation and
logic.

Page triggers can be divided into three categories:

General page triggers that apply to the entire page

Field page triggers that apply to a field control on a page

Action triggers that apply to an action on a page.

If you define two methods that have the same name, one defined in a page and the other in a table that is referenced by the
page, you cannot invoke the method defined in the page directly. By default, a call to the method invokes the method that is
defined in the table. This behavior occurs when the method is called from a source expression or a trigger.

The following table lists triggers that apply to the entire page.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-oninit-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onopenpage-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onclosepage-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onqueryclosepage-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onfindrecord-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onnextrecord-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onaftergetcurrrecord-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onaftergetrecord-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onnewrecord-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-oninsertrecord-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onmodifyrecord-trigger

OnDeleteRecord Trigger When a record is about to be deleted from the table.

OnQueryClosePage Trigger When the page is about to close, but before the OnClosePage
Trigger.

PAGE TRIGGER NAME RUNS

Field Triggers

CONTROL TRIGGER RUNS

OnValidate (Page fields) Trigger When the user changes the value in a field and then selects
away from the field so that the field loses focus.

OnLookup (Page fields) Trigger When the user requests a lookup by clicking a field's lookup
button or pressing F4.

OnDrillDown Trigger When the user requests a drill-down by choosing the field's
drill-down button or pressing Shift+F8.

OnAssistEdit Trigger When the user requests assist-edit by choosing an AssistEdit
button or by pressing Shift+F4.

Action Triggers

TRIGGERS RUNS

OnAction Trigger When an action is initiated on a page.

See Also

The following table describes the triggers that are available on field controls.

The following table lists triggers that apply to actions on a page.

Triggers

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-ondeleterecord-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onqueryclosepage-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onclosepage-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onvalidate-page-fields-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onlookup-page-fields-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-ondrilldown-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onassistedit-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onaction-trigger

Codeunit Triggers
6/17/2019 • 2 minutes to read

CODEUNIT TRIGGER NAME RUNS

OnBeforeTestRun Trigger Before a test method of a test codeunit is run.

OnAfterTestRun Trigger After a test method of a test codeunit is run.

OnCheckPreconditionsPerCompany Trigger Before an extension upgrade of an upgrade codeunit is run.

OnCheckPreconditionsPerDatabase Trigger Before an extension upgrade of an upgrade codeunit is run.

OnUpgradePerCompany Trigger When an extension upgrade of an upgrade codeunit is run.

OnUpgradePerDatabase Trigger When an extension upgrade of an upgrade codeunit is run.

OnValidateUpgradePerCompany Trigger After an extension upgrade of an upgrade codeunit is run.

OnValidateUpgradePerDatabase Trigger After an extension upgrade of an upgrade codeunit is run.

OnInstallAppPerCompany Trigger When an extension installation or reinstallation in an install
codeunit is run.

OnInstallAppPerDatabase Trigger When an extension installation or reinstallation in an install
codeunit is run.

See Also

The following triggers apply to codeunits.

Triggers

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onbeforetestrun-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onaftertestrun-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-oncheckpreconditionspercompany-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-oncheckpreconditionsperdatabase-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onupgradepercompany-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onupgradeperdatabase-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onvalidateupgradepercompany-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onvalidateupgradeperdatabase-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-oninstallapppercompany-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-oninstallappperdatabase-trigger

Report and Data Item Triggers
3/31/2019 • 2 minutes to read

Report Triggers

TRIGGER RUNS

OnInitReport Trigger When the report is loaded.

OnPreReport Trigger Before the report is run, but after the RequestPage has been
run.

OnPostReport Trigger After the report has run, but not if the report was stopped
manually or by the QUIT Method (Report, XMLport).

Data Item Triggers

TRIGGER RUNS

OnPreDataItem Trigger Before the data item is processed, but after the associated
variable has been initialized.

OnAfterGetRecord (Data Items) Trigger When a record has been retrieved from the table.

OnPostDataItem Trigger When the data item has been iterated for the last time.

See Also

In reports, triggers are typically used to perform calculations and verification. Triggers let you control how data is
selected and retrieved in a more complex and effective way than you can achieve by using properties.

The following table lists triggers that apply to the report itself.

The following table lists triggers that apply to each data item on the report.

Report Triggers
Triggers

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-oninitreport-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onprereport-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onpostreport-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-quit-method-report-xmlport
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onpredataitem-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onaftergetrecord-data-items-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onpostdataitem-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-report-triggers

XMLport Triggers
3/31/2019 • 2 minutes to read

XMLport triggers
XMLPORT TRIGGER RUNS

OnAfterAssignField Trigger Runs after a field has been assigned a value and before it is
validated and imported.

This trigger is only used to import data.

OnAfterAssignVariable Trigger Runs after the value defined in the XML document is assigned
to the text variable.

This trigger is only used to import data.

OnAfterGetField Trigger Runs after a field is passed to the XML document.

This trigger is only used to export data.

OnAfterGetRecord (XMLports) Trigger Runs after a record is retrieved from a table and before it is
exported to the XML document.

This trigger is only used to export data.

OnAfterInitRecord Trigger Runs after a record is loaded.

This trigger is only used to import data.

OnAfterInsertRecord Trigger Runs after a record has been inserted into a database table.

This trigger is only used to import data.

OnAfterModifyRecord Trigger Runs after a record has been modified.

The trigger is used to import data.

OnBeforeInsertRecord Trigger Runs after a record has been loaded and before it is inserted
into a database table.

This trigger is only used to import data.

OnBeforeModifyRecord Trigger Runs before a record is modified.

This trigger is used to import data.

OnBeforePassField Trigger Runs before a field is passed to the XML document.

This trigger is only used to export data.

The following triggers apply to XMLports.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onafterassignfield-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onafterassignvariable-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onaftergetfield-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onaftergetrecord-xmlports-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onafterinitrecord-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onafterinsertrecord-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onaftermodifyrecord-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onbeforeinsertrecord-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onbeforemodifyrecord-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onbeforepassfield-trigger

OnBeforePassVariable Trigger Runs after the source expression has been formatted into a
text variable and before the text variable is passed to the XML
document.

This trigger is only used to export data.

OnInitXMLport Trigger Executes when the XMLport is loaded and before any table
views and filters are set.

OnPreXMLport Trigger Runs after the table views and filters are set and before the
XMLport is run.

OnPostXMLport Trigger Runs after the XMLport is run.

OnPreXMLItem Trigger Runs after the table is initialized and before you start
exporting data to an XML object. This trigger only applies to
XMLport elements that have a source type of Table.

This trigger is only used to export data.

XMLPORT TRIGGER RUNS

See Also
XMLPort Object
Triggers
XMLPort Properties

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onbeforepassvariable-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-oninitxmlport-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onprexmlport-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onpostxmlport-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onprexmlitem-trigger

Query Triggers
3/31/2019 • 2 minutes to read

Query object triggers

TRIGGER RUNS

OnBeforeOpen Before the query object is run and the dataset is generated.
For example, you can use the OnBeforeOpen trigger to apply
filters using the SETFILTER method.

See Also

This topic describes the AL triggers that are available for queries. Triggers are typically used to perform
calculations and verification. Triggers let you control how data is selected and retrieved in a more complex and
effective way than you can achieve by using properties.

The following table lists the triggers that apply to the query object.

Query Object
Triggers
SETFILTER Method (Query)
Report Triggers

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-onbeforeopen-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-setfilter-method-query
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-report-triggers

Rules and Guidelines for AL Code
6/25/2019 • 4 minutes to read

Critical errors

Important errors

Common pitfalls

This page defines the rules and guidelines to follow when writing AL code in an extension package for Dynamics
365 Business Central. The rules and guidelines are grouped according to two importance levels: critical errors that
must be resolved, and important errors that should be resolved. Errors that are not resolved must include an
explanation and justification for the error.

Code uses encryption key functions such as IMPORTENCRYPTIONKEY, EXPORTENCRYPTIONKEY,
CREATEENCRYPTIONKEY, and DELETEENCRYPTIONKEY. (It is fine to use the ENCRYPT and DECRYPT
methods.)
Code uses ASSERTERROR.
External data connections do not properly handle sensitive data.
It does not encrypt sensitive table data. (i.e. credit card info, passwords, etc.).

Temporary files are not cleaned up after use.
Code uses codeunits that require printers to be selected.
Code uses a specific time zone or locale.

To help you save time, we‘re sharing a list of the top 15 common pitfalls that regularly lead to app validation
failures.

1. Prefix/Suffix missing

One of the app requirements is for you to reserve a prefix/suffix for your app. This is needed to ensure a
healthy app ecosystem by avoiding collision amongst apps. This common failure occurs due to not setting
your prefix/suffix in some or all required places. For more information, see Benefits and Guidelines for
using a Prefix or Suffix.

2. DataClassification missing or set incorrectly

Due to GDPR requirements, fields of field class Normal must use the DataClassification property, and its
value must be different from ToBeClassified. This applies to fields in tables and table extensions. Use the
AppSourceCop tool for detecting this.

3. Required translation files missing

There are many countries today that where Dynamics 365 Business Central is available, and that you can
support as well with your app. For specifying additional languages, we no longer support Caption ML. You
must use xliff translation files instead. For more information, see Working with Translation Files.
Microsoft provides a free translation tool that you can access from https://lcs.dynamics.com To support a
specific country, you must include a translation file per for each language code. For example, to support
Switzerland, you must provide fr-CH, de-CH, and it-CH.

4. Missing permission sets

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-dataclassification-property
https://lcs.dynamics.com.

Your app must provide one or more permission sets so that users can use your app’s functionality. Your app
must never require the SUPER permission set.

5. Permission errors

For your app to be a good citizen in Dynamics 365 Business Central, permission errors must not appear
unless it is a necessary reason for showing the error.
It is acceptable to throw an error to a user that does not have your permission set marked and tries to
access your page object. It is not acceptable to throw an error to that same user trying to access Business
Central pages in the base application, or to throw an error to a user who is not trying to access your app's
functionality.

6. Missing application area tagging

Tag in which part your app participates. Pages, controls, actions, and fields will not appear in Dynamics 365
Business Central if the Application Area property has not been set.

7. Usage Category not set

You enable a page or report to be available through search in Dynamics 365 Business Central by using the
UsageCategory property. For more information, see Using Tell Me to Find Features and Information.

8. OnCompany procedure

Due to their performance impact, OnBeforeCompanyOpen and OnAfterCompanyOpen cannot be used.
For more information, see Replacing OnBeforeCompanyOpen and OnAfterCompanyOpen.

9. Upgrade procedures

Make sure that your app can be upgraded properly. For more information, see Upgrading extensions.

10. Profiles

Do not insert into the Profile table. Use the Profile object instead.

11. App file not properly code signed

Your app file must be digitally signed with a certificate from a third-party certification authority trusted by
Windows.

12. You tested your app on an obsolete Dynamics 365 Business Central version (or never even tested it)

Make sure that your app is properly tested on the correct version. For more information, see Current Build
- Developing for Dynamics 365 Business Central on the Collaborate site.

13. You tested using SUPER permissions

You tested your app, but your user had SUPER permissions. This can hide critical errors. You must test with
a user that doesn’t have the SUPER permissions. The user must have the ESSENTIAL license. For more
information, see Testing your Extension.

14. User scenario document unclear

Our validation team is testing your app functionality manually, so we need to be able to understand the
core functionality of your app. If your user scenario document is missing important details that are needed
for us to properly walk through your app’s setup and usage scenarios, we cannot validate your app
successfully. For more information, see User Scenario Documentation.

15. The .json file is incorrect

There are many values in the app.json file that may not be mandatory to compile your app, but are
mandatory for your app to be in AppSource. For example, your app cannot be published to a production

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-applicationarea-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-usagecategory-property
https://docs.microsoft.com/dynamics365/business-central/ui-search
https://partner.microsoft.com/en-us/dashboard/collaborate/packages/4756

See Also

tenant if the target value is set to Internal. It must be set to Extension. For information, see JSON Files.

Best Practices for AL Code
Checklist for Submitting Your App

Best Practices for AL
4/4/2019 • 4 minutes to read

NOTE

Extension structure

File naming

File naming notation

FULL OBJECTS EX TENSIONS

<Type><Id>.<ObjectName>.al <Type><BaseId>-Ext<ObjectId>.<ObjectName>.al

Type map

OBJECT ABBREVIATION

Page Pag

Page Extension PagExt

Page Customization PagCust

Codeunit Cod

Table Tab

Table Extension TabExt

This page defines some of the best practices to follow when writing AL code for Dynamics 365 Business Central.
These best practices are additional to rules and guidelines that are caught during compilation of AL code. We
recommend following these best practices when developing extensions in AL to ensure consistency and
discoverability on file, object, and method naming, as well as better readability of written code.

If a best practice is not mentioned here, the PreCal rules listed here apply.

An extension is fully contained in a single folder. This folder often contains multiple files, such as app.json and
launch.json files, perhaps an image file representing the extension's logo, various folders for source; "\src", other
resources; "\res", and a test folder; "\test" folder. The extension does not need to follow a flat structure, which
means that, depending on the amount of application files, additional folders can be used in the "src" or "test"
folders to group objects based on their functionality, which can help make maintaining a large .al project easier.

Each file name must start with the corresponding type and ID, followed by a dot for full objects or a dash for
extensions. The name of the object is written only with characters [A-Za-z0-9] and dot al is used for the file type.

Follow the syntax for file naming as shown below:

Use the listed abbreviations for each type of object in the file naming:

https://community.dynamics.com/nav/w/designpatterns/156.3-cal-coding-guidelines

XML Port Xml

Report Rep

Query Que

Enum Enu

Enum Extension EnuExt

Control Add-ins ConAddin

OBJECT ABBREVIATION

Examples of file naming

OBJECT NAME FILE NAME

codeunit 1000 "Job Calculate WIP" Cod1000.JobCalculateWIP.al

page 21 "Customer Card" Pag21.CustomerCard.al

page 1234 "MyPag" extends "Customer Card" Pag21-Ext1234.MyPag.al

Formatting

The following table illustrates how the file naming should look.

We recommend keeping your AL code properly formatted as follows:

Use all lowercase letters for reserved language keywords. Built-in methods and types are not included in this
rule because they are written using Pascal case.
Use four spaces for indentation.
Curly brackets are always on a new line. If there is one property, put it on a single line.

The following example illustrates these formatting rules.

page 123 PageName
{
 actions
 {
 area(Processing)
 {
 action(ActionName)
 {
 trigger OnAction()
 begin
 end;
 }
 }
 }

 var
 TempCustomer: Record Customer temporary;

 [EventSubscriber(ObjectType::Page, Page::"Item Card", 'OnAfterGetCurrRecordEvent', '', false, false)]
 local procedure OnOpenItemCard(var rec: Record Item)
 var
 OnRecord: Option " ", Item, Contact;
 begin
 EnablePictureAnalyzerNotification(rec."No.", OnRecord::Item);
 end;
}

Line length

Object naming

NOTE

File structure

The AL Language extension offers users the option to automatically format their source code. For more
information on how to use it, see AL Formatter.

In general, there is no restriction on line length, but lengthy lines can make the code unreadable. We recommend
that you keep your code easily scannable and readable.

Object names are prefixed. They start with the feature/group name, followed by the logical name as in these two
examples:

Intrastat extension validation codeunit for Denmark

codeunit 123 "IntrastatDK Validation"

The "MS - " prefix is not required.

Inside an .al code file, the structure for all objects must follow the sequence below:

1. Properties
2. Object-specific constructs such as:

Table fields
Page layout
Actions

Referencing

Example

Page.RunModal(Page::"Customer Card", ...)

var
 Customer: Record Customer;

Variable naming

Example

TempCustomer: Record Customer temporary;
Vendor: Record Vendor;

Method declaration

Example

local procedure MyProcedure(Customer: Record Customer; Int: Integer)
begin
end;

// space

local procedure MyProcedure2(Customer: Record Customer; Int: Integer)
begin
end;

Calling methods

3. Global variables

4. Methods

Labels (old Text Constants)
Global variables

In AL, objects are referenced by their object name, not by their ID.

For variables they must:

Be named using PascalCase.
Have the Temp prefix if they are temporary variables.
Include the object name in the name (for objects).

To declare a method, follow the guidelines below:

Include a space after a semicolon when declaring multiple arguments.
Semicolons can be used at the end of the signature/method header. If you use a snippet, the semicolons are not
automatically added.
Methods are named as variables using Pascal case. However, this is not a mandatory rule.
There must be a blank line between method declarations. If you format your code using the AL Formatter tool,
the auto-formatter sets the blank line between procedures.

Example

MyProcedure();
MyProcedure(1);
MyProcedure(1, 2);

Type definition (colon)

Var
 Number: Integer;

local procedure MyProcedure(a: Integer; b: Integer): Integer

See Also

When calling a method, include one space after each command if you are passing multiple parameters.
Parentheses must be specified when you are making a method call or system call such as: Init(), Modify(), Insert()
etc.

When declaring a variable or a parameter, the name of that variable or parameter must be immediately followed
by a colon, then a single space, and then the type of the variable/parameter as illustrated in the example below.

Checklist for Submitting Your App
Rules and Guidelines for AL Code

Benefits and Guidelines for using a Prefix or Suffix
3/31/2019 • 2 minutes to read

table 70000000 MyPrefix Salesperson

page 70000000 MyPrefix Salesperson

actions
{
 addafter(ApprovalEntries)
 {
 action(MyPrefix Vacation)

codeunit 70000000 MyPrefix Salesperson

Benefits

General rules

In your extension, the name of each new application object (table, page, codeunit), must contain a prefix or suffix.
This rule applies to all objects. You can use the Caption values for what you decide to display to the user. When you
modify a core Dynamics 365 object using a Table Extension or Page Extension, the prefix/suffix must be defined at
the control/field/action/group level.

Declare your objects with a prefix as shown in the following examples.

Table

Page

Page Extension

Codeunit

There are two good reasons to why you may want to proactively use a prefix or suffix:

1. App A and App B both use the same field name (for a native Dynamics 365 table) of FAB Salesperson
Code. The partner for App B already has the prefix/suffix reserved. A customer wants to install both apps
but cannot due to collision of field name. App A will have to reserve a different unique prefix and submit an
updated version of their app.

2. Dynamics 365 developers want to use the name of Salesperson Code. App A (published for months),
already has that field name. Microsoft will require the app to prefix its field names by submitting an updated
version of their app.

The prefix/suffix must be at least 3 characters
The object/field name must start or end with the prefix/suffix
If a conflict arises, the one who registered the prefix/suffix always wins
For your own pages/tables/codeunits, you must set the prefix/suffix at the top object level

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-caption-property

Examples of acceptable prefix/suffix

See Also

For pages/tables in the base application of BC that you extend, you must set the prefix/suffix at the top object
level
For pages/tables of BC in the base application that you extend, you must also set at the control/field/action
level
Use the AppSourceCop tool to find all missing prefixes and/or suffixes. Configuration options for this tool can
be found here. The Rules section explains the different checks the cop will do. For prefix/suffix detection, refer
to the Configuration section. It explains how to set your prefix in the AppSourceCop.json file.

No Delimiter

FABSalespersonCode
SalespersonCodeFAB

Space

"FAB Salesperson Code"
"Salesperson Code FAB"

Underscore

FAB_Salesperson_Code
Salesperson_Code_FAB

Contact us at d365val@microsoft.com to reserve the prefix/suffix of your choosing

Checklist for Submitting Your App
Rules and Guidelines for AL Code

Testing your Extension
6/4/2019 • 5 minutes to read

Use the correct Dynamics 365 Business Central version

Use the correct data when you test your app

Several key things lead to your Dynamics 365 Business Central extension passing the Microsoft validation
process. However, one of the most important checks you can do is to take the time and test your extension before
submitting it for validation. This allows you to catch some of the basic errors that could lead to validation failures.
The following list calls out key points, and the sections below provide more context.

Always test in a Dynamics 365 Business Central online environment. If you test in an on-premises deployment,
you might miss errors that would be seen online.
Ensure that your extension can be published without code signing errors. You must not use the
-skipverification flag.

The extension should be able to be installed without errors.
If you are using the Assisted Setup, ensure that you can use your wizard to completion without errors.
Walk through the setup and usage of your extension to verify it works as expected (remember to test as a
user that does not have SUPER permissions).
Check that you can uninstall and unpublish your extension without any errors.
Make sure you can republish and reinstall your extension without any errors.

Use Docker for your development and testing. At least, run your full test in Dynamics 365 Business Central online
at least once before submitting for validation. We use Docker, and this ensures that you will be testing on the same
as what we validate your app on.

If you test in an on-premises deployment, you might miss errors that would be seen online.

And with this, make sure you are using the correct Docker image tag to set up the correct Dynamics 365 Business
Central version number. If you want your app to go live as soon as possible with the current production version at
the time you submit your app, you must use the image tag mentioned on the Collaborate site. To do so, sign into
aka.ms/collaborate, navigate to packages, and locate the build named Current Build - Developing for
Dynamics 365 Business Central. The image tag never changes and when we roll out a new version to
production, the build underneath the image tag automatically changes for you. This means that you are always
testing on current production. If you test on a build older or much newer, your app will most likely fail validation.

Use the image tag from the current build link above and make sure you refresh the docker instance each time you
want to submit. If you haven’t run your Docker script to refresh for months, then you are on a much older build.

When we validate apps, we use the base CRONUS demo data. This of course is there for some countries and you
don’t have to do anything additional to receive that demo data. However, for countries that are empty and don’t
include demo data, you must import the CRONUS evaluation demo data. Not the International CRONUS data,
the evaluation demo data. We do not use custom data and we do not use any other data. We always use the base
evaluation demo data. To get this same data (if you don’t have it by default), you follow these instructions:

1. Search for Configuration Packages, and then choose the link.

2. Choose Process > Import Predefined Package.

3. Click the link for GB.ENU.EVALUATION .

https://aka.ms/collaborate

Use the right user for your testing

Testing your app

Maintaining your app

See Also

That will start processing. You will see the process bar.

4. If there are popups at all, just choose Yes or OK.

5. Once the process is complete, choose the Apply Package button, and then choose Yes.

6. Again, if any popups or anything just click through them.

7. Once it completes, sign out of Business Central and then sign back in again.

8. You now have data.

Do not do your testing with a user that has SUPER permissions marked. The SUPER user can do all without issue
and you won’t catch your true app bugs. No live customer will have several users marked with this permission set.
Therefore, we cannot test with it. You need to setup a user in your test environment that only has the BUS FULL
ACCESS permission set, LOCAL, and any of your own permission sets. For information on how to setup this user,
see this blog Enabling Premium Experience in Business Central Sandbox Containers.

Now it is time to test your app. The following are all things you must do as part of your testing effort.

Test your app in its entirety. We expect you to test 100% of the functionality of your app. Testing just a few areas
of your app will not suffice. Test everything.
We are not going to test 100% of the functionality of your app. We expect you to be doing that.
If the testing works for you, it will most likely work for us.
Ensure that no permission errors are thrown for any of your app’s functionality.
With the ESSENTIAL user (before you assign your permission sets to it), make sure that the user can still use
the core Business Central without facing permission errors. You must allow that user to do things such as
accessing the Customer card, posting sales order, and so on.

Although we do regular testing of your app when we prepare a new version of Dynamics 365 Business Central, we
expect you to do the same on your end. You have access to the same builds that we do through the Collaborate
program. You can do more thorough testing than we can because you know your app the best. By doing this
testing, you can catch future Dynamics 365 Business Central changes that may impact or break your app. Catching
these changes in advance leaves less risk for customers to run into them.

You should be doing regular testing against our release branch that ports into our monthly service updates. To test
against these builds, sign into aka.ms/collaborate, navigate to packages, and locate the build named Daily Builds -
Maintaining an app in AppSource for Dynamics 365 Business Central.

We also recommend that you do regular testing against our release branch that eventually becomes our major
release in April or October. For more information, see Daily Builds - Developing for a future release of
Dynamics 365 Business Central on aka.ms/collaborate.

Checklist for Submitting Your App
Rules and Guidelines for AL Code

https://cloudblogs.microsoft.com/dynamics365/no-audience/2018/04/13/enabling-premium-experience-in-business-central-sandbox-containers/?source=nav
https://aka.ms/collaborate
https://aka.ms/collaborate

User Scenario Documentation
6/17/2019 • 3 minutes to read

NOTE

Use the correct Business Central version

Example

One of the keys to a successful extension validation is a document that guides the tester through the setup and
usage of the extension. You must include a document that helps Microsoft test the key scenarios of your extension.
We want to ensure that we are validating the functionality in the correct manner. Following are some key points to
keep in mind when writing the user scenario document.

Be as detailed as possible. No detail is too small. If a field needs a specific value, include that value in your
document.

Keep the inexperienced user in mind. You know your app well, but other users Microsoft does not.

Use screenshots as much as possible. They provide a good picture of what you want the user to accomplish.

Provide all prerequisite and setup steps required for successful test scenario completion.

If your app requires setup of its own, include those details.
If any setup is extensive, consider using the import of Rapid Start packages.
If your app has a dependency on non-standard settings in the core default version of Business Central,
include those details. The Microsoft-provided demo data might not have everything that your app needs
to work properly.

Include the most important functionality scenarios of your extension. We are not looking to test your entire
extension, but we do want to ensure we are validating the most used aspects of your app.

Do not give a summary as to what these scenarios do. List step by step details instead. Again, the tester
doing the validation might not have the same product knowledge as you do.

This is not the same as the requirement to include Help for your functionality. For more information about getting started
with extending and customizing the Business Central user assistance, see User assistance model.

We recommend that you use Docker as a guide for writing your user scenario document. This way, you can take
screenshots and other visuals that really help the tester walk through your validation. Keep these things in mind:

Do not base your user document on an on-premises environment. Business Central on-premises deployments
can have different windows, data, and so on. As a result, your document can lead to confusion and differences
in our results.
Use the correct Business Central version. If you are basing your document on a build that is months old, many
things could now be different in the latest production environment. This also can lead to much confusion. For
more information, see Current Build - Developing for Dynamics 365 Business Central on the Collaborate site.
Use the correct data for your document. Do not submit a document based on custom data that our testers will
not have access to. You should always base your documents on the base demo CRONUS data and then include
Rapid Start packages with any additional data.
If your app's functionality is different per country, provide that important information. Some of the steps might
be different (for your app) between US and DK. If that is the case, mention that in the document.

https://partner.microsoft.com/en-us/dashboard/collaborate/packages/4756

Here is an example of the level of detail we are looking for, based on running the Assisted Setup wizard:

1. On the Home Page, click the Setup & Extensions dropdown

2. Click Assisted Setup

3. Click the Set up reporting data link

4. This will launch the wizard for this process

5. Click Next

6. Click Next

7. New Name = TestReport1

8. Data Source Type = Page

9. Data Source Id = 22

10. Data Source Name = Customer List

See Also

11. Click Next

12. Click Publish

Checklist for Submitting Your App
Rules and Guidelines for AL Code
User assistance model

Restrictions on UI for Objects Exposed as Web
Services
3/31/2019 • 2 minutes to read

AL METHOD APPLIES TO

CONFIRM Codeunit/page

STRMENU Codeunit/page

(Page RunModal) Page

Page of type Confirmation Dialog Page

(Request page) Page

ERROR Codeunit/page

BEEP Codeunit/page

YIELD Codeunit/page

See Also

Pages and code units that are designed to be exposed as Web services must not generate any UI that would cause
an exception in the calling code.

SUMMARY AND INTENT: When writing code for Web services, you must not use end-user confirmation dialog
boxes, message boxes, or any other page constructs in the code. Because a Web service runs independently of a
user interface, running this type of code causes the code to throw an exception. The exception can be caught and
handled, but the Web service will not complete.

RESOURCES: For more information, see Microsoft Dynamics NAV Web Services.

HOW TO COMPLY : Ensure that code for pages and code units that are being exposed as Web services do not use
any end-user confirmation dialog boxes or message boxes.

TEST METHODOLOGY : To verify this requirement, the following tests will be performed:

1. Identify the pages and code units that are exposed as Web services during the installation of the extension.
2. Using code inspection, verify that methods from the following table are not used by the pages and code units

published by the installation without conditional code that is based on GUIALLOWED=FALSE or
CurrFieldNo=0 circumventing their call.

Additionally, when running the page or code unit as a Web service, the following exception should never occur:

Microsoft.Dynamics.Nav.Types.Exceptions.NavNCLCallbackNotAllowedException: Callback functions are not
allowed.

Checklist for Submitting Your App
Rules and Guidelines for AL Code

https://docs.microsoft.com/dynamics-nav/Microsoft-Dynamics-NAV-Web-Services-Overview

Replacing OnBeforeCompanyOpen and
OnAfterCompanyOpen
6/17/2019 • 2 minutes to read

Task Scheduler example
// Add 15s
TASKSCHEDULER.CREATETASK(CODEUNIT::"Job Queue User Handler",0,TRUE,COMPANYNAME,CURRENTDATETIME + 15000);

See Also

To improve the login time for Dynamics 365 Business Central, extensions should no longer use the
OnBeforeCompanyOpen and OnAfterCompanyOpen events. Following are some recommended patterns to
use in place of these events.

If the extension is subscribing to OnBeforeCompanyOpen or OnAfterCompanyOpen in order to complete
company setup for a newly created company, we recommend subscribing to OnCompanyInitialize from
Codeunit 2 instead.

If the extension is subscribing to OnBeforeCompanyOpen or OnAfterCompanyOpen in order to perform
some long-running data update, then either call the “update” when the extension gets called in code for the first
time or apply the new task scheduler pattern for Update 6 and later.

Checklist for Submitting Your App
Rules and Guidelines for AL Code

Building an Advanced Sample Extension
5/3/2019 • 15 minutes to read

About this walkthrough

Prerequisites

Customer Rewards extension overview

It is required to submit tests with your extension in order to pass validation. This walkthrough builds an advanced
sample extension which is used as the foundation for writing a test which you can read about in the Testing the
Advanced Sample Extension topic. If you are new to building extensions, we suggest that you get familiar with
Building your first sample extension that uses new objects and extension objects.

For information about submitting your app to AppSource, see Checklist for Submitting Your App.

This walkthrough will guide you through all the steps that you must follow to create the sample extension in AL.
The final result can be published, installed, and tested on your tenants. After you have built your extension, you
must write the test for it.

This walkthrough illustrates the following tasks:

Developing a sample extension that uses codeunits, tables, card pages, list pages, navigate page (Assisted
Setup) actions and events, and includes tooltips and links to context-sentsitive Help.

Creating extension objects that can be used to modify page and table objects.

Initializing the database during the installation of the extension.

Developing a sample test that tests external calls to a service, events, permissions, actions, navigate page
(Assisted Setup), and other modified pages.

Running the sample test using the Test Tool.

To complete this walkthrough, you will need:

The Dynamics 365 Business Central tenant.

Visual Studio Code.

The AL Language extension for Visual Studio Code.

For more information on how to get started with your first extension for Dynamics 365 Business Central, see
Getting Started.

This sample extension enables the ability to set up any number of reward levels and the minimum number of
rewards points required to attain that level. When the sample extension is installed, customers begin to accrue one
reward point per sales order. When no reward levels are set up, the customer's reward level is set to 'NONE' even
though the customer may have reward points. To begin using the sample extension, the user must accept the
extension terms and activate the extension by entering a valid activation code using the Customer Rewards
Assisted Setup Wizard. Following all the steps of this walkthrough allows you to publish the extension on your
tenant and create a possible new feature for your customers.

Developing the sample Customer Rewards extension

Customer Rewards table objects

Reward Level table object

table 50100 "Reward Level"
{
 fields
 {
 field(1; Level; Text[20]) { }

 field(2; "Minimum Reward Points"; Integer)
 {
 MinValue = 0;
 NotBlank = true;

 trigger OnValidate();
 var
 tempPoints: Integer;
 RewardLevel: Record "Reward Level";
 begin
 tempPoints := "Minimum Reward Points";
 RewardLevel.SetRange("Minimum Reward Points", tempPoints);
 if RewardLevel.FindFirst then
 Error('Minimum Reward Points must be unique');
 end;
 }
 }

 keys
 {
 key(PK; Level)
 {
 Clustered = true;
 }
 key("Minimum Reward Points"; "Minimum Reward Points") { }
 }

 trigger OnInsert();
 begin

 Validate("Minimum Reward Points");
 end;

 trigger OnModify();
 begin
 Validate("Minimum Reward Points");
 end;
}

Activation Code Information table object

In the following section, you will be adding the objects that are needed for the Customer Rewards extension.

First, we will get started with the table objects that store the data.

The following code adds a new table 50100 Reward Level for storing reward level information set up by the user.
The table consists of two fields: Level and Minimum Reward Points.

The following code adds a new table 50101 Activation Code Information for storing activation information for
the extension. The table consists of three fields: ActivationCode, Date Activated, and Expiration Date.

table 50101 "Activation Code Information"
{
 fields
 {
 field(1; ActivationCode; Text[14])
 {
 Description = 'Activation code used to activate Customer Rewards';
 }

 field(2; "Date Activated"; Date)
 {
 Description = 'Date Customer Rewards was activated';
 }

 field(3; "Expiration Date"; Date)
 {
 Description = 'Date Customer Rewards activation expires';
 }
 }

 keys
 {
 key(PK; ActivationCode)
 {
 Clustered = true;
 }
 }
}

Customer Rewards Mgt. Setup table object

table 50102 "Customer Rewards Mgt. Setup"
{
 fields
 {
 field(1; "Primary Key"; Code[10])
 {
 }

 field(2; "Customer Rewards Ext. Mgt. Codeunit ID"; Integer)
 {
 TableRelation = "CodeUnit Metadata".ID;
 }
 }

 keys
 {
 key(PK; "Primary Key")
 {
 Clustered = true;
 }
 }
}

Customer Rewards table extension objects
Customer table extension object

The following code adds a new table 50102 Customer Rewards Mgt. Setup for storing information about the
codeunit that should be used to handle events in the extension. This enables us to mock events in our sample test.
The table consists of two fields: Primary Key and Customer Rewards Ext. Mgt. Codeunit ID .

TheCustomertable, like many other tables, is part of the Dynamics 365 Business Central service and it cannot be
modified directly by developers. To add additional fields or to change properties on this table, developers must

tableextension 50100 "CustomerTable Ext." extends Customer
{
 fields
 {
 field(10001; RewardPoints; Integer)
 {
 MinValue = 0;
 }
 }
}

Customer Rewards page objects

Customer Rewards Wizard page object

page 50100 "Customer Rewards Wizard"
{
 // Specifies that this page will be a navigate page.
 PageType = NavigatePage;
 Caption = 'Customer Rewards assisted setup guide';
 ContextSensitiveHelpPage = 'sales-rewards';

 layout
 {
 area(content)
 {
 group(MediaStandard)
 {
 Caption = '';
 Editable = false;
 Visible = TopBannerVisible;

 field("MediaResourcesStandard.""Media Reference"""; MediaResourcesStandard."Media Reference")
 {
 ApplicationArea = All;
 Editable = false;
 ShowCaption = false;
 }
 }

 group(FirstPage)
 {
 Caption = '';
 Visible = FirstPageVisible;

 group("Welcome")
 {
 Caption = 'Welcome';
 Visible = FirstPageVisible;

 group(Introduction)
 {

create a new type of object; a table extension. The following code creates a table extension for theCustomertable
and adds the RewardPoints field.

For each page object, you can specify the target Help page that describes the feature that the page object is part of.
The ContextSensitiveHelpPage property on the page object works together with the link that is specified in the
app.json file. For more information, see Configure Context-Sensitive Help.

The following code adds the50100 Customer Rewards Wizardpage that enables the user to accept the terms for
using the extension as well as activating the extension. The page consists of a welcome step, an activation step, and
a finish step. The welcome step has a checkbox for the Terms of Use that must be enabled. The activation step has
a text box where the activation code must be entered for validation. A valid activation code for this sample
extension is any 14 character alphanumeric code.

 Caption = '';
 InstructionalText = 'This Customer Rewards extension is a sample extension. It adds
rewards tiers support for Customers.';
 Visible = FirstPageVisible;

 field(Spacer1; '')
 {
 ApplicationArea = All;
 ShowCaption = false;
 Editable = false;
 MultiLine = true;
 }
 }

 group("Terms")
 {
 Caption = 'Terms of Use';
 Visible = FirstPageVisible;

 group(Terms1)
 {
 Caption = '';
 InstructionalText = 'By enabling the Customer Rewards extension...';
 Visible = FirstPageVisible;
 }
 }

 group(Terms2)
 {
 Caption = '';

 field(EnableFeature; EnableCustomerRewards)
 {
 ApplicationArea = All;
 MultiLine = true;
 Editable = true;
 Caption = 'I understand and accept these terms.';

 trigger OnValidate();
 begin
 ShowFirstPage;
 end;
 }
 }
 }
 }

 group(SecondPage)
 {
 Caption = '';
 Visible = SecondPageVisible;

 group("Activation")
 {
 Caption = 'Activation';
 Visible = SecondPageVisible;

 field(Spacer2; '')
 {
 ApplicationArea = All;
 ShowCaption = false;
 Editable = false;
 MultiLine = true;
 }

 group(ActivationMessage)
 {
 Caption = '';
 InstructionalText = 'Enter your 14 digit activation code to continue';

 InstructionalText = 'Enter your 14 digit activation code to continue';
 Visible = SecondPageVisible;

 field(Activationcode; ActivationCode)
 {
 ApplicationArea = All;
 ShowCaption = false;
 Editable = true;
 }
 }
 }
 }

 group(FinalPage)
 {
 Caption = '';
 Visible = FinalPageVisible;

 group("ActivationDone")
 {
 Caption = 'You''re done!';
 Visible = FinalPageVisible;

 group(DoneMessage)
 {
 Caption = '';
 InstructionalText = 'Click Finish to setup your rewards level and start using Customer
Rewards.';
 Visible = FinalPageVisible;
 }
 }
 }
 }
 }

 actions
 {
 area(Processing)
 {
 action(ActionBack)
 {
 ApplicationArea = All;
 Caption = 'Back';
 Enabled = BackEnabled;
 Visible = BackEnabled;
 Image = PreviousRecord;
 InFooterBar = true;

 trigger OnAction();
 begin
 NextStep(true);
 end;
 }

 action(ActionNext)
 {
 ApplicationArea = All;
 Caption = 'Next';
 Enabled = NextEnabled;
 Visible = NextEnabled;
 Image = NextRecord;
 InFooterBar = true;

 trigger OnAction();
 begin
 NextStep(false);
 end;
 }

 action(ActionActivate)

 action(ActionActivate)
 {
 ApplicationArea = All;
 Caption = 'Activate';
 Enabled = ActivateEnabled;
 Visible = ActivateEnabled;
 Image = NextRecord;
 InFooterBar = true;

 trigger OnAction();
 var
 CustomerRewardsExtMgt: Codeunit "Customer Rewards Ext. Mgt.";
 begin
 if ActivationCode = '' then
 Error('Activation code cannot be blank.');

 if Text.StrLen(ActivationCode) <> 14 then
 Error('Activation code must have 14 digits.');

 if CustomerRewardsExtMgt.ActivateCustomerRewards(ActivationCode) then
 NextStep(false)
 else
 Error('Activation failed. Please check the activtion code you entered.');
 end;
 }

 action(ActionFinish)
 {
 ApplicationArea = All;
 Caption = 'Finish';
 Enabled = FinalPageVisible;
 Image = Approve;
 InFooterBar = true;

 trigger OnAction();
 begin
 FinishAndEnableCustomerRewards
 end;
 }
 }
 }

 trigger OnInit();
 begin
 LoadTopBanners;
 end;

 trigger OnOpenPage();
 begin
 Step := Step::First;
 EnableControls;
 end;

 local procedure EnableControls();
 begin
 ResetControls;

 case Step of
 Step::First :
 ShowFirstPage;

 Step::Second :
 ShowSecondPage;

 Step::Finish :
 ShowFinalPage;
 END;
 end;

 local procedure NextStep(Backwards: Boolean);

 local procedure NextStep(Backwards: Boolean);
 begin
 if Backwards then
 Step := Step - 1
 ELSE
 Step := Step + 1;
 EnableControls;
 end;

 local procedure FinishAndEnableCustomerRewards();
 var
 CustomerRewardsExtMgt: Codeunit "Customer Rewards Ext. Mgt.";
 begin
 CurrPage.Close;
 CustomerRewardsExtMgt.OpenRewardsLevelPage;
 end;

 local procedure ShowFirstPage();
 begin
 FirstPageVisible := true;
 SecondPageVisible := false;
 FinishEnabled := false;
 BackEnabled := false;
 ActivateEnabled := false;
 NextEnabled := EnableCustomerRewards;
 end;

 local procedure ShowSecondPage();
 begin
 FirstPageVisible := false;
 SecondPageVisible := true;
 FinishEnabled := false;
 BackEnabled := true;
 NextEnabled := false;
 ActivateEnabled := true;
 end;

 local procedure ShowFinalPage();
 begin
 FinalPageVisible := true;
 BackEnabled := true;
 NextEnabled := false;
 ActivateEnabled := false;
 end;

 local procedure ResetControls();
 begin
 FinishEnabled := true;
 BackEnabled := true;
 NextEnabled := true;
 ActivateEnabled := true;
 FirstPageVisible := false;
 SecondPageVisible := false;
 FinalPageVisible := false;
 end;

 local procedure LoadTopBanners();
 begin
 if MediaRepositoryStandard.GET('AssistedSetup-NoText-400px.png', FORMAT(CURRENTCLIENTTYPE))
 then
 if MediaResourcesStandard.GET(MediaRepositoryStandard."Media Resources Ref")
 then
 TopBannerVisible := MediaResourcesStandard."Media Reference".HASVALUE;
 end;

 var
 MediaRepositoryStandard: Record 9400;
 MediaResourcesStandard: Record 2000000182;
 Step: Option First, Second, Finish;
 ActivationCode: Text;

 ActivationCode: Text;
 TopBannerVisible: Boolean;
 FirstPageVisible: Boolean;
 SecondPageVisible: Boolean;
 FinalPageVisible: Boolean;
 FinishEnabled: Boolean;
 BackEnabled: Boolean;
 NextEnabled: Boolean;
 ActivateEnabled: Boolean;
 EnableCustomerRewards: Boolean;
}

Rewards Level List page object

page 50101 "Rewards Level List"
{
 PageType = List;
 ContextSensitiveHelpPage = 'sales-rewards';
 SourceTable = "Reward Level";
 SourceTableView = sorting ("Minimum Reward Points") order(ascending);

 layout
 {
 area(content)
 {
 repeater(Group)
 {
 field(Level; Level)
 {
 ApplicationArea = All;
 Tooltip = 'Specifies the level of reward that the customer has at this point.';
 }

 field("Minimum Reward Points"; "Minimum Reward Points")
 {
 ApplicationArea = All;
 Tooltip = 'Specifies the number of points that customers must have to reach this level.';
 }
 }
 }
 }

 trigger OnOpenPage();
 begin

 if(not CustomerRewardsExtMgt.IsCustomerRewardsActivated) then
 Error(NotActivatedTxt);
 end;

 var
 CustomerRewardsExtMgt: Codeunit "Customer Rewards Ext. Mgt.";
 NotActivatedTxt: Label 'Customer Rewards is not activated';
}

Customer Rewards page extension objects
Customer card page extension object

The following code adds the50101 Rewards Level Listpage that enables the user to view, edit, or add new reward
levels and their corresponding minimum required points. The code example includes tooltips for controls and a
relative link to context-sensitive Help.

A page extension object can be used to add new functionality to pages that are part of the Dynamics 365 Business
Central service. The following page extension object extends the Customer Card page object by adding two field
controls: RewardLevel and RewardPoints after the Name field control on the page. The fields are added in the

pageextension 50100 "Customer Card Ext." extends "Customer Card"
{
 layout
 {
 addafter(Name)
 {
 field(RewardLevel; RewardLevel)
 {
 ApplicationArea = All;
 Caption = 'Reward Level';
 Description = 'Reward level of the customer.';
 ToolTip = 'Specifies the level of reward that the customer has at this point.';
 Editable = false;
 }

 field(RewardPoints; RewardPoints)
 {
 ApplicationArea = All;
 Caption = 'Reward Points';
 Description = 'Reward points accrued by customer';
 ToolTip = 'Specifies the total number of points that the customer has at this point.';
 Editable = false;
 }
 }
 }

 trigger OnAfterGetRecord();
 var
 CustomerRewardsMgtExt: Codeunit "Customer Rewards Ext. Mgt.";
 begin
 // Get the reward level associated with reward points
 RewardLevel := CustomerRewardsMgtExt.GetRewardLevel(RewardPoints);
 end;

 var
 RewardLevel: Text;
}

Customer list page extension object

layout section.

A page extension object can be used to add new functionality to pages that are part of the Dynamics 365 Business
Central service. The following page extension object extends the Customer List page object by adding one action
control; Reward Levels to the Customer group on the page.

pageextension 50101 "Customer List Ext." extends "Customer List"
{
 actions
 {
 addfirst("&Customer")
 {
 action("Reward Levels")
 {
 ApplicationArea = All;
 Image = CustomerRating;
 Promoted = true;
 PromotedCategory = Process;
 PromotedIsBig = true;
 ToolTip = 'Open the list of reward levels.';

 trigger OnAction();
 begin
 if CustomerRewardsExtMgt.IsCustomerRewardsActivated then
 CustomerRewardsExtMgt.OpenRewardsLevelPage
 else
 CustomerRewardsExtMgt.OpenCustomerRewardsWizard;
 end;
 }
 }
 }

 var
 CustomerRewardsExtMgt: Codeunit "Customer Rewards Ext. Mgt.";
}

Customer Rewards codeunit objects
Customer Rewards Install Logic codeunit object

codeunit 50100 "Customer Rewards Install Logic"
{
 // Customer Rewards Install Logic
 Subtype = Install;

 trigger OnInstallAppPerCompany();
 begin
 SetDefaultCustomerRewardsExtMgtCodeunit;
 end;

 procedure SetDefaultCustomerRewardsExtMgtCodeunit();
 var
 CustomerRewardsExtMgtSetup: Record "Customer Rewards Mgt. Setup";
 begin
 CustomerRewardsExtMgtSetup.DeleteAll;
 CustomerRewardsExtMgtSetup.Init;
 // Default Customer Rewards Ext. Mgt codeunit to use for handling events
 CustomerRewardsExtMgtSetup."Customer Rewards Ext. Mgt. Codeunit ID" := Codeunit::"Customer Rewards
Ext. Mgt.";
 CustomerRewardsExtMgtSetup.Insert;
 end;
}

Customer Rewards Ext. Mgt. codeunit object

The following code adds the50100 Customer Rewards Install Logiccodeunit that initializes the default codeunit
that will be used for handling events. Because this is an install codeunit, it has its Subtype property set to Install.
The OnInstallAppPerCompany trigger is run when the extension is installed for the first time and the same
version is re-installed.

The50101 Customer Rewards Ext. Mgt. codeunit encapsulates most of the logic and functionality required for

the Customer Rewards extension. This codeunit contains examples of how we can use events to react to specific
actions or behavior that occur within our extension. In this sample extension, there is the need to make a call to an
external service or API to validate activation codes entered by the user. Typically, you may do this by defining
procedures that take in the activation code and then make calls to the API. Instead of using that approach, we use
events in AL. Let us look at the following code from the codeunit.

 // Activates Customer Rewards if activation code is validated successfully
 procedure ActivateCustomerRewards(ActivationCode: Text): Boolean;
 var
 ActivationCodeInfo: Record "Activation Code Information";
 begin
 // raise event
 OnGetActivationCodeStatusFromServer(ActivationCode);
 exit(ActivationCodeInfo.Get(ActivationCode));
 end;

 // publishes event
 [IntegrationEvent(false, false)]
 procedure OnGetActivationCodeStatusFromServer(ActivationCode: Text);
 begin
 end;

 // Subscribes to OnGetActivationCodeStatusFromServer event and handles it when the event is raised
 [EventSubscriber(ObjectType::Codeunit, Codeunit::"Customer Rewards Ext. Mgt.",
'OnGetActivationCodeStatusFromServer', '', false, false)]
 local procedure OnGetActivationCodeStatusFromServerSubscriber(ActivationCode: Text);
 var
 ActivationCodeInfo: Record "Activation Code Information";
 ResponseText: Text;
 Result: JsonToken;
 JsonRepsonse: JsonToken;

 begin
 if not CanHandle then
 exit; // use the mock
 // Get response from external service and update activation code information if successful
 if(GetHttpResponse(ActivationCode, ResponseText)) then begin
 JsonRepsonse.ReadFrom(ResponseText);

 if(JsonRepsonse.SelectToken('ActivationResponse', Result)) then begin

 if(Result.AsValue().AsText() = 'Success') then begin

 if(ActivationCodeInfo.FindFirst()) then
 ActivationCodeInfo.Delete;

 ActivationCodeInfo.Init;
 ActivationCodeInfo.ActivationCode := ActivationCode;
 ActivationCodeInfo."Date Activated" := Today;
 ActivationCodeInfo."Expiration Date" := CALCDATE('<1Y>', Today);
 ActivationCodeInfo.Insert;
 end;
 end;
 end;
 end;

 // Helper method to make calls to a service to validate activation code
 local procedure GetHttpResponse(ActivationCode: Text; var ResponseText: Text): Boolean;
 begin
 // You will typically make external calls / http requests to your service to validate the activation
code
 // here but for the sample extension we simply return a successful dummy response
 if ActivationCode = '' then
 exit(false);

 ResponseText := DummySuccessResponseTxt;
 exit(true);
 end;

We define an event publisher method OnGetActivationCodeStatusFromServer that accepts the activation code
entered by the user as a parameter, and, a subscriber method
OnGetActivationCodeStatusFromServerSubscriber to listen for and handle the event. When the

codeunit 50101 "Customer Rewards Ext. Mgt."
{
 var
 DummySuccessResponseTxt: Label '{"ActivationResponse": "Success"}', Locked = true;
 NoRewardlevelTxt: TextConst ENU = 'NONE';

 // Determines if the extension is activated
 procedure IsCustomerRewardsActivated(): Boolean;
 var
 ActivationCodeInfo: Record "Activation Code Information";
 begin
 if not ActivationCodeInfo.FindFirst then
 exit(false);

 if(ActivationCodeInfo."Date Activated" <= Today) and(Today <= ActivationCodeInfo."Expiration Date")
then
 exit(true);
 exit(false);
 end;

 // Opens the Customer Rewards Assisted Setup Guide
 procedure OpenCustomerRewardsWizard();
 var
 CustomerRewardsWizard: Page "Customer Rewards Wizard";
 begin
 CustomerRewardsWizard.RunModal;
 end;

 // Opens the Reward Level page
 procedure OpenRewardsLevelPage();
 var
 RewardsLevelPage: Page "Rewards Level List";
 begin
 RewardsLevelPage.Run;
 end;

 // Determines the correponding reward level and returns it
 procedure GetRewardLevel(RewardPoints: Integer) RewardLevelTxt: Text;
 var
 RewardLevelRec: Record "Reward Level";
 MinRewardLevelPoints: Integer;
 begin
 RewardLevelTxt := NoRewardlevelTxt;

 if RewardLevelRec.IsEmpty then
 exit;
 RewardLevelRec.SetRange("Minimum Reward Points", 0, RewardPoints);
 RewardLevelRec.SetCurrentKey("Minimum Reward Points"); // sorted in ascending order

 if not RewardLevelRec.FindFirst then
 exit;
 MinRewardLevelPoints := RewardLevelRec."Minimum Reward Points";

ActivateCustomerRewards procedure is run, the OnGetActivationCodeStatusFromServer event is raised.
Because the EventSubscriberInstance property for the codeunit is set to Static-Automatic by default, the
OnGetActivationCodeStatusFromServerSubscriber procedure is called. In this procedure, we handle the
raised event by first checking if the current codeunit has been defined for handling this event. If the codeunit can
handle the event, the GetHttpResponse helper procedure is called to validate the activation code. Depending on
the response, Customer Rewards is activated or not.

By using events when the extension makes external calls to a service, we are able to mock the behavior of what
happens when events are raised. This becomes particularly useful when writing tests for the extension.

For more information about events, see Events in Microsoft Dynamics 365 Business Central.

Below is the full code for this codeunit.

 MinRewardLevelPoints := RewardLevelRec."Minimum Reward Points";

 if RewardPoints >= MinRewardLevelPoints then begin
 RewardLevelRec.Reset;
 RewardLevelRec.SetRange("Minimum Reward Points", MinRewardLevelPoints, RewardPoints);
 RewardLevelRec.SetCurrentKey("Minimum Reward Points"); // sorted in ascending order
 RewardLevelRec.FindLast;
 RewardLevelTxt := RewardLevelRec.Level;
 end;
 end;

 // Activates Customer Rewards if activation code is validated successfully
 procedure ActivateCustomerRewards(ActivationCode: Text): Boolean;
 var
 ActivationCodeInfo: Record "Activation Code Information";
 begin
 // raise event
 OnGetActivationCodeStatusFromServer(ActivationCode);
 exit(ActivationCodeInfo.Get(ActivationCode));
 end;

 // publishes event
 [IntegrationEvent(false, false)]
 procedure OnGetActivationCodeStatusFromServer(ActivationCode: Text);
 begin
 end;

 // Subscribes to OnGetActivationCodeStatusFromServer event and handles it when the event is raised
 [EventSubscriber(ObjectType::Codeunit, Codeunit::"Customer Rewards Ext. Mgt.",
'OnGetActivationCodeStatusFromServer', '', false, false)]
 local procedure OnGetActivationCodeStatusFromServerSubscriber(ActivationCode: Text);
 var
 ActivationCodeInfo: Record "Activation Code Information";
 ResponseText: Text;
 Result: JsonToken;
 JsonRepsonse: JsonToken;
 begin
 if not CanHandle then
 exit; // use the mock

 // Get response from external service and update activation code information if successful
 if(GetHttpResponse(ActivationCode, ResponseText)) then begin
 JsonRepsonse.ReadFrom(ResponseText);

 if(JsonRepsonse.SelectToken('ActivationResponse', Result)) then begin

 if(Result.AsValue().AsText() = 'Success') then begin

 if(ActivationCodeInfo.FindFirst()) then
 ActivationCodeInfo.Delete;

 ActivationCodeInfo.Init;
 ActivationCodeInfo.ActivationCode := ActivationCode;
 ActivationCodeInfo."Date Activated" := Today;
 ActivationCodeInfo."Expiration Date" := CALCDATE('<1Y>', Today);
 ActivationCodeInfo.Insert;

 end;
 end;
 end;
 end;

 // Helper method to make calls to a service to validate activation code
 local procedure GetHttpResponse(ActivationCode: Text; var ResponseText: Text): Boolean;
 begin
 // You will typically make external calls / http requests to your service to validate the activation
code
 // here but for the sample extension we simply return a successful dummy response
 if ActivationCode = '' then
 exit(false);

 exit(false);

 ResponseText := DummySuccessResponseTxt;
 exit(true);
 end;

 // Subcribes to the OnAfterReleaseSalesDoc event and increases reward points for the sell to customer in
posted sales order
 [EventSubscriber(ObjectType::Codeunit, Codeunit::"Release Sales Document", 'OnAfterReleaseSalesDoc', '',
false, false)]
 local procedure OnAfterReleaseSalesDocSubscriber(VAR SalesHeader: Record "Sales Header"; PreviewMode:
Boolean; LinesWereModified: Boolean);
 var
 Customer: Record Customer;
 begin
 if SalesHeader.Status <> SalesHeader.Status::Released then
 exit;

 Customer.Get(SalesHeader."Sell-to Customer No.");
 Customer.RewardPoints += 1; // Add a point for each new sales order
 Customer.Modify;
 end;

 // Checks if the current codeunit is allowed to handle Customer Rewards Activation requests rather than a
mock.
 local procedure CanHandle(): Boolean;
 var
 CustomerRewardsExtMgtSetup: Record "Customer Rewards Mgt. Setup";
 begin
 if CustomerRewardsExtMgtSetup.Get then
 exit(CustomerRewardsExtMgtSetup."Customer Rewards Ext. Mgt. Codeunit ID" = CODEUNIT::"Customer
Rewards Ext. Mgt.");
 exit(false);
 end;
}

Conclusion

See Also

At this point, the Customer Rewards sample extension can be published and installed on your sandbox. To
continue writing tests for the sample extension, see Testing the Advanced Sample Extension.

Developing Extensions
Getting Started with AL
How to: Publish and Install an Extension
Converting Extensions V1 to Extensions V2
Configure Context-Sensitive Help

Testing the Advanced Sample Extension
3/31/2019 • 27 minutes to read

Prerequisites

Identifying the areas of the extension that need to be tested

It is required to submit tests with your extension in order to pass validation. This walkthrough builds on the
advanced sample extension which you can read about here Building an Advanced Sample Extension. If you are
new to building extensions, we suggest that you get familiar with Building your first sample extension that uses
new objects and extension objects. This walkthrough goes through how you develop the test for the sample
Customer Rewards extension.

For information about submitting your app to AppSource, see Checklist for Submitting Your App.

To complete this walkthrough, you will need:

Dynamics 365 Business Central Docker container-based development environment. For more information, see
Get started with the Container Sandbox Development Environment and Running a Container-Based
Development Environment.
Visual Studio Code.
The AL Language extension for Visual Studio Code.

Before writing tests for your extension, you need to identify all the areas of the extension that need to be tested.

Ensure that your tests cover all the setup and usage scenario steps found in the user scenario document. This
includes Assisted Setup, pages, fields, actions, events, and other controls and objects used by your extension.
The CRONUS demo company will be used. If your app requires setup within the core product or any additional
data, remember to include that in your tests.
As part of your tests, remember to include tests that verify that the extension works as expected for a user that
does not have SUPER permissions.
Your tests should not make any requests to an external service. Mock your external calls to prevent this
from happening.

In the sample test we will consider the following:

Logic in our Install codeunit.

Assisted Setup - Customer Rewards Wizard page. We will verify that the wizard behaves as expected. It
can be used to completion without errors. The Assisted Setup contains code that mimics making calls to an
external service or API. Because our tests cannot make requests to an external service, we will mock the
requests and the responses.

Reward Level page. We will verify that the page behaves as expected when the user opens it whether
Customer Rewards is activated or not.

Customer List page. We will verify that our new Reward Levels action exists on the page and that it
behaves as expected whether the extension is activated or not.

Customer Card page. We will verify that the page has the Reward Level and Reward Points field that we
added.

New Customer should have zero reward points and corresponding reward level if defined.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-get-started-container-sandbox
https://code.visualstudio.com/Download
https://marketplace.visualstudio.com/items?itemName=ms-dynamics-smb.al

Writing the tests

NOTE

{
 ...
 "dependencies": [
 {
 "appId": "c228bdcf-7112-480b-a832-da81971b6feb",
 "name": "CustomerRewards",
 "publisher": "Microsoft",
 "version": "1.0.0.0"
 }
],
 "test": "13.0.0.0"
 ...
}

Application Test Toolkit

Different scenarios involving Customers and Sales Orders to verify that Reward Points work as expected
and that reward levels for reward points work as defined by the user.

Each test will also verify that the extension works for a user that does not have SUPER permissions.

We will first create a new project (CustomerRewardsTest) for the tests. You are required to separate the extension
and the tests into separate projects.

Before we can start writing the tests for the extension, we need to do the following:

Specify the dependencies between the extension (CustomerRewards) and the test (CustomerRewardsTest)
projects.
Our CustomerRewardsTest project will be referencing objects from the CustomerRewards project and so we
will need to specify this in the dependencies setting in the CustomerRewardsTest project's app.json file. The
dependencies setting takes a list of dependencies, where each dependency specifies the appId , name ,
publisher , and version of the base project/package that the current project/package will depend on.

Another prerequisite is to update the app.json with a dependency to the test toolkit.

For more information, see JSON Files.

After setting the dependencies value, you will be prompted to download the symbols from the base
project/package if they are not present.

We will be using the Application Test Toolkit to automate and run the tests that we write. The toolkit includes:

Codeunits with test functions to test various application areas.

Codeunits with generic and application-specific functions to reduce duplication of test code.

Application objects for running application tests such as the Test Tool page.

In order to install the Application Test Toolkit:

1. Open the Nav Container Helper prompt found on the Desktop. You will see a list of functions that you can run
on the container.

2. Run the Import-TestToolkitToNavContainer function with -containerName parameter to import the test toolkit

Import-TestToolkitToNavContainer -containerName <name-of-container>

Describing your tests

FEATURE Tag

// [FEATURE] [<FeatureTag1>][<FeatureTagN>]

SCENARIO Tag

// [SCENARIO <ScenarioID>] <TestDescription>`

GIVEN-WHEN-THEN Tags

TAG DESCRIPTION

GIVEN Describes one step in setting up the test. If you feel a need to
add an AND, you should probably add a separate GIVEN. In
most of cases, in order to run an action under test, you must
prepare the database. Tests can be complex, so you can add
more than one GIVEN. They can come in one block or
comment particular lines of code. Do not try to repeat code
and comment each line. Instead, add information of a higher
level that would be valuable when reading without the test
code.

into the application database.

Alternatively, if you use the New-NavContainer function from the NavContainerHelper PowerShell module to
create your containers on Docker, you can add the -includeTestToolkit flag. This will install the Application Test
Toolkit during the creation of your container.

To help you design the relevant tests for your functionality, you can write scenarios that outline what you want to
test, and you can write test criteria in the GIVEN-WHEN-THEN format. By adding comments based on feature,
scenario, and GIVEN-WHEN-THEN, you add structure to your test code and make tests readable.

The following sections provide an overview of the tags that we recommend you to use.

FeatureTag represents the name of the feature, application area, functional area, or another aspect of the
application. This list of tags must point to an area of your solution that is touched by the test. Order tags in
descending importance. Start with the most important tags referring to the WHEN or THEN steps. The [FEATURE]

tag can be set for the whole test codeunit. This means all tests in this codeunit will inherit the list of tags set there.
If a test is supposed to have the same list of tags as the codeunit has, you do not have to add the [FEATURE] tag for
this test. Add the tags only if the test has something specific to say.

ScenarioID links the test to a work item for the functionality. For example, if you use Visual Studio Online or Team
Foundation Server, [SCENARIO 12345] represents a work item with the ID 12345.

TestDescriptionrepresents a short description of the purpose of the test, such as Annie can apply a deferral
template to a purchase order.

The GIVEN-WHEN-THEN tags provide a framework for the specific test criteria.

WHEN Describes the action under test. A test is to test one thing.
There should be only one WHEN in a test. It is the line of code
that changes the state of something that we are going to
verify. If you feel a need to add more than one WHEN
followed by different verification, you should split this test in
two or more tests.

THEN Describes what is verified by the test. All tests must have a
verification part. If there is no verification, the test does not
test anything. You can add more than one THEN tag.

TAG DESCRIPTION

MockCustomerRewardsExtMgt codeunit object

codeunit 50102 MockCustomerRewardsExtMgt

{

 // When set to Manual subscribers in this codeunit are bound to an event by calling the BINDSUBSCRIPTION
method.
 // This enables you to control which event subscriber instances are called when an event is raised.
 // If the BINDSUBSCRIPTION method is not called, then nothing will happen when the published event is
raised.

 EventSubscriberInstance = Manual;
 var
 DummyResponseTxt: Text;
 DummySuccessResponseTxt: Label '{"ActivationResponse": "Success"}', Locked = true;
 DummyFailureResponseTxt: Label '{"ActivationResponse": "Failure"}', Locked = true;

 // Mocks the response text for testing success and failure scenarios

 procedure MockActivationResponse(Success: Boolean);
 begin
 if Success then
 DummyResponseTxt := DummySuccessResponseTxt
 else
 DummyResponseTxt := DummyFailureResponseTxt;
 end;

 // Modifies the default Customer Rewards Ext. Mgt codeunit to this codeunit to prevent the
 // OnGetActivationCodeStatusFromServerSubscriber in Customer Rewards Ext. Mgt from handling
 // the OnGetActivationCodeStatusFromServer event when it is raised

 procedure Setup();
 var
 CustomerRewardsExtMgtSetup: Record "Customer Rewards Mgt. Setup";
 begin
 CustomerRewardsExtMgtSetup.Get;
 CustomerRewardsExtMgtSetup."Customer Rewards Ext. Mgt. Codeunit ID" :=

We can now begin writing the tests for the extension.

The50102 MockCustomerRewardsExtMgtcodeunit contains all the code that mocks the process of validating
the activation code for Customer Rewards. Because we cannot make requests to external services in the tests, we
define a subscriber method MockOnGetActivationCodeStatusFromServerSubscriber for handling the
OnGetActivationCodeStatusFromServer event when it is raised in the Customer Rewards Ext. Mgt.
codeunit. The EventSubscriberInstance property for this codeunit is set to Manual so that we can control when
the subscriber function is called. We want the subscriber method to be called only during our tests. We also define
a Setup procedure that modifies the Customer Rewards Ext. Mgt. Codeunit ID in the Customer Rewards
Mgt. Setup table so that the actual OnGetActivationCodeStatusFromServerSubscriber will not handle
OnGetActivationCodeStatusFromServer event when it is raised.

Codeunit::MockCustomerRewardsExtMgt;
 CustomerRewardsExtMgtSetup.Modify;
 end;

 // Subscribes to OnGetActivationCodeStatusFromServer event and handles it when the event is raised

 [EventSubscriber(ObjectType::Codeunit, Codeunit::"Customer Rewards Ext. Mgt.",
'OnGetActivationCodeStatusFromServer', '', false, false)]

 local procedure MockOnGetActivationCodeStatusFromServerSubscriber(ActivationCode: Text);
 var
 ActivationCodeInfo: Record "Activation Code Information";
 ResponseText: Text;
 Result: JsonToken;
 JsonRepsonse: JsonToken;
 begin
 if(MockGetHttpResponse(ActivationCode, ResponseText)) then begin
 JsonRepsonse.ReadFrom(ResponseText);

 if(JsonRepsonse.SelectToken('ActivationResponse', Result)) then begin
 if(Result.AsValue().AsText() = 'Success') then begin
 if ActivationCodeInfo.FindFirst then
 ActivationCodeInfo.Delete;
 ActivationCodeInfo.Init;
 ActivationCodeInfo.ActivationCode := ActivationCode;
 ActivationCodeInfo."Date Activated" := Today;
 ActivationCodeInfo."Expiration Date" := CALCDATE('<1Y>', Today);
 ActivationCodeInfo.Insert;
 end;
 end;
 end;
 end;

 // Mocks making calls to external service

 local procedure MockGetHttpResponse(ActivationCode: Text; var ResponseText: Text): Boolean;
 begin
 if ActivationCode = '' then
 exit(false);

 ResponseText := DummyResponseTxt;

 exit(true);
 end;
}

Customer Rewards Test codeunit object

Test pages

A test codeunit must have its Subtype property set to Test and the test methods must be decorated with the
[Test] attribute. When a test codeunit runs, it executes the OnRun trigger, and then executes each test method in

the codeunit. By default, each test function runs in a separate database transaction, but you can use the
TransactionModel attribute on test methods to control the transactional behavior. The outcome of a test method
is either SUCCESS or FAILURE. If any error is raised by either the code that is being tested or the test code, then
the outcome is FAILURE and the error is included in the results log file. Even if the outcome of one test method is
FAILURE, the next test methods are still executed.

In addition to the Application Test Toolkit, the following features are available to help you test your extension:

Test pages mimic actual pages, but do not present any UI on a client computer. Test pages let you test the code on
a page by using AL to simulate user interaction with the page. You can access the fields on a page and the
properties of a page or a field by using the dot notation. You can open and close test pages, perform actions on the
test page, and navigate around the test page by using AL methods.

UI handlers

FUNCTION TYPE SYNTAX EXAMPLE PURPOSE

MessageHandler
[MessageHandler]
procedure
MessageHandler(Msg :
Text[1024]);

This handler is called when a
message function is invoked
in the code. The parameter
type, Text, contains the text
of the function.

ConfirmHandler
[ConfirmHandler]
procedure
ConfirmHandlerNo(Question:
Text[1024]; var Reply:
Boolean);

This handler is called when a
confirm function is invoked
in the code. The parameter
type, Text, contains the text
of the function and the
parameter Reply if the
response to confirm is yes or
no.

StrMenuHandler
[StrMenuHandler]
procedure
StrMenuHandler(Option:
Text[1024]; var Choice:
Integer; Instruction:
Text[1024]);

This handler is called when a
StrMenu function is invoked
in code. The parameter type,
Text, contains the text of
the function and Choice is
the option chosen in the
StrMenu. Options is the list
of the different option
values and Instruction is the
leading text.

PageHandler
[PageHandler]
procedure
MappingPageHandler(var
MappingPage: TestPage
1214);

This handler is called when a
non-modal page is invoked
in the code. TestPage is the
specific page in this case.

ModalPageHandler
[ModalPageHandler]
procedure
DevSelectedObjectPageHandler(var
DevSelectedObjects: TestPage
89015);

This handler is called when a
modal page is invoked in the
code. TestPage is the
specific page in this case.

ReportHandler
[ReportHandler]
procedure
VendorListReportHandler(var
VendorList: Report 301);

This handler is called when a
report is invoked in the
code. Report is the specific
report in this case.

To create tests that can be automated, you must handle cases when user interaction is requested by code that is
being tested. UI handlers run instead of the requested UI. UI handlers provide the same exit state as the UI. For
example, a test method that has a ConfirmHandler handles CONFIRM method calls. If code that is being tested
calls the CONFIRM method, then the ConfirmHandler method is called instead of the CONFIRM method. You
write code in the ConfirmHandler method to verify that the expected question is displayed by the CONFIRM
method and you write AL code to return the relevant reply. The following table describes the available UI handlers.

RequestPageHandler
[RequestPageHandler]
procedure
SalesInvoiceReportRequestPageHandler(var
SalesInvoice: TestRequestPage 206);

This handler is called when a
report is invoked in the
code. TestRequestPage
refers to the specific report
ID.

FUNCTION TYPE SYNTAX EXAMPLE PURPOSE

ASSERTERROR statement

TestOnInstallLogic Test

TestCustomerRewardsWizardActivationPageErrorsWhenInvalidActivationCodeEntered Test

You must create a specific handler for each page that you want to handle. Any unhandled UI in the test methods of
the test codeunit causes a failure of the test.

When you test your extension, you should test that your code performs as expected under both successful and
failing conditions. These are called positive and negative tests. To test how your extension performs under failing
conditions, you can use the ASSERTERROR keyword. The ASSERTERROR keyword specifies that an error is
expected at run time in the statement that follows the ASSERTERROR keyword. If a simple or compound
statement that follows the ASSERTERROR keyword causes an error, then execution successfully continues to the
next statement in the test function. If a statement that follows the ASSERTERROR keyword does not cause an
error, then the ASSERTERROR statement itself fails with an error, and the test function that is running produces a
FAILURE result.

The50103 Customer Rewards Test codeunit contains all the tests for the Customer Rewards extension. For each
test method, we follow the following pattern:

Initialize and set up the conditions for the test.

Invoke the business logic that you want to test.

Validate that the business logic performed as expected.

Let us look some of the sample tests.

This test verifies that the logic we defined in our Install codeunit works as expected. We first call a helper method
Initialize which initializes and cleans up any objects that will be needed for the test. The Initialize method also
binds our mock codeunit MockCustomerRewardsExtMgt to our test codeunit so that any events raised during
our test can be handled by the subscriber methods specified in our mock codeunit.

Next, we invoke the SetDefaultCustomerRewardsExtMgtCodeunit method, which is the method defined in
our Install codeunit.

And finally, we verify using the Assert codeunit from the Application Test Toolkit, that the Customer Rewards
Mgt. Setup table contains the expected codeunit ID.

This is one of the tests that focus on the Customer Rewards Assisted Setup Guide. The test verifies that an
error message is displayed when a not valid activation code is entered in the wizard.

First, Initialize is called to clean up previous state and bind our mock subscriber methods to the test codeunit.
Additionally, we set our MockActivationResponse to return FAILURE since we are mocking a not valid validation
of the activation code. We also use the Library - Lower Permissions codeunit to restrict the users permission to
one that does not have the SUPER permission.

Next, we open the Customer Rewards Wizard by using a Customer Rewards Wizard, the TestPage object is used
to mimic the actual page. On the page, the activation code is entered and then the Activate action is invoked.

And finally, we verify that an error message is displayed because the validation of the activation code failed. If no
other error is reported then we are also able to conclude that the functionality in this test can be run without the

TestRewardLevelsActionExistsOnCustomerListPage Test

TestCustomerHasBronzeRewardLevelAfterPostedSalesOrders Test

codeunit 50103 "Customer Rewards Test"

{
 // [FEATURE] [Customer Rewards]

 Subtype = Test;
 TestPermissions = Disabled;

 var
 Assert: Codeunit Assert;
 LibraryLowerPermissions: Codeunit "Library - Lower Permissions";
 LibrarySales: Codeunit "Library - Sales";
 MockCustomerRewardsExtMgt: Codeunit MockCustomerRewardsExtMgt;
 ActivatedTxt: TextConst ENU = 'Customer Rewards should be activated';
 NotActivatedTxt: TextConst ENU = 'Customer Rewards should not be activated';
 BronzeLevelTxt: TextConst ENU = 'BRONZE';
 SilverLevelTxt: TextConst ENU = 'SILVER';
 GoldLevelTxt: TextConst ENU = 'GOLD';
 NoLevelTxt: TextConst ENU = 'NONE';

 [Test]

 procedure TestOnInstallLogic();
 var
 CustomerRewardsExtMgtSetup: Record "Customer Rewards Mgt. Setup";
 CustomerRewardsInstallLogic: Codeunit "Customer Rewards Install Logic";

 begin
 // [Scenario] Check default codeunit is specified for handling events on install
 // [Given] Customer Rewards Mgt. Setup table

 Initialize;

 // [When] Install logic is run
 CustomerRewardsInstallLogic.SetDefaultCustomerRewardsExtMgtCodeunit;

 // [Then] Default Customer Rewards Ext. Mgt codeunit is specified
 Assert.AreEqual(1, CustomerRewardsExtMgtSetup.Count, 'CustomerRewardsExtMgtSetup must have exactly one
record.');

 CustomerRewardsExtMgtSetup.Get;

 Assert.AreEqual(Codeunit::"Customer Rewards Ext. Mgt.", CustomerRewardsExtMgtSetup."Customer Rewards
Ext. Mgt. Codeunit ID", 'Codeunit does not match default');

need for a SUPER permission.

This test verifies that the new Reward Levels action exists on the Customer List page.

This is one of the tests that considers the interaction between Customers, Sales Orders, and Reward Levels. This
test verifies that when two sales orders are made for a new customer, that customer accrues two reward points.
Consequently, he attains the corresponding reward level for two points, which is the BRONZE reward level.

First, the test is initialized by calling Initialize. The extension is activated and then a BRONZE reward level for two
points or more is set up in the Reward Level table.

Next, a new Customer is created using the LibrarySales codeunit from the Application Test Toolkit. And then, the
LibrarySales codeunit is used again to create and post two sales orders for the previously created customer.

Finally, to verify that the customer got the correct reward points and level, we open the Customer Card using its
corresponding TestPage and then verify the values in the Reward Points and Reward Level fields.

There are many more areas that we look at in the sample test. See the full codeunit below for the rest of the tests.

Ext. Mgt. Codeunit ID", 'Codeunit does not match default');

 end;

 [Test]

 procedure TestCustomerRewardsWizardTermsPage();
 var
 CustomerRewardsWizardTestPage: TestPage "Customer Rewards Wizard";

 begin
 // [Scenario] Check Terms Page on Wizard
 // [Given] The Customer Rewards Wizard
 Initialize;

 // Using permissions that do not include SUPER
 LibraryLowerPermissions.SetO365BusFull;

 // [When] The Wizard is opnened
 CustomerRewardsWizardTestPage.OpenView;

 // [Then] The terms page and fields behave as expected
 Assert.IsFalse(CustomerRewardsWizardTestPage.EnableFeature.AsBoolean, 'Enable feature should be
unchecked');
 Assert.IsFalse(CustomerRewardsWizardTestPage.ActionNext.Visible, 'Next should not be visible');
 Assert.IsFalse(CustomerRewardsWizardTestPage.ActionBack.Visible, 'Back should not be visible');
 Assert.IsFalse(CustomerRewardsWizardTestPage.ActionFinish.Enabled, 'Finish should be disabled');

 CustomerRewardsWizardTestPage.EnableFeature.SetValue(true);

 Assert.IsTrue(CustomerRewardsWizardTestPage.EnableFeature.AsBoolean, 'Enable feature should be
checked');
 Assert.IsTrue(CustomerRewardsWizardTestPage.ActionNext.Visible, 'Next should be visible');
 Assert.IsFalse(CustomerRewardsWizardTestPage.ActionFinish.Enabled, 'Finish should be disabled');

 CustomerRewardsWizardTestPage.Close;
 end;

 [Test]
 procedure TestCustomerRewardsWizardActivationPageErrorsWhenNoActivationCodeEntered();
 var
 CustomerRewardsExtMgt: Codeunit "Customer Rewards Ext. Mgt.";
 CustomerRewardsWizardTestPage: TestPage "Customer Rewards Wizard";

 begin
 // [Scenario] Error message when user tries to activate Customer Rewards without activation code.
 // [Given] The Customer Rewards Wizard
 Initialize;
 Commit;

 // Using permissions that do not include SUPER
 LibraryLowerPermissions.SetO365BusFull;
 Assert.IsFalse(CustomerRewardsExtMgt.IsCustomerRewardsActivated, NotActivatedTxt);

 // [When] User invokes activate action without entering activation code
 OpenCustomerRewardsWizardActivationPage(CustomerRewardsWizardTestPage);
 Assert.IsTrue(CustomerRewardsWizardTestPage.ActionBack.Visible, 'Back should be visible');
 Assert.IsFalse(CustomerRewardsWizardTestPage.ActionFinish.Enabled, 'Finish should be disabled');

 // [Then] Error message displayed
 asserterror CustomerRewardsWizardTestPage.ActionActivate.Invoke;
 Assert.AreEqual(GETLASTERRORTEXT, 'Activation code cannot be blank.', 'Invalid error message.');
 Assert.IsFalse(CustomerRewardsExtMgt.IsCustomerRewardsActivated, NotActivatedTxt);
 end;

 [Test]
 procedure TestCustomerRewardsWizardActivationPageErrorsWhenShorterActivationCodeEntered();
 var
 CustomerRewardsExtMgt: Codeunit "Customer Rewards Ext. Mgt.";
 CustomerRewardsWizardTestPage: TestPage "Customer Rewards Wizard";

 CustomerRewardsWizardTestPage: TestPage "Customer Rewards Wizard";

 begin
 // [Scenario] Error message when user tries to activate Customer Rewards with short activation code.
 // [Given] The Customer Rewards Wizard
 Initialize;
 Commit;

 // Using permissions that do not include SUPER
 LibraryLowerPermissions.SetO365BusFull;
 Assert.IsFalse(CustomerRewardsExtMgt.IsCustomerRewardsActivated, NotActivatedTxt);

 // [When] User invokes activate action after entering short activation code
 OpenCustomerRewardsWizardActivationPage(CustomerRewardsWizardTestPage);
 CustomerRewardsWizardTestPage.Activationcode.SetValue('123456');

 // [Then] Error message displayed
 asserterror CustomerRewardsWizardTestPage.ActionActivate.Invoke;
 Assert.AreEqual(GETLASTERRORTEXT, 'Activation code must have 14 digits.', 'Invalid error message.');
 Assert.IsFalse(CustomerRewardsExtMgt.IsCustomerRewardsActivated, NotActivatedTxt);
 end;

 [Test]
 procedure TestCustomerRewardsWizardActivationPageErrorsWhenLongerActivationCodeEntered();
 var
 CustomerRewardsExtMgt: Codeunit "Customer Rewards Ext. Mgt.";
 CustomerRewardsWizardTestPage: TestPage "Customer Rewards Wizard";

 begin
 // [Scenario] Error message when user tries to activate Customer Rewards with long activation code.
 // [Given] The Customer Rewards Wizard
 Initialize;
 Commit;

 // Using permissions that do not include SUPER
 LibraryLowerPermissions.SetO365BusFull;
 Assert.IsFalse(CustomerRewardsExtMgt.IsCustomerRewardsActivated, NotActivatedTxt);

 // [When] User invokes activate action after entering long activation code
 OpenCustomerRewardsWizardActivationPage(CustomerRewardsWizardTestPage);
 CustomerRewardsWizardTestPage.Activationcode.SetValue('123456789012345');

 // [Then] Error message displayed
 asserterror CustomerRewardsWizardTestPage.ActionActivate.Invoke;
 Assert.AreEqual(GETLASTERRORTEXT, 'Activation code must have 14 digits.', 'Invalid error message.');
 Assert.IsFalse(CustomerRewardsExtMgt.IsCustomerRewardsActivated, NotActivatedTxt);
 end;

 [Test]
 procedure TestCustomerRewardsWizardActivationPageErrorsWhenInvalidActivationCodeEntered();
 var
 CustomerRewardsExtMgt: Codeunit "Customer Rewards Ext. Mgt.";
 CustomerRewardsWizardTestPage: TestPage "Customer Rewards Wizard";

 begin
 // [Scenario] Error message when user tries to activate Customer Rewards with invalid activation code.
 // [Given] The Customer Rewards Wizard
 Initialize;
 Commit;

 // Using permissions that do not include SUPER
 LibraryLowerPermissions.SetO365BusFull;
 Assert.IsFalse(CustomerRewardsExtMgt.IsCustomerRewardsActivated, NotActivatedTxt);
 MockCustomerRewardsExtMgt.MockActivationResponse(false);

 // [When] User invokes activate action after entering invalid but correct length activation code
 OpenCustomerRewardsWizardActivationPage(CustomerRewardsWizardTestPage);
 CustomerRewardsWizardTestPage.Activationcode.SetValue('12345678901234');

 // [Then] Error message displayed

 // [Then] Error message displayed
 asserterror CustomerRewardsWizardTestPage.ActionActivate.Invoke;
 Assert.AreEqual(GETLASTERRORTEXT, 'Activation failed. Please check the activtion code you entered.',
'Invalid error message.');
 Assert.IsFalse(CustomerRewardsExtMgt.IsCustomerRewardsActivated, NotActivatedTxt);
 end;

 [Test]
 procedure TestCustomerRewardsWizardActivationPageDoesNotErrorWhenValidActivationCodeEntered();
 var
 CustomerRewardsExtMgt: Codeunit "Customer Rewards Ext. Mgt.";
 CustomerRewardsWizardTestPage: TestPage "Customer Rewards Wizard";

 begin
 // [Scenario] Customer Rewards is activated when user enters valid activation code.
 // [Given] The Customer Rewards Wizard
 Initialize;
 Commit;

 // Using permissions that do not include SUPER
 LibraryLowerPermissions.SetO365BusFull;
 Assert.IsFalse(CustomerRewardsExtMgt.IsCustomerRewardsActivated, NotActivatedTxt);
 MockCustomerRewardsExtMgt.MockActivationResponse(true);

 // [When] User invokes activate action after entering valid activation code
 OpenCustomerRewardsWizardActivationPage(CustomerRewardsWizardTestPage);
 CustomerRewardsWizardTestPage.Activationcode.SetValue('12345678901234');
 CustomerRewardsWizardTestPage.ActionActivate.Invoke;
 CustomerRewardsWizardTestPage.Close;

 // [Then] Customer Rewards is activated
 Assert.IsTrue(CustomerRewardsExtMgt.IsCustomerRewardsActivated, ActivatedTxt);
 end;

 [Test]
 procedure TestRewardsLevelListPageDoesNotOpenWhenNotActivated();
 var
 CustomerRewardsExtMgt: Codeunit "Customer Rewards Ext. Mgt.";
 RewardLevelListTestPage: TestPage "Rewards Level List";

 begin
 // [Scenario] Error opening Reward Level Page when Customer Rewards is not activated
 // [Given] Unactivated Customer Rewards
 Initialize;
 Commit;

 // Using permissions that do not include SUPER
 LibraryLowerPermissions.SetO365BusFull;
 Assert.IsFalse(CustomerRewardsExtMgt.IsCustomerRewardsActivated, NotActivatedTxt);

 // [When] User opens Reward Level Page
 // [Then] Error message
 asserterror RewardLevelListTestPage.OpenView;
 Assert.AreEqual(GETLASTERRORTEXT, 'Customer Rewards is not activated', 'Invalid error message.');
 end;

 [Test]
 procedure TestRewardsLevelListPageOpensWhenActivated();
 var
 CustomerRewardsExtMgt: Codeunit "Customer Rewards Ext. Mgt.";
 RewardLevelListTestPage: TestPage "Rewards Level List";

 begin
 // [Scenario] Reward Level Page opens when Customer Rewards is activated
 // [Given] Activated Customer Rewards
 Initialize;
 Commit;

 // Using permissions that do not include SUPER
 LibraryLowerPermissions.SetO365BusFull;

 LibraryLowerPermissions.SetO365BusFull;
 Assert.IsFalse(CustomerRewardsExtMgt.IsCustomerRewardsActivated, NotActivatedTxt);
 ActivateCustomerRewards;
 Assert.IsTrue(CustomerRewardsExtMgt.IsCustomerRewardsActivated, ActivatedTxt);

 // [When] User opens Reward Level Page
 // [Then] No error
 RewardLevelListTestPage.OpenView;
 end;

 [Test]
 procedure TestRewardLevelsActionExistsOnCustomerListPage();
 var
 CustomerListTestPage: TestPage "Customer List";

 begin
 // [Scenario] Reward Level action exists on customer list page
 // [Given] Customer List Page

 CustomerListTestPage.OpenView;

 // Using permissions that do not include SUPER
 LibraryLowerPermissions.SetO365BusFull;

 // [Then] Reward levels action exists on custome list page
 Assert.IsTrue(CustomerListTestPage."Reward Levels".Visible, 'Reward Levels action should be visible');
 end;

 [Test]

 [HandlerFunctions('CustomerRewardsWizardModalPageHandler')]

 procedure TestRewardLevelsActionOnCustomerListPageOpensCustomerRewardsWizardWhenNotActivated();
 var
 CustomerRewardsExtMgt: Codeunit "Customer Rewards Ext. Mgt.";
 CustomerListTestPage: TestPage "Customer List";

 begin
 // [Scenario] Reward Levels Action Opens Customer Rewards Wizard When Not Activated
 // [Given] Unactivated Customer Rewards
 Initialize;
 Commit;

 // Using permissions that do not include SUPER
 LibraryLowerPermissions.SetO365BusFull;
 Assert.IsFalse(CustomerRewardsExtMgt.IsCustomerRewardsActivated, NotActivatedTxt);

 // [When] User opens Customer List page and invokes action
 CustomerListTestPage.OpenView;
 CustomerListTestPage."Reward Levels".Invoke;

 // [Then] Wizard opens. Caught by CustomerRewardsWizardModalPageHandler
 end;

 [Test]

 [HandlerFunctions('RewardsLevelListlPageHandler')]
 procedure TestRewardLevelsActionOnCustomerListPageOpensRewardsLevelListPageWhenActivated();
 var
 CustomerRewardsExtMgt: Codeunit "Customer Rewards Ext. Mgt.";
 CustomerListTestPage: TestPage "Customer List";

 begin
 // [Scenario] Reward Levels Action Opens Reward Level Page When Activated
 // [Given] Activated Customer Rewards
 Initialize;
 Commit;

 // Using permissions that do not include SUPER

 LibraryLowerPermissions.SetO365BusFull;
 Assert.IsFalse(CustomerRewardsExtMgt.IsCustomerRewardsActivated, NotActivatedTxt);
 ActivateCustomerRewards;
 Assert.IsTrue(CustomerRewardsExtMgt.IsCustomerRewardsActivated, ActivatedTxt);

 // [When] User opens Customer List page and invokes action
 CustomerListTestPage.OpenView;
 CustomerListTestPage."Reward Levels".Invoke;

 // [Then] Wizard opens. Caught by RewardsLevelListlPageHandler
 end;

 [Test]
 procedure TestCustomerCardPageHasRewardsFields();
 var
 CustomerRewardsExtMgt: Codeunit "Customer Rewards Ext. Mgt.";
 CustomerCardTestPage: TestPage "Customer Card";

 begin
 // [Scenario] Customer Card Page Has Reward Fields When Opened
 // [Given] Customer Card Page

 // Using permissions that do not include SUPER
 LibraryLowerPermissions.SetO365BusFull;

 // [When] Customer card page is opened
 CustomerCardTestPage.OpenView;

 // [Then] Reward fiels are exist
 Assert.IsTrue(CustomerCardTestPage.RewardLevel.Visible, 'Reward Level should be visible');
 Assert.IsFalse(CustomerCardTestPage.RewardLevel.Editable, 'Reward Level should not be editable');
 Assert.IsTrue(CustomerCardTestPage.RewardPoints.Visible, 'Reward Points should be visible');
 Assert.IsFalse(CustomerCardTestPage.RewardPoints.Editable, 'Reward Points should not be editable');
 end;

 [Test]
 procedure TestNewCustomerHasZeroRewardPointsAndNoRewardLevel();
 var
 Customer: Record Customer;
 CustomerRewardsExtMgt: Codeunit "Customer Rewards Ext. Mgt.";
 CustomerCardTestPage: TestPage "Customer Card";

 begin
 // [Scenario] A new customer Has Zero Reward Points And No Reward Level
 // [Given] Activated Customer Rewards
 Initialize;
 Commit;

 // Using permissions that do not include SUPER
 LibraryLowerPermissions.SetO365BusFull;
 ActivateCustomerRewards;

 // [When] New Customer
 LibrarySales.CreateCustomer(Customer);
 CustomerCardTestPage.OpenView;
 CustomerCardTestPage.GoToRecord(Customer);

 // [Then] No Reward level
 VerifyCustomerRewardLevel(CustomerCardTestPage.RewardLevel.Value, NoLevelTxt);

 // [Then] Reward Point is zero
 VerifyCustomerRewardPoints(CustomerCardTestPage.RewardPoints.AsInteger, 0);
 end;

 [Test]
 procedure TestCustomerHasCorrectRewardPointsAfterPostedSalesOrders();
 var
 Customer: Record Customer;
 CustomerRewardsExtMgt: Codeunit "Customer Rewards Ext. Mgt.";

 CustomerRewardsExtMgt: Codeunit "Customer Rewards Ext. Mgt.";
 CustomerCardTestPage: TestPage "Customer Card";

 begin
 // [Scenario] Customer Has Correct Reward Points After 4 Posted Sales Orders
 // [Given] Activated Customer Rewards and Customer
 Initialize;
 Commit;

 // Using permissions that do not include SUPER
 LibraryLowerPermissions.SetO365BusFull;
 ActivateCustomerRewards;

 // New Customer
 LibrarySales.CreateCustomer(Customer);

 // [When] 4 Sales Orders
 CreateAndPostSalesOrder(Customer."No.");
 CreateAndPostSalesOrder(Customer."No.");
 CreateAndPostSalesOrder(Customer."No.");
 CreateAndPostSalesOrder(Customer."No.");

 // [Then] Customer has 4 reward points
 CustomerCardTestPage.OpenView;
 CustomerCardTestPage.GoToRecord(Customer);
 VerifyCustomerRewardPoints(CustomerCardTestPage.RewardPoints.AsInteger, 4);
 end;

 [Test]
 procedure TestCustomerHasNoRewardLevelAfterPostedSalesOrders();
 var
 Customer: Record Customer;
 CustomerRewardsExtMgt: Codeunit "Customer Rewards Ext. Mgt.";
 CustomerCardTestPage: TestPage "Customer Card";

 begin
 // [Scenario] Customer Has 1 Reward Point and No Reward Level After 1 Posted Sales Orders
 // [Scenario] Because Lowest Level requires at least 2 points
 // [Given] Activated Customer Rewards, Customer, Bronze level for 2 points and above
 Initialize;
 Commit;

 // Using permissions that do not include SUPER
 LibraryLowerPermissions.SetO365BusFull;
 ActivateCustomerRewards;
 AddRewardLevel(BronzeLevelTxt, 2); // 2 points required for BRONZE level

 // New Customer
 LibrarySales.CreateCustomer(Customer);
 CustomerCardTestPage.OpenView;
 CustomerCardTestPage.GoToRecord(Customer);

 // Verify 0 points and no reward level before sales order
 VerifyCustomerRewardPoints(CustomerCardTestPage.RewardPoints.AsInteger, 0);
 VerifyCustomerRewardLevel(CustomerCardTestPage.RewardLevel.Value, NoLevelTxt);

 // [When] 1 Sales Order
 CreateAndPostSalesOrder(Customer."No.");

 // [Then] Customer has 1 points and no reward level after sales order
 CustomerCardTestPage.GoToRecord(Customer);
 VerifyCustomerRewardPoints(CustomerCardTestPage.RewardPoints.AsInteger, 1);
 VerifyCustomerRewardLevel(CustomerCardTestPage.RewardLevel.Value, NoLevelTxt);
 end;

 [Test]
 procedure TestCustomerHasBronzeRewardLevelAfterPostedSalesOrders();
 var
 Customer: Record Customer;
 CustomerRewardsExtMgt: Codeunit "Customer Rewards Ext. Mgt.";

 CustomerRewardsExtMgt: Codeunit "Customer Rewards Ext. Mgt.";
 CustomerCardTestPage: TestPage "Customer Card";

 begin
 // [Scenario] Customer Has 2 Reward Points and Bronze Reward Level After 2 Posted Sales Orders
 // [Scenario] Because Bronze Level requires at least 2 points
 // [Given] Activated Customer Rewards, Customer, Bronze level for 2 points and above
 Initialize;
 Commit;

 // Using permissions that do not include SUPER
 LibraryLowerPermissions.SetO365BusFull;
 ActivateCustomerRewards;
 AddRewardLevel(BronzeLevelTxt, 2); // 2 points required for BRONZE level

 // New Customer
 LibrarySales.CreateCustomer(Customer);

 // [When] 2 Sales Order
 CreateAndPostSalesOrder(Customer."No.");
 CreateAndPostSalesOrder(Customer."No.");

 // [Then] Customer has 2 points and bronze reward level
 CustomerCardTestPage.OpenView;
 CustomerCardTestPage.GoToRecord(Customer);
 VerifyCustomerRewardPoints(CustomerCardTestPage.RewardPoints.AsInteger, 2);
 VerifyCustomerRewardLevel(CustomerCardTestPage.RewardLevel.Value, BronzeLevelTxt);
 end;

 [Test]
 procedure TestCustomerHasSilverRewardLevelAfterPostedSalesOrders();
 var
 Customer: Record Customer;
 CustomerRewardsExtMgt: Codeunit "Customer Rewards Ext. Mgt.";
 CustomerCardTestPage: TestPage "Customer Card";

 begin
 // [Scenario] Customer Has 3 Reward Points and Silver Reward Level After 3 Posted Sales Orders
 // [Scenario] Because Silver Level requires at least 3 points
 // [Given] Activated Customer Rewards, Customer, Bronze level from 2 points, Silver level from 3
points
 Initialize;
 Commit;

 // Using permissions that do not include SUPER
 LibraryLowerPermissions.SetO365BusFull;
 ActivateCustomerRewards;
 AddRewardLevel(BronzeLevelTxt, 2); // 2 points required for BRONZE level
 AddRewardLevel(SilverLevelTxt, 3); // 3 points required for SILVER level

 // New Customer
 LibrarySales.CreateCustomer(Customer);

 // 2 Sales Order
 CreateAndPostSalesOrder(Customer."No.");
 CreateAndPostSalesOrder(Customer."No.");

 // Verify 2 points and bronze reward level
 CustomerCardTestPage.OpenView;
 CustomerCardTestPage.GoToRecord(Customer);
 VerifyCustomerRewardPoints(CustomerCardTestPage.RewardPoints.AsInteger, 2);
 VerifyCustomerRewardLevel(CustomerCardTestPage.RewardLevel.Value, BronzeLevelTxt);

 // [When] 3rd Sales Order
 CreateAndPostSalesOrder(Customer."No.");

 // [Then] Customer has 3 points and silver reward level
 CustomerCardTestPage.GoToRecord(Customer);
 VerifyCustomerRewardPoints(CustomerCardTestPage.RewardPoints.AsInteger, 3);
 VerifyCustomerRewardLevel(CustomerCardTestPage.RewardLevel.Value, SilverLevelTxt);

 VerifyCustomerRewardLevel(CustomerCardTestPage.RewardLevel.Value, SilverLevelTxt);
 end;

 [Test]
 procedure TestCustomerHasGoldRewardLevelAfterPostedSalesOrders();
 var
 Customer: Record Customer;
 CustomerRewardsExtMgt: Codeunit "Customer Rewards Ext. Mgt.";
 CustomerCardTestPage: TestPage "Customer Card";

 begin
 // [Scenario] Customer Has 4 Reward Points and Gold Reward Level After 4 Posted Sales Orders
 // [Scenario] Because Gold Level requires at least 4 points
 // [Given] Activated Customer Rewards, Customer
 // [Given] Bronze level from 2 points, Silver level from 3 points, Gold level from 4 points
 Initialize;
 Commit;

 // Using permissions that do not inlcude SUPER
 LibraryLowerPermissions.SetO365BusFull;
 ActivateCustomerRewards;
 AddRewardLevel(BronzeLevelTxt, 2); // 2 points required for BRONZE level
 AddRewardLevel(SilverLevelTxt, 3); // 3 points required for SILVER level
 AddRewardLevel(GoldLevelTxt, 4); // 4 points required for GOLD level

 // New Customer
 LibrarySales.CreateCustomer(Customer);

 // 3 Sales Order
 CreateAndPostSalesOrder(Customer."No.");
 CreateAndPostSalesOrder(Customer."No.");
 CreateAndPostSalesOrder(Customer."No.");

 // Verify 3 points and silver reward level
 CustomerCardTestPage.OpenView;
 CustomerCardTestPage.GoToRecord(Customer);
 VerifyCustomerRewardPoints(CustomerCardTestPage.RewardPoints.AsInteger, 3);
 VerifyCustomerRewardLevel(CustomerCardTestPage.RewardLevel.Value, SilverLevelTxt);

 // [When] 4th Sales Order
 CreateAndPostSalesOrder(Customer."No.");

 // [Then] Customer has 4 points and gold reward level
 CustomerCardTestPage.GoToRecord(Customer);
 VerifyCustomerRewardPoints(CustomerCardTestPage.RewardPoints.AsInteger, 4);
 VerifyCustomerRewardLevel(CustomerCardTestPage.RewardLevel.Value, GoldLevelTxt);
 end;

 local procedure OpenCustomerRewardsWizardActivationPage(VAR CustomerRewardsWizardTestPage: TestPage
"Customer Rewards Wizard");
 begin
 CustomerRewardsWizardTestPage.OpenView;
 CustomerRewardsWizardTestPage.EnableFeature.SetValue(true);
 CustomerRewardsWizardTestPage.ActionNext.Invoke;
 end;

 local procedure Initialize();
 var
 ActivationCodeInfo: Record "Activation Code Information";
 RewardLevel: Record "Reward Level";
 Customer: Record Customer;

 begin
 Customer.ModifyAll(RewardPoints, 0);
 ActivationCodeInfo.DeleteAll;
 RewardLevel.DeleteAll;
 UnbindSubscription(MockCustomerRewardsExtMgt);
 BindSubscription(MockCustomerRewardsExtMgt);
 MockCustomerRewardsExtMgt.Setup;
 end;

 end;

 local procedure ActivateCustomerRewards();
 var
 ActivationCodeInfo: Record "Activation Code Information";

 begin
 ActivationCodeInfo.Init;
 ActivationCodeInfo.ActivationCode := '12345678901234';
 ActivationCodeInfo."Date Activated" := Today;
 ActivationCodeInfo."Expiration Date" := CALCDATE('<1Y>', Today);
 ActivationCodeInfo.Insert;
 end;

 local procedure CreateAndPostSalesOrder(SellToCustomerNo: Code[20]);
 var
 SalesHeader: Record "Sales Header";
 SalesLine: Record "Sales Line";
 LibraryRandom: Codeunit "Library - Random";
 SalesOrderTestPage: TestPage "Sales Order";

 begin
 LibrarySales.CreateSalesHeader(SalesHeader, SalesHeader."Document Type"::Order, SellToCustomerNo);
 LibrarySales.CreateSalesLine(SalesLine, SalesHeader, SalesLine.Type::Item, '', 1);
 SalesLine.VALIDATE("Unit Price", LibraryRandom.RandIntInRange(5000, 10000));
 SalesLine.MODIFY(TRUE);
 LibrarySales.PostSalesDocument(SalesHeader, true, true);
 end;

 local procedure AddRewardLevel(Level: Text; MinPoints: Integer);
 var
 RewardLevel: Record "Reward Level";

 begin
 if RewardLevel.Get(Level) then begin
 RewardLevel."Minimum Reward Points" := MinPoints;
 RewardLevel.Modify;
 end else begin
 RewardLevel.Init;
 RewardLevel.Level := Level;
 RewardLevel."Minimum Reward Points" := MinPoints;
 RewardLevel.Insert;
 end;
 end;

 local procedure VerifyCustomerRewardLevel(ExpectedLevel: Text; ActualLevel: Text);
 begin
 Assert.AreEqual(ExpectedLevel, ActualLevel, 'Reward Level should be the same.');
 end;

 local procedure VerifyCustomerRewardPoints(ExpectedPoints: Integer; ActualPoints: Integer);
 begin
 Assert.AreEqual(ExpectedPoints, ActualPoints, 'Reward Points should be the same.');
 end;

 [ModalPageHandler]
 procedure CustomerRewardsWizardModalPageHandler(var CustomerRewardsWizard: TestPage "Customer Rewards
Wizard");
 begin
 end;

 [PageHandler]
 procedure RewardsLevelListlPageHandler(var RewardsLevelList: TestPage "Rewards Level List");
 begin
 end;
}

Run the tests

At this point you can publish and run your tests on your tenant by pressing Ctrl+F5.

In order to run the tests, follow the steps below.

1. Open the Test Tool page (130401).

2. Choose Get Test Codeunits and then choose Select Test Codeunits.

3. Select your test codeunits and then choose the OK button.

You can now see all the test methods from your test codeunits.

4. Now, choose Run or Run Selected to run all the tests in the test codeunit or only the selected tests. The
Result column indicates whether a test was a SUCCESS or FAILURE. A summary is also presented at the
bottom of the page.

Failing Tests

procedure SetDefaultCustomerRewardsExtMgtCodeunit();
 var
 CustomerRewardsExtMgtSetup: Record "Customer Rewards Mgt. Setup";

 begin
 CustomerRewardsExtMgtSetup.DeleteAll;
 CustomerRewardsExtMgtSetup.Init;
 // Default Customer Rewards Ext. Mgt codeunit to use for handling events
 // Changing
 // CustomerRewardsExtMgtSetup."Customer Rewards Ext. Mgt. Codeunit ID" := Codeunit::"Customer Rewards
Ext. Mgt.";
 // To
 CustomerRewardsExtMgtSetup."Customer Rewards Ext. Mgt. Codeunit ID" := 0;
 CustomerRewardsExtMgtSetup.Insert;
 end;

"Assert.AreEqual failed. Expected:<50101> (Integer). Actual:<0> (Integer). Codeunit does not match default."

Let us look at what to do if you have a failing test. To create a failing test, we will modify the
SetDefaultCustomerRewardsExtMgtCodeunit method in codeunit 50100 Customer Rewards Install Logic
to the following:

Now, anytime the SetDefaultCustomerRewardsExtMgtCodeunit method in the install codeunit is run, the
Customer Rewards Ext. Mgt. Codeunit ID in the Customer Rewards Mgt. Setup table will be set to 0.

Press Ctrl+F5 to publish the updated tests to your tenant and then run them.

The test TestOnInstallLogic should now have a Failure result with the error message:

The error message shows that the actual result in one of our Assert statements differed from what was expected.
According to the error message, the Assert statement was expecting a value of 50101 but actually got a value of 0.
We can also tell where in our code this is happening because of the message; "Codeunit does not match default",
which we defined earlier when we wrote our tests. If we had no idea where the error occurred, we can click on the
error message to open the Test Results page and then choose the Call Stack action.

Conclusion

Choosing the Call Stack action will give you a message alert that contains an ordered list of method calls up to
the one that caused the error.

The list of method calls is arranged from the most recent at the top to the oldest at the bottom. In our example, we
can tell that the Assert(CodeUnit 130000).AreEqual (the first on the list) was the last method to be run, indicating
where the error was found. Because we did not modify the Assert codeunit, then the wrong values or results must
have been passed to it. The next item on the list,
"Customer Rewards Test"(CodeUnit 50103).TestOnInstallLogic_Scope_1248196953 line 35 points to the method that

was run before the final one that caused the error. This time, it is in the TestOnInstallLogic method of codeunit
50103 Customer Rewards Test after line 35.

On line 36 of codeunit 50103 Customer Rewards Test, we can see the Assert statement that throws the error. We
tested that the result should be Codeunit::"Customer Rewards Ext. Mgt." which is 50101, when our install logic is
run, however, the result of the test indicated that we got a result of 0. This implies that our install logic is not
working as expected. To fix this, we need to examine all the previous lines of code in the method to figure out
where we went wrong. This will lead us to line 31, where the SetDefaultCustomerRewardsExtMgtCodeunit
method call is made.

When you go into the SetDefaultCustomerRewardsExtMgtCodeunit method, codeunit 50100 Customer
Rewards Install Logic, you will see the change we made to cause the test to fail. Revert it so that
CustomerRewardsExtMgtSetup."Customer Rewards Ext. Mgt. Codeunit ID" now stores
Codeunit::"Customer Rewards Ext. Mgt." , instead of 0. Publish the updated extension and tests to your tenant and

run the tests again. The test TestOnInstallLogic should pass now because the actual result matches what is
expected.

At this point, the Customer Rewards sample extension can be published and installed on your sandbox.

See Also
Developing Extensions
Getting Started with AL
How to: Publish and Install an Extension
Converting Extensions V1 to Extensions V2

Business Central Web Services
3/31/2019 • 5 minutes to read

Comparing SOAP and OData Web Services

SOAP WEB SERVICES ODATA WEB SERVICES

Pages Yes: Create, Read, Update, and Delete
operations (CRUD)

Yes: Create, Read, Update, and Delete
operations (CRUD)

Codeunits Yes No

Queries No Yes: Read-only

SOAP Web Services

OData Web Services

Business Central supports two types of web services: SOAP and OData. Web services are a lightweight, industry-
standard way to make application functionality available to a variety of external systems and users. Developers
can create and publish functionality as web services, where they expose pages, codeunits, or queries, and even
enhance a page web service by using an extension codeunit. When Business Central objects are published as web
services, they are immediately available on the network.

Business Central web services are stateless and do not preserve the values of global variables or single-instance
codeunits between calls.

Developers planning to create Microsoft Dynamics NAV web services may need to decide which type of web
service is better suited to their needs. The following table shows the types of web service applications that you can
create for the web service protocols.

Business Central supports OData web services in addition to the SOAP web services that have been available
since Microsoft Dynamics NAV 2009.

SOAP web services allow full flexibility for building operation-centric services. They provide industry standard
interoperability. Windows Communication Framework (WCF) has supported SOAP services since its initial
release in .NET Framework 3.0, and later releases of the .NET Framework have added additional support and
default bindings to make it easier to build SOAP services using WCF.

The most common type of messaging pattern in SOAP is the Remote Procedure Call (RPC), where one network
node (the client) sends a request message to another node (the server), and the server sends a response message
to the client.

The OData standard is well suited for web service applications that require a uniform, flexible, general purpose
interface for exposing create retrieve update delete (CRUD) operations on a tabular data model to clients. OData
is less suited for applications that are primarily RPC-oriented or in which data operations are constrained to
certain prescribed patterns. OData supports Representational State Transfer (REST)-based data services, which
enable resources, identified using Uniform Resource Identifiers (URIs), and defined in an abstract data model
(EDM), to be published and edited by web clients within corporate networks and across the Internet using simple
Hypertext Transfer Protocol (HTTP) messages. OData services are lightweight, with functionality often referenced
directly in the URI.

Whereas SOAP web services expose a WSDL document, OData web services expose an EDMX document

Page Web Services

Codeunit Web Services

Query Web Services

Web Services and Regional Settings

Web Services in Multitenant Deployments

containing metadata for all published web services.

OData is supported in PowerPivot, a data-analysis add-in to Microsoft Excel that provides enhanced Business
Intelligence capabilities. PowerPivot supports sharing and collaboration on user-generated business intelligence
solutions in a Microsoft SharePoint Server environment. For more information about PowerPivot, see
http://www.powerpivot.com/.

The extensions to the Atom Publishing Protocol defined in the AtomPub extensions to the OData protocol
documentation (which you can download here) describe how REST-based data services can enable resources,
identified using URIs and defined in an abstract data model (EDM), to be published and edited by web clients
within corporate networks and across the Internet using simple HTTP messages.

In addition to the AtomPub format, the OData implementation in Business Central also supports the JSON
format, a somewhat less verbose format that may perform better in low-bandwidth environments.

When you expose a page as an OData web service, you can query that data to return a service metadata (EDMX)
document, an AtomPub document, or a JavaScript Object Notation (JSON) document. You can also write back to
the database if the exposed page is writable. For more information, see OData Web Services.

When you expose a page as a SOAP web service, you expose a default set of operations that you can use to
manage common operations such as Create, Read, Update, and Delete. Page-based web services offer built-in
optimistic concurrency management. Each operation call in a page-based web service is managed as a single
transaction.

For SOAP services, you can also use extension codeunits to extend the default set of operations that are available
on a page. Adding an extension codeunit to a page is useful if you want to perform operations other than the
standard Create, Read, Update, and Delete operations. The benefit of adding an extension codeunit to a page is
that you can make the web service complete by adding operations that are logical to that service. Those
operations can use the same object identification principle as the basic page operations.

For SOAP services only, codeunit web services provide you with the most control and flexibility. When a codeunit
is exposed as a web service, all functions defined in the codeunit are exposed as operations.

When you expose a Business Central query as an OData web service, you can query that data to return a service
metadata (EDMX) document or an AtomPub document. For more information about how to create and use
Business Central queries, see Query Object.

Data is formatted according to the value of the Services Language setting for the relevant Business Central
Server instance. The default value is en-us. This means that Business Central Server interprets all incoming data
as the specified culture, such as dates and amounts.

If you know that the Services Language setting is always en-us, for example, your code can be based on that
assumption. In a multilanguage environment, you will see more predictable transformations of data if data that is
transmitted through web services is in a consistent culture.

Similarly, you can use the ServicesOptionFormat setting to specify how Business Central Server must
understand option values. If you set the ServicesOptionFormat setting to OptionString, Business Central Server
understand option values as the name of the option value, which is always en-us. If you set the setting to
OptionCaption, web service data will be interpreted in the language specified by the Services Language setting.

http://go.microsoft.com/fwlink/?LinkID=262183
http://go.microsoft.com/fwlink/?LinkID=262184
file:///T:/q4ru/webservices/OData-Web-Services.html

http://localhost:7048/BC130/OData/Company('CRONUS-International-Ltd.')/Customer?Tenant=Tenant1

See Also

If your Business Central solution is used in a multitenant deployment architecture, you must make sure that any
code that generates or consumes a web service specifies the relevant tenant. Web services are set up in the
application, but typically you want to consume company-specific and tenant-specific data.

If you use the GETURL method, the generated URL will automatically apply to the user’s tenant ID. For more
information, see GETURL Method.

The URL for accessing a web service in a multitenant deployment must specify the tenant ID in one of two ways:
As a query parameter, or as a host name. If you use host names for tenants, the host name must be specified as an
alternative ID.

For example, the following URL consumes the Customer ODATA web service for a specific tenant:

For more information, see Multitenant Deployment Architecture.

Publish a Web Service
Web Services Overview
SOAP Web Service URIs
Using SystemService to Find Companies
Basic Page Operations
Web Services Best Practices
Configuring Business Central Server

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/system/system-geturl-clienttype-string-objecttype-integer-recordref-boolean-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/deployment/Multitenant-Deployment-Architecture
file:///T:/q4ru/webservices/SOAP-Web-Service-URIs.html
file:///T:/q4ru/webservices/Basic-Page-Operations.html
file:///T:/q4ru/webservices/Web-Services-Best-Practices.html

Publishing a Web Service
3/31/2019 • 3 minutes to read

Creating and Publishing a Web Service

You can set up a web service in the Business Central Web client or Dynamics NAV Client connected to Business
Central. You must then publish the web service so that it is available to service requests over the network. Users
can discover web services by pointing a browser at the computer that is running Business Central Server and
requesting a list of available services. When you publish a web service, it is immediately available over the
network for authenticated users. All authorized users can access metadata for Business Central web services, but
only users who have sufficient Business Central permissions can access actual data.

The following steps explain how to create and publish a web service.

NOTE

1. Open the client.

2. Choose the icon, enter Web Services, and then choose the related link.

3. In the Web Services page, choose New.

4. In the Object Type column, select Codeunit, Page, or Query.

Codeunit and Page are valid types for SOAP web services. Page and Query are valid types for OData web services.

5. In the Object ID column, select the object ID of the object that you want to expose. For example, to expose
the customer card as a web service, enter 21.

If the database contains multiple companies, you can choose an object ID that is specific to one of the
companies.

6. In the Service Name field, assign a name to the web service. For example, if you expose the customer card
as a web service, enter Customers.

Codeunit and Page are valid types for SOAP web services. Page and Query are valid types for OData
web services.
If the database contains multiple companies, you can choose an object ID that is specific to one of the
companies.
The service name is visible to consumers of your web service and is the basis for identifying and
distinguishing web services, so you should make the name meaningful.
If you are setting up integration with Microsoft Outlook using codeunit 5313, then you must use
DynamicsNAVsynchOutlook as the service name.

7. Select the check box in the Published column.

When you publish the web service, in the OData URL and SOAP URL fields, you can see the URLs that
are generated for the web service. You can test the web service immediately by choosing the links in the
OData URL and SOAP URL fields. Optionally, you can copy the value of the field and save it for later use.

After you publish a web service, it is available on the Business Central Server computer that you were connected
to when you published. The web service is available across all Business Central Server instances running on the
server computer.

Verify the availability of a web service

https://localhost:7048/<serverinstance>/OData/Company('CRONUS International Ltd.')/Customer

https://localhost:7048/<serverinstance>/OData/Customer?company='CRONUS International Ltd.'

You can verify the availability of that web service by using a browser, or you can choose the link in the OData
URL and SOAP URL fields in the Web Services window. The following procedure illustrates how you can verify
the availability of the web service for later use.

WEB SERVICE TYPE SYNTAX EXAMPLE

SOAP https://Server:SOAPWebServicePort/
ServerInstance/WS/CompanyName/
services/

https://localhost:7047/BC140/WS/CR
ONUS International Ltd./services/

OData https://Server:ODataWebServicePort
/ServerInstance/OData/Company('Co
mpanyName')

https://localhost:7048/BC140/OData
/Company('CRONUS International
Ltd.')

1. In your browser, enter the relevant URL. The following table illustrates the types of URLs that you can enter.
For SOAP web services, use the following format for your URI.

The company name is case-sensitive.

2. Review the information that is displayed in the browser. Verify that you can see the name of the web service
that you have created.

When you access a web service, and you want to write data back to Business Central , you must specify the
company name. You can specify the company as part of the URI as shown in the examples, or you can specify the
company as part of the query parameters. For example, the following URIs point to the same OData web service
and are both valid URIs.

Handling UI Interaction When Working with Web
Services
4/4/2019 • 2 minutes to read

Publishing Web Services

NOTE

AL Keywords That Can Cause Faults or Exceptions

Whether you are publishing or consuming web services, exceptions and dialog boxes that may be displayed while
code runs must be handled correctly. Exceptions must be handled to prevent the system from ending the web
service client execution. You can handle exceptions in the following ways:

Writing conditional code inside Business Central.

Writing the code in the web service client application.

The most robust solution is to use both methods.

When publishing a web service, you must make sure that the code that you are publishing does not assume the
ability to interact with a user through the UI. You can use the GUIALLOWED Method to suppress the UI. For
example, you can use this method to determine whether a codeunit is being called from the client or from a web
service client. You must make sure to suppress errors when a codeunit is called from a web service client.

When implementing a conditional code check in Business Central, you should implement the check only around
code that could cause an error. You should not encapsulate the whole business logic.

The server returns the following exception when trying to invoke a dialog UI through a web service:
Microsoft.Dynamics.Nav.Types.Exceptions.NavNCLCallbackNotAllowedException: Callback functions are not
allowed.

Variables of the Dialog Data Type or any of the methods listed as dialog methods can cause callback not allowed
exceptions when they are called from a web service application. The Message Method (Dialog) is the only method
in this category that does not cause an exception.

Other keywords that you should not use are:

PAGE.RUN

PAGE.RUNMODAL

ACTIVATE

REPORT.RUN

REPORT.RUNMODAL

HYPERLINK

FILE.UPLOAD

FILE.DOWNLOAD

You should also avoid operations on client-side Automation and .NET Framework interoperability objects.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-guiallowed-method
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/datatypes/devenv-dialog-data-type
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/dialog/dialog-message-method

Consuming Web Services

See Also

You must handle exceptions in client code that calls a Business Central web service. Appropriate exception
capturing code should be included around any call to a Business Central web service.

Web Services Overview
Publish a Web Service

Managing Time Zones with Web Services
3/31/2019 • 2 minutes to read

Time Zone Configuration

VALUE DESCRIPTION

UTC Specifies that all business logic for services on the server
instance runs in Coordinated Universal Time (UTC). This is the
default value. This is how web services business logic was
handled in Microsoft Dynamics NAV 2009 SP1 and Microsoft
Dynamics NAV 2009.

Server Time Zone Specifies that services use the time zone of the computer that
is running Business Central Server.

ID of any Windows time zone Specifies that services use a Windows time zone as defined in
the system registry under
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Time Zones. For example, Romance
Standard Time is a valid Windows time zone value.

NOTE

WEB SERVICE CHANGES THE DATETIME
FIELD TO

BUSINESS CENTRAL SERVER INTERPRETS
THE DATETIME VALUE AS

BUSINESS CENTRAL SERVER SAVES THE
DATETIME VALUE AS

01/01/2014 17:00 UTC+1 01/01/2014 17:00 UTC+1 01/01/2014 16:00 UTC

01/01/2014 17:00 01/01/2014 17:00 UTC+3 01/01/2014 14:00 UTC

See Also

Business Central Server provides a Services Default Time Zone setting for defining the time zone in which web
service calls run. This setting affects both SOAP and OData web services, in addition to NAS Services.

You can configure the Services Default Time Zone using the Server Administration Tool, [Business Central
Windows PowerShell Cmdlets]((https://docs.microsoft.com/en-us/powershell/business-central/overview), or by
directly editing CustomSettings.config, the configuration file for the relevant Business Central Server instance. The
following table describes the possible values for the Services Default Time Zone setting.

When a web service writes data back to Business Central , dates and times are based on the setting of the Services
Default Time Zone setting. However, the web service consumer can override the setting and specify a different time
zone.

Business Central Server stores dates and times as UTC. When a web service receives data from Business Central Server, the
time zone is UTC even if the Services Default Time Zone setting is set to a different time zone.

For example, if the Services Default Time Zone setting is set to UTC+3, the following table describes two scenarios
where a web service consumer modifies Business Central data and sends this back to Business Central Server.

https://docs.microsoft.com/en-us/powershell/business-central/overview

Server Administration Tool
Business Central Windows PowerShell Cmdlets

https://docs.microsoft.com/en-us/powershell/business-central/overview

Preserving Data When Working with a Statically
Generated Proxy
3/31/2019 • 2 minutes to read

Avoiding Data Loss by Building the Proxy with Your Client Application

static void Main(string[] args)
{
 CustomerService.Customer_Service svc
 = new CustomerService.Customer_Service();
 svc.UseDefaultCredentials = true;
 Customer c = svc.Read("01121212");
 Console.WriteLine(c.Name);
 Console.ReadKey();
}

Spotsmeyer's Furnishings

See Also

You can lose data if you develop a web service client that interacts with a statically generated proxy. Similarly, a
client web service cannot detect if a field has been added to or removed from a page since a proxy was last
generated. This topic describes an approach for avoiding this pitfall.

To avoid data loss due to a statically generated proxy, automatically generate your proxy whenever you build your
client.

Assume you have published page 21, Customer Card, as a SOAP web service with Customer as the Service
Name value. Add a service reference to this web service from a C# console application and insert the following
code in the Main method:

When you run the application, you will see the following output (assuming the CRONUS International Ltd.
demonstration database):

Then go back to page 21 and set the Name property for the control that is bound to the Name field to
CustomerName, and save the page.

Finally, switch back to the console application without updating the web reference and run the code. Instead of
getting an error message that indicates that the web request does not match the web service description, you do
not get an error message, and Console.WriteLine shows an empty line.

Web Services Overview

Web Services Authentication
5/3/2019 • 3 minutes to read

About NavUserPassword and AccessControlService credential types

IMPORTANT

Unicode characters in user name or password

How to use an Access Key for SOAP and OData Web Service
Authentication

Generate a Web Service Access Key

When users send a request for a web service, they are authenticated according to the credential type that is
configured for Business Central Server. To access a web service, users must provide valid credentials for the
credential type being used. If Business Central is configured for Windows credential type, then users are
automatically authenticated against the Windows account that their computer is running under, and they are not
prompted for their credentials. For other credential types, users are prompted to enter a user name and password.

If your solution uses NavUserPassword or AccessControlService as the credential type, users can access data
through SOAP and OData web services if they specify a password or a web service access key. You set up the user
accounts in the Business Central client, based on how they will access Business Central data. For example, if you set
up a user account that will allow an external application to read Business Central data through a web service, you
can generate a web service access key and specify that key for the relevant user accounts. Then, you add the access
key to the configuration of the application that consumes the web service. In contrast, when users access Business
Central data through a web service in Microsoft Excel, for example, they specify a password instead of a web
service access key.

Business Central also supports OAuth authentication on OData and SOAP endpoints. OAuth is an open standard
for authorization that provides client applications with secure delegated access to server resources. OAuth enables
you to extend single sign-on with Office 365 to Business Central web services. For more information, see Using
OAuth to Authorize Business Central Web Services (OData and SOAP).

If the Business Central Server is configured to use NavUserPassword or AccessControlService authentication, then the
username, password, and access key can be exposed if the SOAP or OData data traffic is intercepted and the connection
string is decoded. To avoid this condition, configure SOAP and OData web services to use Secure Socket Layer (SSL).

When Business Central data is consumed by a web service, users cannot be authenticated if their user name or
password contains Unicode characters. This is a limitation in the basic authentication mechanism that is defined in
the HTTP/1.1 specification.

The same limitation applies to exposing Business Central data in external products such as a browser or a Microsoft
.NET Framework assembly.

If your solution is configured for NavUserPassword or AccessControlService authentication, then you can
configure Business Central user accounts to include an access key that can be used instead of a password to
authenticate SOAP and OData web service requests. A web service access key is a random 44 character string that
is associated with the user account. Because it can only be used for SOAP and OData web services, it does not
require the same level of protection as a password.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/webservices/authenticate-web-services-using-oauth

Implement the Web Service Access Key

See Also

Follow these instructions to generate a web service access key for a user. You perform these steps from the user
setup in Business Central client.

1. Choose the icon, enter Users, choose the related link, and then open the user account that you want to
edit.

2. In the Web Service Access section, select the Web Service Access Key field.

3. In the Set the Web Service Access Key window, if you do not want the key to expire, select the Key Never
Expires check box. If you want the key to expire, set the Key Expiration Date field to the date.

4. Choose the OK button.

The access key is automatically generated and appears in the Web Service Access Key field.

Typically, you would create a user account strictly for web services, and then use the account's credentials, which
include the user name and access key, in a web service application. For example, if you develop your own web
service application, then you can design your application to programmatically pass the credentials to the web
service. Some applications let you provide the connection credentials through a user interface. The steps for
implementing the web service access key are done in Business Central client.

TO SEE

Learn how to use code to pass the user name and web
access key to a web service

Passing Credentials for Authentication to Web Services

1. Create a user specifically for web services.

For more information, see Manage Users and Permissions.

2. Generate a web service access key in the user account.

3. Use the access key in the web service application.

Web Services Overview
SOAP Web Services
OData Web Services
Authentication and Credential Types

https://docs.microsoft.com/en-us/dynamics365/business-central/ui-how-users-permissions
http://go.microsoft.com/fwlink/?LinkID=259554
file:///T:/q4ru/webservices/SOAP-Web-Services.html
file:///T:/q4ru/webservices/OData-Web-Services.html

Using Security Certificates with Business Central On-
Premises
3/31/2019 • 8 minutes to read

About Security Certificates

NOTE

Certificates for Production

Obtaining Certificates

You use certificates to help secure connections over a wide area network (WAN), such as connections from the
Business Central Web Server, Dynamics NAV Client connected to Business Central, and web services to the
Business Central Server. Implementing security certificates on your deployment environment requires
modifications to various components, like the Business Central Server, Business Central Web Server, and clients.

A certificate is a file that Business Central Server uses to prove its identity and establish a trusted connection
with the client that is trying to connect. Business Central can support the following configurations:

Chain trust, which specifies that each certificate must belong to a hierarchy of certificates that ends in a
root authority at the top of the chain.

Peer trust, which specifies that both self-issued certificates and certificates in a trusted chain are accepted.

The implementation in this section describes the chain trust configuration, which is the more secure option.

An instance of Business Central Server that has been configured for secure WAN communication always prompts users for
authentication when they start the client, even when the client computer is in the same domain as Business Central Server.

In a production environment, you should obtain a certificate from a certification authority or trusted provider.
Some large organizations may have their own certification authorities, and other organizations can request a
certificate from a third-party organization.

You implement chain trust by obtaining X.509 service certificates from a trusted provider. These certificates and
their root certification authority (CA) certificates must be installed in the certificates store on the computer that
is running Dynamics NAV Server. The CA certificate must also be installed in the certificate store on computers
that are running the Business Central Web Server and Dynamics NAV Client connected to Business Central so
that clients can validate the server.

Most enterprises and hosting providers have their own infrastructure for issuing and managing certificates. You
can also use these certificate infrastructures. The only requirement is that the service certificates must be set up
for key exchange and therefore must contain both private and public keys. Additionally, the service certificates
that are installed on Business Central Server instances must have the Service Authentication and Client
Authentication certificate purposes enabled.

IMPORTANT

Run the Certificates Snap-in for Microsoft Management Console

Install and Configure the Certificates

Install Certificates on components

Grant access to the Business Central Server service account

Microsoft recommends against using wildcard SSL certificates in Business Central installations. Wildcard certificates pose
security risks because if one server or sub-domain is compromised, all sub-domains may be compromised. Wildcard
certificates also introduce a new style of impersonation attack. In this attack, the victim is lured to a fraudulent resource in
the certified domain through phishing. Conventional certificates detect this attack, because the user’s browser checks that
the private key is hosted on a server whose name matches the one displayed in the browser’s address window.

Some of the following procedures use the Certificates snap-in for Microsoft Management Console (MMC). If
you do not already have this snap-in installed, you can add it to the MMC. For information see Add the
Certificates Snap-in to an MMC.

You install the security certificates on the computers running Business Central Server, Business Central Web
Server, and Dynamics NAV Client connected to Business Central. The root CA certificate and the service
certificate are used in the configuration, but client certificates are not.

1. Follow the installation instructions that are available from your certificate provider to install the root CA
and service certificates on the following computers:

Install the root CA on the computer that is running Business Central Server and all computers that
are running Business Central Web Server instances and Dynamics NAV Client connected to
Business Central.

Install the service certificate on the computer that is running Business Central Server only.

2. Make sure that the Server Authentication and Client Authentication certificate purposes are enabled
for the service certificate.

A certificate can be enabled for several different purposes. The Server Authentication and Client
Authentication purposes must be enabled. You can enable or disable other purposes to suit your
requirements.

You enable certificate purposes by using the Certificates Snap-in for MMC. For more information, see
Modify the Properties of a Certificate.

After you have installed the root CA and the service certificate on the computer running Business Central
Server, you must grant access to the service account that is associated with the server so that the service account
can access the service certificate’s private key.

1. In the left pane of MMC, expand the Certificates (Local Computer) node, expand the Personal node,
and then select the Certificates subfolder.

2. In the right pane, right-click the certificate, select All Tasks, and then choose Manage Private Keys.

3. In the Permissions dialog box for the certificate, choose Add.

4. In the Select Users, Computers, Service Accounts, or Groups dialog box, enter the name of the
dedicated domain user account that is associated with Business Central Server, and then choose the OK
button.

5. In the Full Control field, select Allow, and then choose the OK button.

http://go.microsoft.com/fwlink/?LinkID=699497
http://go.microsoft.com/fwlink/?LinkID=699496

Configure the Business Central Server instance

Configure the Business Central Web Server and Dynamics NAV Client
connected to Business Central

TIP

6. In the right pane, select the certificate.

7. In the Certificate dialog box, choose the Details tab, and then select the Thumbprint field.

8. Copy the value of Thumbprint field.

For example, copy the hexadecimal characters to text editor, such as Notepad. Delete all spaces from the
thumbprint string. If the thumbprint is c0 d0 f2 70 95 b0 3d 43 17 e2 19 84 10 24 32 8c ef 24 87 79 , then
change it to c0d0f27095b03d4317e219841024328cef248779 .

It is important that the thumbprint does not contain any invisible extra characters; otherwise you will experience
problems when using it later. To avoid this, see Certificate thumbprint displayed in MMC certificate snap-in has
extra invisible unicode character.

The Business Central Server instance configuration includes several settings for certificates and enabling remote
logins. You can modify a server instance by using Business Central Server Administration tool or Business
Central Administration Shell. For details about how to modify a server instance, see Configuring Business
Central Server.

SETTING NEW VALUE DESCRIPTION

Credential Type NavUserPassword , Username , or
AccessControlService

The default value is Windows . When
you change it to NavUserPassword ,
Username , or
AccessControlService , client

users who connect to the server are
prompted for user name and
password credentials.

Certificate Thumbprint Value of the Thumbprint field in the
previous procedure.

Remove any leading or trailing
spaces in the thumbprint.

1. Run the Business Central Server Administration tool.

2. Under General, change the following settings for the Business Central Server instance.

3. If you want to use secure web services, then under SOAP Services and OData Services, select the
Enable SSL check box.

4. Save and the new values for the server instance.

5. Restart the Business Central Server instance.

If there is a problem, see Windows Event Viewer.

The chain trust configuration allows client users to log on to one or more instances of Business Central Server as
long as their login credentials have been associated with user accounts in Business Central. The client validates
that the server certificate is signed with the root CA.

After you have installed the root CA on the computer running the Business Central Web Server or Dynamics

https://support.microsoft.com/en-au/help/2023835/certificate-thumbprint-displayed-in-mmc-certificate-snap-in-has-extra

Modify the Business Central Web client configuration file

Modify the Dynamics NAV Client connected to Business Central configuration file

NAV Client connected to Business Central, you must modify the client configuration file.

KEY NEW VALUE DESCRIPTION

ClientServicesCredentialType NavUserPassword , Username , or
AccessControlService

The default value is Windows . When
you change it to NavUserPassword ,
Username , or
AccessControlService , client

users who connect to the server are
prompted for user name and
password credentials.

DnsIdentity The subject name of the service
certificate

The default value is <identity>.
Replace this with the subject name
or common name (CN) of the
certificate that is used on the
computer that is running Business
Central Server.

1. On the computer that is installed the Business Central Web Server, open the navsetting.json configuration
file in a text editor, such as Notepad.

2. Change the following settings:

3. Save the navsettings.json configuration file.

NOTE

KEY NEW VALUE DESCRIPTION

ClientServicesCredentialType NavUserPassword , Username , or
AccessControlService

The default value is Windows . When
you change it to NavUserPassword ,
Username , or
AccessControlService , client

users are prompted for user name
and password credentials.

1. Open the ClientUserSettings.config configuration file.

The location of this file is Users\<username>\AppData\RoamingLocal\Microsoft\Dynamics 365 Business
Central\.

By default, this file is hidden. Therefore, you may have to change your folder options in Windows Explorer
to view hidden files.

If you want to change default Dynamics NAV Client connected to Business Central settings for all future users, edit
the default ClientUserSettings.config file — that is, the one in C:\Program Files (x86)\Microsoft Dynamics 365
Business Central\140. Be sure that you run your text editor with Administrator privileges when you do so.

2. Modify the following settings.

See Also

DnsIdentity The subject name of the service
certificate.

The default value is <identity>.
Replace this with the subject name
or common name (CN) of the
certificate that is used on the
computer that is running Business
Central Server.

KEY NEW VALUE DESCRIPTION

3. Save and close the ClientUserSettings.config file.

When starting the Dynamics NAV Client connected to Business Central, users are prompted for a valid user
name and password.

Authentication and User Credential Types

Web Services Best Practices
3/31/2019 • 2 minutes to read

RECOMMENDATION EXAMPLE

Use the HTTPS protocol to send data between Business
Central and the web service consumer. The examples in this
section use the HTTP protocol to illustrate the setup, but we
recommend that your solution uses transport-level security.

In the application that consumes the Business Central web
service, require that URIs are accessed by using HTTPS. For
example, a more secure URI for the OData web services on
your local computer is
https://localhost:7048/BC130/OData/ .

Use singular forms of names. This provides meaningful
singular entity names in the generated proxy classes.

When publishing page 21, Customer Card, use Customer as
the service name instead of Customers or CustomerCard.

Avoid using spaces and other characters because they are
transformed to underscores or other characters that may not
be displayed as you want and could lead to ambiguity.

When publishing page 42, Sales Order, remove the space and
use SalesOrder as the service name.

Use Pascal casing when you combine words. Pascal casing
capitalizes the first character of each word, including acronyms
and initialisms that are more than two letters long.

Use SalesOrder or ContactPerson as the service name.

See Also

This article provides recommendations that you can implement to make your web services applications easier to
understand and maintain.

Web Services Overview

SOAP Web Services
4/4/2019 • 2 minutes to read

TO SEE

Review the different options for creating URIs to interact with
SOAP web services.

SOAP Web Service URIs

Review the set of operations that are available when a page is
exposed as a web service.

Basic Page Operations

Learn how to write code that provides a list of existing
companies in a Business Central database.

Using SystemService to Find Companies

Ensure that field values are updated from web services. Using Properties to Indicate Field Value Presence

See Also

SOAP web services enable full flexibility for building operation-centric services. They provide industry-standard
interoperability and channel and host pluggability.

You can use SOAP to interact with page or codeunit web services in Business Central .

Basic Page Operations

file:///T:/q4ru/webservices/SOAP-Web-Service-URIs.html
file:///T:/q4ru/webservices/Basic-Page-Operations.html
file:///T:/q4ru/webservices/Basic-Page-Operations.html

SOAP Web Service URIs
3/31/2019 • 2 minutes to read

URIs for SOAP Web Services

http://<Server>:<Port>/<ServerInstance>/WS/<CompanyName>/services

http://localhost:7047/BC130/WS/CRONUS%20International%20Ltd/services

http://<Server>:<Port>/<ServerInstance>/WS/<CompanyName>/Page/<servicename>

http://localhost:7047/BC130/WS/CRONUS%20International%20Ltd/Page/Customer

http://localhost:7047/BC130/WS/CRONUS%20International%20Ltd/Codeunit/Letters

Web service users can discover published web services by pointing a browser or a tool such as the Web Services
Discovery Tool at the computer running Business Central Server and getting a list of available services. For SOAP
web services, you typically enter a URI in a browser to view a list of available Business Central web services or to
view a schema for a particular web service.

To display all published SOAP web services that are exposed by a Business Central Server instance, use a URI of
the following type:

The following example displays all published SOAP web services that are exposed for the CRONUS International
Ltd. demonstration database.

To view the schema for a particular service, use a URI of the following type:

The following example displays the schema for the Customer service for the CRONUS International Ltd.
demonstration database.

You can also use a URI for a codeunit web service, as shown in the following example:

Basic Page Operations
4/4/2019 • 2 minutes to read

OPERATION DESCRIPTION AND SIGNATURE

Create Operation Creates a single record.

void Create(ref Entity entity)

CreateMultiple Operation Creates a set of records.

void CreateMultiple(ref Entity[] entity)

Delete Operation Deletes a single record.

bool Delete(string key)

Delete_part Operation Deletes a subpage of the current page.

bool Delete_<part>(string key)

GetRecIdFromKey Converts a key, which is always part of the page result, to a
record ID.

string GetRecIdFromKey(string key)

IsUpdated Operation Checks if an object has been updated since the key was
obtained.

bool IsUpdated(string key)

Read Operation Reads a single record.

Entity Read(string no)

When you publish a page as a SOAP web service, it has a set of default operations that are exposed to consumers
of the web service.

These operations match the actions a user can perform by interacting with a page using the RoleTailored client. The
same page- and table-based business logic is executed.

The following table lists the operations and provides links to reference pages.

Pages that are backed by virtual tables are not editable through web services. When such pages are published as
SOAP web services, the only operations that are available are Read, ReadMultiple, and IsUpdated.

The term entity that is used in the operation signatures describes the data type that is used. The actual entity is
defined by the page that is exposed because it contains all controls that are defined on the page. The controls are
normally bound to the page's source table. The entity also contains a key that is a special string that uniquely
identifies the source table record with a timestamp. This key is used as an argument in many page operations.

All basic page operations are atomic, which means that either all relevant records are affected or no records are
affected, even if there was a faulty condition in only one record.

file:///T:/q4ru/webservices/Create-Operation.html
file:///T:/q4ru/webservices/CreateMultiple-Operation.html
file:///T:/q4ru/webservices/Delete-Operation.html
file:///T:/q4ru/webservices/Delete_-part--Operation.html
file:///T:/q4ru/webservices/GetRecIdFromKey-operation.html
file:///T:/q4ru/webservices/IsUpdated-Operation.html
file:///T:/q4ru/webservices/Read-Operation.html

ReadByRecId Operation Reads the record that is identified by RecId. You can use
GetRecIdFromKey to obtain a record ID. If the record is not
found, then the operation returns null.

Entity ReadByRecId(string formattedRecId)

ReadMultiple Operation Reads a filtered set of records, paged.

Entity [] ReadMultiple(Entity_Filter[] filterArray,
string bookmarkKey, int setSize)

Update Operation Updates a single record.

void Update(ref Entity entity)

UpdateMultiple Operation Updates a set of records.

void UpdateMultiple(ref Entity[] entity)

OPERATION DESCRIPTION AND SIGNATURE

See Also
Basic Page Operations

file:///T:/q4ru/webservices/ReadByRecId-Operation.html
file:///T:/q4ru/webservices/ReadMultiple-Operation.html
file:///T:/q4ru/webservices/Update-Operation.html
file:///T:/q4ru/webservices/UpdateMultiple-Operation.html
file:///T:/q4ru/webservices/Basic-Page-Operations.html

Create Operation
3/31/2019 • 2 minutes to read

Method Signature

Parameters
PARAMETER DESCRIPTION

entity Type: Entity

A variable of a specific object type that represents the page.

Results
RESULT NAME DESCRIPTION

entity Type: Entity

A variable of a specific object type that represents the page.
Contains the latest values that are present on the page after
the record has been inserted into the table.

Faults
SOAP FAULT MESSAGE DESCRIPTION

The [record name] already exists. Identification fields and
values: [field]=[value]

Indicates that the record insertion would violate key
constraints.

Usage Example
Customer cust = new Customer();
cust.Name = "Customer Name";
service.Create(ref cust);

See Also

Creates a single record. The supplied record object is overwritten with the version that is created by the page.

void Create(ref Entity entity)

Other faults are possible if they are generated by the AL code.

Basic Page Operations

file:///T:/q4ru/webservices/Basic-Page-Operations.html

CreateMultiple Operation
3/31/2019 • 2 minutes to read

Method Signature

Parameters
PARAMETER DESCRIPTION

entity[] Type: An array of Entities

An array of a specific object type that represents the page.

Results
RESULT NAME DESCRIPTION

entity[] Type: An array of Entities

An array of a specific object type that represents the page.
Contains the latest values that are present on the page after
the records have been inserted into the table.

Faults
SOAP FAULT MESSAGE DESCRIPTION

The [record name] already exists. Identification fields and
values: [field]=[value]

Indicates that the insertion of at least one of the records
would violate key constraints.

Usage Example
Customer[] custArray = new Customer[3];
for (int i = 0; i < custArray.Length; i++)
{
 custArray[i] = new Customer();
 custArray[i].Name = "Customer Name " + i.ToString();
}
service.CreateMultiple(ref custArray);

Creates a set of records. The supplied record object is overwritten with the version that is created by the page.

void CreateMultiple(ref Entity[] entity)

Other faults are possible if they are generated by the AL code.

The CreateMultiple operation is executed as a single transaction unless the AL code explicitly commits the
transaction. Either all or none of the records are inserted unless the application code does not explicitly call
COMMIT.

See Also
Basic Page Operations

file:///T:/q4ru/webservices/Basic-Page-Operations.html

Delete Operation
3/31/2019 • 2 minutes to read

Method Signature

Parameters
PARAMETER DESCRIPTION

key Type: String

The bookmark of the record, including both primary key and
concurrency information.

Results
RESULT NAME DESCRIPTION

Delete_Result Type: Boolean

The value that is returned by the OnDeleteRecord page trigger.

Faults
SOAP FAULT MESSAGE DESCRIPTION

Other user has modified [record name]. Indicates that another user or process has modified the record
after it has been retrieved for this delete operation.

[record name] [field] [value] does not exist. Indicates that the record has been deleted by another user or
process after it has been retrieved for this delete operation.

Deletes a single record.

Executing the Delete operation in a web service first executes the OnDeleteRecord Trigger on the designated page.
If application code in the OnDeleteRecord trigger for the page returns true, then the OnDelete Trigger for the
corresponding table is executed. If no fault occurs, then the record is deleted from the database.

If the application code in the trigger returns false, then the OnDelete trigger is not executed. This does not
necessarily mean that the record has not been deleted because it may have been deleted explicitly by the
application code for the page's OnDeleteRecord trigger.

The return value from the Delete operation is the return value from the page's OnDeleteRecord trigger.

If Delete returns true, then the record has been deleted. If Delete has thrown a fault, then the record has not been
deleted. But when Delete returns false, then this indicates that there was application logic involved, and the record
may or may not have been deleted.

bool Delete(string key)

Other faults are possible if they are generated by the AL code.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-ondeleterecord-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-ondelete-trigger

Usage Example

 using System;
using System.Collections.Generic;
using System.Text;

namespace ConsoleApplication
{
 // Imports newly generated web service proxy.
 using WebService;

 class Program
 {
 static void Main(string[] args)
 {
 // Creates instance of service and sets credentials.
 Customer_Service service = new Customer_Service();
 service.UseDefaultCredentials = true;
 Customer cust = new Customer();
 cust.Name = "Customer Name";
 service.Create(ref cust);
 cust = service.Read(cust.No);
 service.Delete(cust.Key);
 }
 }
}

See Also
Basic Page Operations

file:///T:/q4ru/webservices/Basic-Page-Operations.html

Delete_<part> Operation
3/31/2019 • 2 minutes to read

Method Signature

Parameters
PARAMETER DESCRIPTION

key Type: String

The bookmark of the record of the subpage, including both
primary key and concurrency information.

Results
RESULT NAME DESCRIPTION

Delete_Result Type: Boolean

The value that is returned by the OnDeleteRecord page trigger.

Faults

Deletes records on a subpage of the current page.

This operation is exposed only by pages that have subpages, which are pages that have parts of type Page. For
example, the Sales Order page has a part with the name SalesLines, which has PartType equal to Page and
PagePartID equal to “Sales Order Subform.” The name of the operation that is exposed by the Sales Order page is
Delete_SalesLines.

When you call this operation, you delete a record of the subpage. When you call Read on a page that has a
subpage, you get the records of the top-level page and the corresponding records of the subpage. To modify them
or add to them, you must modify the whole top-level record.

Executing the Delete_<part> operation in a web service first executes the OnDeleteRecord Trigger on the
designated record of the subpage. If application code in the OnDeleteRecord trigger for the record of the subpage
returns true, then the OnDelete Trigger for the corresponding table is executed. If no fault occurs, then the record
of the subpage is deleted from the database.

If the application code in the trigger returns false, then the OnDelete trigger is not executed. This does not
necessarily mean that the record of the subpage has not been deleted because it may have been deleted explicitly
by the application code for the page's OnDeleteRecord trigger.

The return value from the Delete_<part> operation is the return value from the page's OnDeleteRecord trigger.

If Delete returns true, then the record of the subpage has been deleted. If Delete has thrown a fault, then the record
of the subpage has not been deleted. When Delete returns false, there was application logic involved, and the
record of the subpage may or may not have been deleted.

bool Delete_<part>(string key)

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-ondeleterecord-trigger
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/triggers/devenv-ondelete-trigger

SOAP FAULT MESSAGE DESCRIPTION

Other user has modified [record name]. Indicates that another user or process has modified the record
of the subpage after it has been retrieved for this delete
operation.

[record name] [field] [value] does not exist. Indicates that the record of the subpage has been deleted by
another user or process after it has been retrieved for this
delete operation.

Usage Example

using Delete_SalesLinesSample.DynamicsNAVService;

namespace Delete_SalesLinesSample
{
 class Program
 {
 static void Main(string[] args)
 {
 DynamicsNAVService.SalesOrder_Binding so = new SalesOrder_Binding();
 so.UseDefaultCredentials = true;

 SalesOrder salesOrder = so.Read("2001");
 Sales_Order_Line[] salesLines = salesOrder.SalesLines;

 if (salesLines.Length > 0)
 {
 string key = salesLines[0].Key;
 so.Delete_SalesLines(key);
 }
 }
 }
}

See Also

Other faults are possible if they are generated by the AL code.

This example presents a console application that is created in Visual Studio after registering and publishing the
Sales Order page. After you publish the page as a web service, you must also add a web reference to it. This task is
also described in the walkthrough.

Basic Page Operations

file:///T:/q4ru/webservices/Basic-Page-Operations.html

GetRecIdFromKey
3/31/2019 • 2 minutes to read

Method Signature

Parameters
PARAMETER DESCRIPTION

key Type: String

The bookmark of the record that includes both primary key
and concurrency information.

Results
RESULT NAME DESCRIPTION

String Type: String

The record ID that was obtained from the key.

Faults
SOAP FAULT MESSAGE DESCRIPTION

[record name] [field] [value] does not exist. Indicates that the record has been deleted by another user or
process after it has been retrieved for this operation.

Usage Example

Customer_Service service = new Customer_Service();
Customer cust = new Customer();
service.UseDefaultCredentials = true;
string id = service.GetRecIdFromKey(cust.No);
cust = service.ReadByRecId(id.ToUpper());

See Also

Converts a key to a record ID. The key is always part of the page result.

string GetRecIdFromKey(string key)

Basic Page Operations

file:///T:/q4ru/webservices/Basic-Page-Operations.html

IsUpdated Operation
3/31/2019 • 2 minutes to read

Method Signature

Parameters
PARAMETER DESCRIPTION

key Type: String

The bookmark of the record, including both primary key and
concurrency information.

Results
RESULT NAME DESCRIPTION

IsUpdated_Result Type: Boolean

Returns true if and only if another user has modified the
record.

Faults
SOAP FAULT MESSAGE DESCRIPTION

[record name] [field] [value] does not exist. Indicates that the record has been deleted by another user or
process after it has been retrieved for this operation.

Usage Example

Checks if an object has been updated since the key was obtained. This operation returns true if the object has been
updated by any user ; otherwise, false. Concurrency management prevents a record being changed if it has been
subsequently updated. This check proactively prevents that failure.

bool IsUpdated(string key)

using System;
using System.Collections.Generic;
using System.Text;

namespace ConsoleApplication
{
 // Imports newly generated web service proxy.
 using WebService;

 class Program
 {
 static void Main(string[] args)
 {
 // Creates instance of service and sets credentials.
 Customer_Service service = new Customer_Service();
 service.UseDefaultCredentials = true;

 Customer cust = new Customer();
 cust.Name = "Customer Name";
 service.Create(ref cust);
 cust = service.Read(cust.No);
 if (!service.IsUpdated(cust.Key))
 {
 // Add code here to modify record.
 }
 }
 }
}

See Also
Basic Page Operations

file:///T:/q4ru/webservices/Basic-Page-Operations.html

Read Operation
3/31/2019 • 2 minutes to read

NOTE

Method Signature

Parameters
PARAMETER DESCRIPTION

no Type: String

The primary key of the requested record.

This argument is a filter on the primary key and returns the
first record that matches the filter. When special characters,
such as an apostrophe, equal sign, or ampersand, are part of
the key, you must enclose the argument with quotation marks.

For example, when you write C# code, you should use
standard quotation marks for strings and also use additional
single quotation marks around a value, such as "'A&B'" .

Results
RESULT NAME DESCRIPTION

entity Type: Entity

A variable of a specific object type that represents the page.
Contains the latest values that are present on the page.

If the record with the given primary key does not exist, then
no value is returned. In the .NET Framework, a null reference is
returned.

Faults

Reads a single record.

The signature of an operation changes if the page contains one or more unbound fields in the root content area. If there are
unbound fields, then the names from the SourceExpr property for the unbound fields are added as the first parameters to
the operation. They are added according to the tab order of the page. For an example, see the Item Journal.

Entity Read(string no)

This operation does not return a fault when a matching record is not present. Instead, it returns no value. In C#, you
should test whether the result is a null reference. Otherwise, you may get a NullReferenceException exception.

Faults are possible if they are generated by the AL code.

Usage Example
Customer customer = new Customer();
customer.Name = "Customer Name";
service.Create(ref customer);
customer = service.Read(customer.No);

See Also
Basic Page Operations

file:///T:/q4ru/webservices/Basic-Page-Operations.html

ReadByRecId Operation
3/31/2019 • 2 minutes to read

Method Signature

Parameters
PARAMETER DESCRIPTION

formattedRecId Type: String

The RecId that is used to read the record.

Results
RESULT NAME DESCRIPTION

entity Type: Entity

A variable of a specific object type that represents the page.
Contains the latest values that are present on the page.

If the record is not found, then the operation returns null.

Faults

Usage Example
public void ReadById(String id)
{
 Customer_Service service = new Customer_Service();
 Customer cust = new Customer();
 service.UseDefaultCredentials = true;
 cust = service.ReadByRecId(id.ToUpper());
}

See Also

Reads the record that is identified by the record ID.

Entity ReadByRecId(string formattedRecId)

This operation does not return a fault when a matching record is not present. Instead, it returns null. In C#, you
should test whether the result is a null reference. Otherwise, you may get a NullReferenceException
exception.Faults are possible if they are generated by the AL code.

Basic Page Operations

file:///T:/q4ru/webservices/Basic-Page-Operations.html

ReadMultiple Operation
3/31/2019 • 2 minutes to read

NOTE

Method Signature

Parameters
PARAMETER DESCRIPTION

filterArray Type: Entity_Filter[]

An array of record filters.

bookmarkKey Type: String

The last record bookmark of the page that was previously
read.

To return the first page of results, set bookmarkKey to NULL.

setSize Type: Integer

The size of the set to be returned.

To return the complete set of results, set setSize to zero.

To reverse the order of the results, set setSize to negative.

Results
RESULT NAME DESCRIPTION

Reads a filtered set of records. This operation returns an array of entities. The ReadMultiple operation allows the
consumer of a web service to specify the number of records to be returned at one time. This can reduce load on the
server.

Records on a page that were inserted after the page was retrieved are not read. Records on a page may be incorrectly
included in the retrieved dataset if they were deleted after the page was retrieved.

Entity [] ReadMultiple(Entity_Filter[] filterArray, string bookmarkKey, int setSize)

entity[] Type: An array of Entities

An array of a specific object type that represents the page.
Contains the latest values that are present on the page.

The server will return at most setSize records. If all records
have been already returned, then subsequent calls will return
no records (a 0-element array in C#). You should keep calling
the ReadMultiple method until no records are returned.

entity.Key Type: String

The key of the last record read. In C#, you can access it with
Entity[Entity.Length-1].Key . Pass this as bookmarkKey

for the next ReadMultiple call.

RESULT NAME DESCRIPTION

Faults

Remarks

Retrieving Last Page

Entity_Filter

Usage Examples

List<Customer_Filter> filterArray = new List<Customer_Filter>();
Customer_Filter nameFilter = new Customer_Filter();
nameFilter.Field = Customer_Fields.Name;
nameFilter.Criteria = "S*";
filterArray.Add(nameFilter);
Customer[] custList = service.ReadMultiple(filterArray.ToArray(), null, 100);

This operation does not throw faults when no matching records are present. Instead, it returns an empty record list.

Faults are possible if they are generated by the AL code.

To retrieve the last record of a page, set setSize to -1. Using negative numbers in setSize sorts the records in
descending order.

You use the Entity_Filter parameter with the ReadMultiple operation. It describes a filter that can be applied on a
specific field in a record. The Entity_Filter parameter contains two members: Field and Criteria.

Field contains the name of the field that the filter is applied to. This name comes from the Entity_Fields
enum.

Criteria is of type string and can contain any valid Business Central style filter that is specified in a standard
Business Central filter format.

The following example returns the first 100 customer names that start with an S.

This example uses the bookmarkKey argument to read customer records in batches of 10:

Customer_Service service = new Customer_Service();
service.UseDefaultCredentials = true;

const int fetchSize = 10;
string bookmarkKey = null;
List<Customer> customerList = new List<Customer>();

// Reads customer data in pages of 10.
Customer[] results = service.ReadMultiple(new Customer_Filter[] { }, bookmarkKey, fetchSize);
while (results.Length > 0)
{
 bookmarkKey = results.Last().Key;
 customerList.AddRange(results);
 results = service.ReadMultiple(new Customer_Filter[] { }, bookmarkKey, fetchSize);
}

// Prints the collected data.
foreach (Customer customer in customerList)
{
 Console.WriteLine(customer.Name);
}

See Also
Basic Page Operations

file:///T:/q4ru/webservices/Basic-Page-Operations.html

Update Operation
3/31/2019 • 2 minutes to read

Method Signature

Parameters
PARAMETER DESCRIPTION

entity Type: Entity

A variable of a specific object type that represents the page.

Results
RESULT NAME DESCRIPTION

entity Type: Entity

A variable of a specific object type that represents the page.
Contains the latest values that are present on the page after
the record has been updated by the business logic or another
concurrent process.

Faults
SOAP FAULT MESSAGE DESCRIPTION

Other user has modified [record name]. Indicates that another user or process has modified the record
after it has been retrieved for this update operation.

[record name] [field] [value] does not exist. Indicates that the record has been deleted by another user or
process after it has been retrieved for this update operation.

The [record name] already exists. Identification fields and
values: [field]=[value]

Indicates that the renaming of the record would violate key
constraints.

Usage Example

Updates a single record. The updated record is passed as a reference and is updated with the latest version.

void Update(ref Entity entity)

Other faults are possible if they are generated by the AL code.

Customer cust = new Customer();
cust.Name = "Customer Name ";
service.Create(ref cust);
cust.Name = cust.Name + "Updated";
service.Update(ref cust);

See Also
Basic Page Operations

file:///T:/q4ru/webservices/Basic-Page-Operations.html

UpdateMultiple Operation
3/31/2019 • 2 minutes to read

NOTE

Method Signature

Parameters
PARAMETER DESCRIPTION

entity[] Type: An array of Entities.

An array of a specific object type that represents the page.

Results
RESULT NAME DESCRIPTION

entity[] Type: An array of Entities

An array of a specific object type that represents the page.
Contains the latest values that are present on the page after
the records have been updated by the business logic or
another concurrent process.

Faults
SOAP FAULT MESSAGE DESCRIPTION

Other user has modified [record name]. Indicates that another user or process has modified the record
after it has been retrieved for this update operation.

[record name] [field] [value] does not exist. Indicates that the record has been deleted by another user or
process after it has been retrieved for this update operation.

The [record name] already exists. Identification fields and
values: [field]=[value]

Indicates that the renaming of the record would violate key
constraints.

Updates a set of records. The updated array of records is passed as a reference and is updated with the latest
version.

The UpdateMultiple operation attempts to update one field at a time. This can cause errors if the updated value in one field
prevents another field's value from being valid. You can resolve this by deleting and inserting lines instead of updating fields.

void UpdateMultiple(ref Entity[] entity)

Other faults are possible if they are generated by the AL code.

The UpdateMultiple operation is executed as a single transaction unless the AL code explicitly commits the

Usage Example

List<Customer_Filter> filterArray = new List<Customer_Filter>();
Customer_Filter nameFilter = new Customer_Filter();
nameFilter.Field = Customer_Fields.Name;
nameFilter.Criteria = "S*";
filterArray.Add(nameFilter);
Customer[] custList = service.ReadMultiple(filterArray.ToArray(), null, 100);
for (int i = 0; i < custList.Length; i++)
{
 custList [i].Name = custList [i].Name + " Updated";
}
service.Update(ref custList)

See Also

transaction. Either all or none of the records are updated provided that the application code does not explicitly call
COMMIT.

The following example adds the string "Updated" to the name of the first 100 customer names that start with S.

Basic Page Operations

file:///T:/q4ru/webservices/Basic-Page-Operations.html

Using SystemService to Find Companies
3/31/2019 • 2 minutes to read

Use the SystemService service to find companies

You can use the SystemService service in a SOAP web service application to retrieve a list of companies available
in a specific database. A company name is typically part of the URI when you access a Business Central web
service, and the system service lets you retrieve names of available companies. If you do not specify a company
name in a URI, then the default company is used.

In this procedure, you use the SystemService service to retrieve and print a list of companies in Visual Studio.

C a u t i o n

1. In Visual Studio, on the File menu, point to New, and then choose Project.

2. Expand the Visual C# node, select Windows, and then select Console Application.

Do not double-click or otherwise dismiss the New Project dialog box.

3. Enter FindingCompanies as the Name for the application, and then choose OK.

4. In Solution Explorer, right-click the References node in the project, and then choose Add Service
Reference.

5. In the Add Service Reference dialog box, choose the Advanced button, choose the Add Web Reference
button, type or paste the URL that you used when checking the WSDL, such as
http://localhost:7047/BC130/WS/Services , and then choose the green arrow to visit the URL.

6. When the SystemService service is displayed, choose View Service, wait for the service to be displayed,
and then choose Add Reference. Rename the Web reference name from localhost to NavSOAPService.

7. On the Program.cs tab, replace the stub code with the following.

See Also

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace FindingCompanies
{
 using System;
 using BCSOAPService;

 public class Program
 {
 static void Main(string[] args)
 {
 // Creates instance of service and set credentials.
 var systemService = new SystemService
 {
 UseDefaultCredentials = true
 };

 // Loads all companies into an array.
 var companies = systemService.Companies();

 // Runs through and print all companies.
 // Also prints company name in encoded form.
 foreach (string company in companies)
 {
 Console.WriteLine(company);
 Console.WriteLine((Uri.EscapeDataString(company)));
 }
 Console.ReadLine();
 }
 }
}

8. Save (press Ctrl+F6) and compile (press F6) the FindingCompanies application.

9. Press F5 to run the application in debug mode.

A list of all companies in the current database is presented in a command session.

SOAP Web Services

file:///T:/q4ru/webservices/SOAP-Web-Services.html

Using Properties with Visual Studio to Indicate the
Presence of a Value in a Field
4/4/2019 • 2 minutes to read

Using Properties to Indicate the Presence of Values

<xsd:element minOccurs="0" maxOccurs="1" name="Credit_Limit_LCY" type="xsd:decimal" />
<xsd:element minOccurs="0" maxOccurs="1" name="Salesperson_Code" type="xsd:string" />

<Credit_Limit_LCY>1000</Credit_Limit_LCY>
<Salesperson_Code>JR</Salesperson_Code>

<Salesperson_Code>JR</Salesperson_Code>

<Credit_Limit_LCY>0</Credit_Limit_LCY>

if (salesOrder.Credit_Limit_LCYSpecified)
 there is a value present in salesOrder.Credit_Limit_LCY
else
 there is no useful value in salesOrder.Credit_Limit_LCY

When you set a field to a value in the code for a web service client and then send the value back to the web service,
such as when you use the Create Operation or the Update Operation, the field value is not actually updated to
anything other than its default value. This issue can occur if you are using proxies that are generated by Visual
Studio or the tools in the .NET Framework SDK. This topic describes the issue and shows how to avoid the
problem.

The problem occurs because of the way proxies are auto-generated and the way the .NET Framework handles
values in XML documents that are exchanged between the web service and the client. The issue is not specific to
Business Central.

For example, the following code shows the schema for the two fields on this Customer Card web service:

Both fields are optional, which means that they do not have to be present in the XML document. One field is
declared as a Decimal data type in Business Central. The other field is a string because it is declared as a Text data
type in Business Central.

If both values are present, then the XML document should contain the following elements:

But if there is no information about the credit limit, then the document should contain the following element:

If the credit limit is zero, then the document should contain the following line:

For the decimal type and all .NET Framework value types, you can handle this state in the proxy objects by using a
Boolean *Specified property:

If you assign a non-default value in the value type, then you should confirm this by setting the accompanying
Boolean *Specified property to true :

file:///T:/q4ru/webservices/Create-Operation.html
file:///T:/q4ru/webservices/Update-Operation.html

salesOrder.Credit_Limit_LCY = 1000;
salesOrder.Credit_Limit_LCYSpecified = true;

salesOrder.Credit_Limit_LCYSpecified = false;

if (salesOrder.Salesperson_Code != null)
 there is a value present in salesOrder.Salesperson_Code
else
 there is no value in salesOrder.Salesperson_Code

salesOrder.Salesperson_Code = "JR";

salesOrder.Salesperson_Code = null;

Example

SalesOrder salesOrder = new SalesOrder();
salesOrder.Order_Date = DateTime.Today;
salesOrder.Order_DateSpecified = true;
salesOrder.Currency_Code = "SEK";

salesOrderService.Create(ref salesOrder);

To specify that there is no meaningful value in the salesOrder.Credit_Limit_LCY value type, set the accompanying
Boolean *Specified property to false :

The value in the salesOrder.Credit_Limit_LCY value type will now be disregarded.

.NET Framework reference types, such as the String class, are handled differently because .NET Framework
declarations that are based on those types can be null, which means that they can have an explicit expression of no
value present:

If you assign a value, then you implicitly also define it as present:

To specify that there is no useful value in salesOrder.Salesperson_Code , you should set it to null:

OData Web Services
3/31/2019 • 2 minutes to read

TO SEE

Use OData to obtain an AtomPub document. Using OData to Return or Obtain an AtomPub Document

Use OData to obtain a service metadata (EDMX) document. Using OData to Return or Obtain a Service Metadata (EDMX)
Document

Use OData to obtain a JavaScript Object Notation (JSON)
document.

Using OData to Return-Obtain a JSON Document

Use filter expressions in OData URIs. Using Filter Expressions in OData URIs

Use FlowFilters in OData URIs. Using FlowFilters in OData URIs

Use server-driven paging in OData URIs. Server-Driven Paging in OData Web Services

Navigate in an OData web service application by using
resource properties.

Using Containments and Associations

Write to the database through an OData web service that
exposes a writable page.

Using OData Web Services to Modify Data

Enabling and Configuring OData on the Business Central Server

The Open Data Protocol (OData) is a web protocol that is designed for querying tabular data and provides you
with an alternative to SOAP-based web services. OData builds on web technologies such as HTTP, the Atom
Publishing Protocol (AtomPub), and JavaScript Object Notation (JSON) to provide access to information from
different applications, services, and stores. OData uses URIs for resource identification and commits to an HTTP-
based, uniform interface for interacting with resources. This commitment to core Web principles allows for OData
to enable a new level of data integration and interoperability across a broad range of clients, servers, services, and
tools.

You can use OData web services to show Business Central data, and you can update data in a Business Central
database using OData web services.

OData can be found in other Microsoft products and technologies, including the following:

Microsoft Excel implements OData for its PowerPivot add-in.

Microsoft SharePoint can expose its list-oriented data with OData.

Microsoft Azure Table Services are based on OData.

The topics in this section describe the key concepts and techniques for accessing Business Central data from OData
applications that are supported by Business Central .

The Business Central Server instance has several configurations settings that enable and control OData services.
For more information, see OData Services Settings.

file:///T:/q4ru/webservices/Server-Driven-Paging-in-OData-Web-Services.html

Known Limitations

An error occurred while processing this request.
 The 'OR' operator is not supported on distinct fields on an OData filter.

See Also

You can specify filters in OData web services in general that are not supported in Business Central , such as using
an OR operator to filter on two different fields. In those cases, you will see the following error:

SOAP Web Services

file:///T:/q4ru/webservices/SOAP-Web-Services.html

Using OData to Return-Obtain an AtomPub
Document
3/31/2019 • 3 minutes to read

NOTE

Obtain an AtomPub Document or Feed

When you register an OData web service, you expose an OData service that can be accessed from a uniform
resource identifier (URI) by using a web browser or any other HTTP client. OData clients can use Atom Publishing
Protocol (AtomPub) documents to interact with Business Central data. AtomPub is a simple HTTP-based protocol
for creating and updating web resources. It is related to the Atom Syndication Format, which is XML for web feeds.
In these procedures, you obtain different kinds of AtomPub documents or feeds from a Business Central OData
web service. AtomPub documents and feeds are XML.

To use the URIs in this topic, you must have access to the CRONUS International Ltd. demonstration database.

Depending on how you construct your URI, you can return an AtomPub document or an AtomPub feed. A feed is
a request for data that can change over time. For example, this can be news content or other kinds of information.
In the case of Business Central, the information is database content.

NOTE

http://<Server>:<WebServicePort>/<ServerInstance>/OData

http://localhost:7048/<server instance>/OData

1. Register and publish a page web service by using the Business Central Web client. See Publishing a Web
Service.

The AtomPub documents that are shown in this article are based on the page 21, the Customer Card page,
with Customer as the service name. The concepts and steps are the same for any Business Central Web
client page that you register and publish as a web service.

You can also register and publish a Business Central query as a web service.

2. Start Windows Internet Explorer. In the Address field, enter a URI in this format:

If Business Central Server is running on the local computer with the default Business Central Server
instance and OData port, then the address is:

The browser should now show the web service that you have published in the format of an AtomPub
document:

Obtain a Keyed Service Entry

Obtain a Filtered Data Feed

http://localhost:7048/<server instance>/OData/Company

IMPORTANT

3. If you have multiple companies, then you can modify your URI to return a feed that enumerates all available
companies:

You must modify your Internet Explorer settings to display the actual XML for a feed instead of the feed content that
has changed. Choose Internet Options, choose Content, choose Feeds and Web Slices, and then clear the Turn
on feed reading view check box. Restart Internet Explorer to enable the new setting.

With a keyed service entry, you specify content from a particular row in a Business Central table. The AtomPub
document will contain information that is specific to that row. This procedure assumes that you have registered
and published a page web service in the previous procedure.

http://localhost:7048/<server instance>/OData/Company('CRONUS-International-Ltd.')

http://localhost:7048/<server instance>/OData/Company('CRONUS-International-Ltd.')/Customer

http://localhost:7048/<server instance>/OData/Company('CRONUS-International-Ltd.')/Customer('01121212')

1. Start Windows Internet Explorer. In the Address field, enter a URI in the following format to get the entry
for the CRONUS International Ltd. company:

2. To get the data feed for the Customer table in the CRONUS International Ltd. company database, enter a
URI in the following format:

3. To additionally constrain data to a specific keyed customer in the Customer table, enter a URI in the
following format, using the customer no. for the record you want. The example uses customer no.
01121212:

With a filtered data feed, you use special syntax in the URI to define a query on the available data. For details on
the specific filters available for Business Central OData web service applications and the syntax for using them, see
Using Filter Expressions in OData URIs.

1. Start Windows Internet Explorer. In the Address field, enter a URI in the following format to get the entry
for the CRONUS International Ltd. company:

See Also

http://localhost:7048/<server instance>/OData/Company('CRONUS-International-Ltd.')/Customer?
$filter=City-eq-'Birmingham'

OData Web Services

file:///T:/q4ru/webservices/OData-Web-Services.html

Use OData to Return and Obtain a Service Metadata
(EDMX) Document
3/31/2019 • 2 minutes to read

Obtain a service metadata (EDMX) document

The Entity Data Model (EDM) is a specification for defining the data that is used by applications that are built on
the Entity Framework. EDMX is an XML-based file format that is the packaging format for the service metadata of
a data service. When you interact with an OData service that is published from Business Central, you can request
EDM-based proxies and then use tools such as L INQ to create data access logic. L INQ is a programming model
that developers can use to query data from a variety of data sources, including OData. For more information, see
LINQ (Language-Integrated Query)

The Business Central implementation of EDM follows the .NET 4.0 WCF Data Service Framework implementation.

The following guidelines have been implemented for EDM.

Business Central field names are mapped to EDMX property names by replacing spaces with underscores.

Primary key fields in tables are automatically defined as properties in the service metadata document even
if they are not exposed on a page as controls.

http://<Server>:<WebServicePort>/<ServerInstance>/OData/$metadata

http://localhost:7048/<server instance>/OData/$metadata

1. You can obtain service metadata documents for either page or query web services. This example uses a
page web service. Register and publish a page web service by using the Business Central Web client. See
Publishing a Web Service..

2. Start Windows Internet Explorer. In the Address field, enter a URI in this format:

If Business Central Server is running on the local computer and is using the default Business Central Server
instance and OData port, then the address is:

The browser should now show the complete metadata for the page web service that you have published.
The beginning of this document looks like this:

http://go.microsoft.com/fwlink/?LinkId=230540
http://go.microsoft.com/fwlink/?LinkId=214680

See Also
OData Web Services

file:///T:/q4ru/webservices/OData-Web-Services.html

Using OData to Return or Obtain a JSON Document
3/31/2019 • 2 minutes to read

Obtain a document based on JSON

See Also

You can publish a page as a web service and consume it using JavaScript Object Notation (JSON).

http://<Server>:<WebServicePort>/<ServerInstance>/OData/<web service>?$format=json

http://localhost:7048/BC130/OData/Customer?$format=json

NOTE

1. You can build applications that consume and display Business Central data using JSON. This example
assumes that you have registered and published a page web service in Business Central.

2. Start Windows Internet Explorer. In the Address field, enter a URI in this format:

If Business Central Server is running on the local computer and is using the default Business Central Server
instance and OData port, and you have published a web service that is based on page 21 that is called
Customer, then the address is:

This generates a text file that contains metadata and data from the web service. You can open the file from
the browser, or you can save it to disk.

The value of the format attribute must be lowercase: ?$format=json .

If you want to consume the web service as JSON-P, you can add the ?$callback=<callback function name>

parameter.

You can use a similar URI to return the web service as an AtomPub document, in which case the attribute is
?$format=atom . For more information, see Using OData to Return-Obtain an AtomPub Document.

Using OData Web Services to Modify Data

Using Filter Expressions in OData URIs
4/4/2019 • 3 minutes to read

Filter Expressions

http://localhost:7048/BC130/OData/Company('CRONUS International Ltd.')/Customer?$filter=City eq 'Miami'

NOTE

DEFINITION EXAMPLE AND EXPLANATION EQUIVALENT AL EXPRESSION

Select a range of values filter=Entry_No gt 610 and
Entry_No lt 615

Query on GLEntry service. Returns
entry numbers 611 through 614.

..

And filter=Country_Region_Code eq
'ES' and Payment_Terms_Code eq
'14 DAYS'

Query on Customer service. Returns
customers in Spain where
Payment_Terms_Code=14 DAYS.

&

You can use filter expressions in OData URIs to limit the results that are returned in an AtomPub document. This
topic identifies the filter expressions that you can use, describes the equivalent field or table filter that you can use
in AL, and presents examples to show the syntax for using filter expressions in OData web service URIs and
applications.

To add a filter to an OData URI, add $filter= to the end of the name of the published web service. For example,
the following URI filters the City field in the Customer page to return all customers who are located in Miami:

The following table shows the filters that are supported in Business Central OData web services and the
equivalent AL filter expressions. All examples are based either on page 21, Customer (published as Customer), or
on page 20, General Ledger Entry (published as GLEntry).

Filters that do not have equivalent AL expressions might take longer to process compared to filters that do have equivalent
AL expressions. The reason is that filters that do not have equivalent AL expressions are processed on the Business Central
Server tier, while filters that do have equivalent AL expressions are processed on the Business Central database tier.

Or filter= Country_Region_Code eq
'ES' or Country_Region_Code eq
'US'

Query on Customer service. Returns
customers in Spain and the United
States.

Alert: You can use OR operators to
apply different filters on the same field.
However, you cannot use OR operators
to apply filters on two different fields.

|

Less than filter=Entry_No lt 610

Query on GLEntry service. Returns
entry numbers that are less than 610.

<

Greater than filter= Entry_No gt 610

Query on GLEntry service. Returns
entry numbers 611 and higher.

>

Greater than or equal to filter=Entry_No ge 610

Query on GLEntry service. Returns
entry numbers 610 and higher.

>=

Less than or equal to filter=Entry_No le 610

Query on GLEntry service. Returns
entry numbers up to and including 610.

<=

Different from (not equal) filter=VAT_Bus_Posting_Group ne
'EXPORT'

Query on Customer service. Returns all
customers with
VAT_Bus_Posting_Group not equal to
EXPORT.

<>

endswith filter=endswith(VAT_Bus_Posting_Group,'RT')

Query on Customer service. Returns all
customers with
VAT_Bus_Posting_Group values that
end in RT.

*

startswith filter=startswith(Name, 'S')

Query on Customer service. Returns all
customers names beginning with “S”.

substringof filter=substringof(Name, ‘urn’)

Query on Customer service. Returns
customer records for customers with
names containing the string “urn”.

DEFINITION EXAMPLE AND EXPLANATION EQUIVALENT AL EXPRESSION

indexof filter=indexof(Location_Code,
‘BLUE’) eq 0

Query on Customer service. Returns
customer records for customers having
a location code beginning with the
string BLUE.

replace filter=replace(City, 'Miami',
'Tampa') eq 'CODERED'

substring filter=substring(Location_Code,
5) eq 'RED'

Query on Customer service. Returns
true for customers with the string RED
in their location code starting as
position 5.

tolower filter=tolower(Location_Code) eq
'code red'

toupper filter=toupper(FText) eq '2ND
ROW'

trim filter=trim(FCode) eq 'CODE RED'

concat filter=concat(concat(FText, ',
'), FCode) eq '2nd row, CODE RED'

round filter=round(FDecimal) eq 1

floor filter=floor(FDecimal) eq 0

ceiling filter=ceiling(FDecimal) eq 1

DEFINITION EXAMPLE AND EXPLANATION EQUIVALENT AL EXPRESSION

Referencing Different Data Types in Filter Expressions

See Also

You must use the appropriate notation for different data types with filter expressions.

String values must be delimited by single quotation marks.

Numeric values require no delimiters.

For more information about data types and other information about conventions and standards for OData URIs,
see Atom Publishing Protocol: URI Conventions. Conventions for data types are addressed in section 2.2.2,
"Abstract Type System."

http://go.microsoft.com/fwlink/?LinkId=214635

OData Web Services

file:///T:/q4ru/webservices/OData-Web-Services.html

Using FlowFilters in OData URIs
3/31/2019 • 2 minutes to read

Use FlowFilters to Query Data on the Item Card Page

You can set FlowFilters on the data that your OData web service extracts from the Business Central database.

FlowFilters are a special kind of filter that you use to set ranges on calculations that are shown in FlowFields. For
more information, see FlowFilter Overview. FlowFilters for a page are included in the metadata for that page when
it is published as a web service. You can then use FlowFilters as filters in a URI that specifies a query against page
data. However, only those FlowFilters that are required to calculate the FlowFields that are exposed on the page as
controls are included.

In this procedure, you create and publish a web service from the Item Card page in Business Central and then
query the data in that web service by using a FlowFilter.

http://<Server>:<WebServicePort>/<ServerInstance>/OData/$metadata

http://localhost:7048/BC130/OData/$metadata

<Property Type="Edm.String" Name="Location_Filter" Nullable="true"/>
<Property Type="Edm.String" Name="Drop_Shipment_Filter" Nullable="true"/>
<Property Type="Edm.String" Name="Variant_Filter" Nullable="true"/>
<Property Type="Edm.String" Name="Lot_No_Filter" Nullable="true"/>
<Property Type="Edm.String" Name="Serial_No_Filter" Nullable="true"/>
<Property Type="Edm.String" Name="Date_Filter" Nullable="true"/>

NOTE

1. Register and publish a page web service by using the Business Central Web client. See Publishing a Web
Service.

Register and publish page 30, Item Card, and name the service ItemCard.

2. Start Windows Internet Explorer, and then in the Address field, enter a URI in this format:

If Business Central Server is running on the local computer and uses the default Business Central Server
instance and the default OData port, then the address is:

3. Examine the metadata that is returned by this URI. At the end of the list is a set of parameters that end in
the word Filter . This is the list of FlowFilters for the page:

The set of FlowFilters that is listed in the page metadata may not match the set of FlowFilters on the equivalent page
in the Business Central Web client. This is because the Business Central Web client shows all FlowFilter fields that are
defined on the table on which the page is based. The metadata only shows the FlowFilters that are used to calculate
the FlowField controls that are exposed on the page.

4. Create a URI that returns information for a single item card. For example:

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-flowfilter-overview

See Also

http://localhost:7048/BC130/OData/Company('CRONUS-International-Ltd.')/ItemCard('1906-S')

<d:Qty_on_Sales_Order m:type="Edm.Decimal">33</d:Qty_on_Sales_Order>

http://localhost:7048/BC130/OData/Company('CRONUS-International-Ltd.')/ItemCard('1906-S')?
$filter=Location_Filter eq 'GREEN'

<d:Qty_on_Sales_Order m:type="Edm.Decimal">27</d:Qty_on_Sales_Order>

This is the "ATHENS Mobile Pedestal" item. The value for the Qty_on_Sales_Order parameter is 33:

5. Apply a FlowFilter to that item and specify GREEN as the value for the Location_Filter:

The item is returned as before, the value of the FlowField that has changed. The value for the
Qty_on_Sales_Order parameter is now 27:

This indicates that there are 27 ATHENS Mobile Pedestals on sales orders designated for the GREEN
location.

OData Web Services

file:///T:/q4ru/webservices/OData-Web-Services.html

Server-Driven Paging in OData Web Services
4/4/2019 • 2 minutes to read

NOTE

Configuring Server-Driven Paging

NOTE

See Also

Server-driven paging ensures that the quantity of data that is returned by an OData URI does not overwhelm
Business Central Server or client program that you use to capture data, while optimizing performance.

The term page in this topic refers only to a page that contains OData results and is not related to Business Central page
objects.

You configure server-driven paging with the Max Page Size setting in the configuration for the Business Central
Server instance that you are using for OData services. To modify the setting, you can use Server Administration
Tool or [Business Central Windows PowerShell Cmdlets]((https://docs.microsoft.com/en-us/powershell/business-
central/overview). For more information about Max Page Size and other Business Central Server parameters, see
Configuring Business Central Server.

The Max Page Size setting specifies the maximum number of entities returned per page of OData results. The
default value is 1000. You can consider a page to be a chunk of data. A large data feed is divided into chunks of
data. Each chunk contains no more entities than the value of Max Page Size. An increase in the value of Max
Page Size creates fewer chunks (or pages) per request, which in turn, decreases the processing time. However, an
increase in the Max Page Size will increase the memory consumption on the Business Central Server or client. If
the value is too large, it can overload the memory on Business Central Server. For performance reasons, you
should try to set the value of the Max Page Size as large as possible without overloading Business Central Server.
If the computer that is running Business Central Server is returning out of memory exceptions, then you should
reduce the value of Max Page Size until the errors stop.

When using OData with queries that are set with a top number of rows by either the TopNumberOfRows Property
and TopNumberOfRows Method, you should set the Max Page Size value greater than the value of the
TopNumberOfRows property and TopNumberOfRows method. For more information, see Using OData with
Queries That are Set with a Top Number of Rows.

In the CustomSettings.config file for Business Central Server, the Max Page Size setting is called
ODataServicesPageMaxSize.

OData Web Services

https://docs.microsoft.com/en-us/powershell/business-central/overview
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-topnumberofrows-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods-auto/query/queryinstance-topnumberofrows-method
file:///T:/q4ru/webservices/OData-Web-Services.html

Using Containments and Associations
3/31/2019 • 3 minutes to read

Identifying Containments and Associations in Metadata

<NavigationProperty Name="SalesOrderSalesLines" ToRole="SalesOrderSalesLines" FromRole="SalesOrder"
Relationship="NAV.SalesOrder_SalesOrderSalesLines"/>

<EntityType Name="SalesOrderSalesLines">
<Key>
 <PropertyRef Name="Document_No"/>
 <PropertyRef Name="Document_Type"/>
 <PropertyRef Name="Line_No"/>
</Key>
 <Property Name="Document_Type" Nullable="false" Type="Edm.String"/>
 <Property Name="Document_No" Nullable="false" Type="Edm.String"/>
 many additional properties........
 <Property Name="ShortcutDimCode_x005B_7_x005D_" Nullable="true" Type="Edm.String"/>
 <Property Name="ShortcutDimCode_x005B_8_x005D_" Nullable="true" Type="Edm.String"/>
</EntityType>

<Association Name="SalesOrder_Sell_to_Customer_No_Link">
 <End Type="NAV.SalesOrder" Multiplicity="*" Role="SalesOrder"/>
 <End Type="NAV.CustomerList" Multiplicity="0..1" Role="Sell_to_Customer_No_Link"/>
</Association>
<Association Name="SalesOrder_Bill_to_Customer_No_Link">
 <End Type="NAV.SalesOrder" Multiplicity="*" Role="SalesOrder"/>
 <End Type="NAV.CustomerList" Multiplicity="0..1" Role="Bill_to_Customer_No_Link"/>
</Association>

Containments and associations are relationships between pages in Business Central. OData web services support
navigation between pages using containments and associations.

Containments: Some pages in Business Central contain subpages. When you publish such a page, the
subpages are automatically available in the web service as containments.

Associations: When a field on a page has a TableRelation property, the specified table has a
LookupPageId property that points to a different page. When you publish a page containing such a field as
a web service, you must also publish the page that is pointed to by LookupPageId property. You can then
link from the first page to the second page in a single URI.

OData metadata shows containments and associations with the NavigationProperty tag. For example, if you
published page 42, Sales Order, and page 22, Customer List, and then obtained the service metadata document for
the server instance, you would see this tag in the metadata:

This tag is followed by metadata that specific to the SalesOrderSalesLines subpage. This page metadata indicates
that this NavigationProperty tag is a containment:

Elsewhere in the metadata, you would see additional NavigationProperty lines and a series of Association tags.
Two of these tags have a Multiplicity parameter with a value of 0..1:

These tags describe two associations from the Sales Order page to the Customer List page:

Using Containments

http://localhost:7048/<server instance>/OData/Company('CRONUS-International-
Ltd.')/SalesOrder(Document_Type='Order',No='101005')/

<link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/SalesOrderSalesLines"
 type="application/atom+xml;type=feed" title="SalesOrderSalesLines"
 href="SalesOrder(Document_Type='Order',No='101005')/SalesOrderSalesLines" />

http://localhost:7048/<server instance>/OData/Company('CRONUS-International-
Ltd.')/SalesOrder(Document_Type='Order',No='101005')/SalesOrderSalesLines

Using Associations

http://localhost:7048/<server instance>/OData/Company('CRONUS-International-
Ltd.')/SalesOrder(Document_Type='Order',No='101005')/

The Sell-to Customer No. field.

The Bill-to Customer No. field.

When you publish a page that has a subpage, you can identify that subpage in the AtomPub document that is
returned for the published page. For example, when you publish page 42, Sales Order, you can access a single
record on the page using a URI such as the following:

The following line in the returned AtomPub document for the record provides link information for a containment:

Notice the type=feed in the line above. To access the subpage data feed, use a URI that incorporates the link that
was identified in the previous document:

Associations are possible when two published pages are linked. Here is an example:

Page 42, Sales Order, has its SourceTable property set to table 36, Sales Header. The source expression for
the Sell_to_Customer_No control on page 42 is field 2, Sell-to Customer No., in table 36.

Field 2, Sell-to Customer No., in table 36 has a TableRelation property set to table 18, Customer, field No.

Table 18, Customer, has a LookupPageId property set to page 22, Customer List.

Thus if both page 42, Sales Order, and page 22, Customer List, are published as web services, then an OData URI
can link from the Sell_to_Customer_No control on page 42 to the related entity on page 22.

Because of this association, you can create OData URIs to access data on the Customer List page as you work with
data on the Sales Order page.

If you publish pages 42 and 22 as web services, then you can return an AtomPub document for the Sales Order
page. The following URI returns data for a single record on the page, which is order number 101005:

A set of three tags near the top of the returned document show one containment (SalesOrderSalesLines) and
two associations (Sell_to_Customer_No and Bill_to_Customer_No) on the page. Notice the type=entry in the
following lines:

<link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/SalesOrderSalesLines"
 type="application/atom+xml;type=feed" title="SalesOrderSalesLines"
 href="SalesOrder(Document_Type='Order',No='101005')/SalesOrderSalesLines" />
<link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/Sell_to_Customer_No_Link"
 type="application/atom+xml;type=entry" title="Sell_to_Customer_No_Link"
 href="SalesOrder(Document_Type='Order',No='101005')/Sell_to_Customer_No_Link" />
<link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/Bill_to_Customer_No_Link"
 type="application/atom+xml;type=entry" title="Bill_to_Customer_No_Link"
 href="SalesOrder(Document_Type='Order',No='101005')/Bill_to_Customer_No_Link" />

http://localhost:7048/<server instance>/OData/Company('CRONUS-International-Ltd.')
 /SalesOrder(Document_Type='Order',No='101005')/Sell_to_Customer_No_Link

http://localhost:7048/<server instance>/OData/CustomerList('30000')

See Also

This information provides the necessary information to create a URI to access a record on the Customer List page
by using an association:

The following URI returns the same information with direct access to the Customer List page:

OData Web Services

file:///T:/q4ru/webservices/OData-Web-Services.html

Using OData with Queries That are Set with a Top
Number of Rows
4/4/2019 • 2 minutes to read

NOTE

See Also

Business Central queries include the TopNumberOfRows Property and TOPNUMBEROFROWS Method that can
be used to specify the maximum number of rows to include in the resulting dataset. The OData configuration
includes the Max Page Size setting that specifies the maximum number of entities returned per page of OData
results. The default value is 1000.

To ensure that the OData results include the correct number of entities when you are using a query that is set with
a top number of rows, you should set the Max Page Size value greater than the value that is set by the
TopNumberOfRows property and TopNumberOfRows method. Otherwise, the TopNumberOfRows property
and TopNumberOfRows method are ignored and the query dataset will be returned in the OData results.

Typically, the TopNumberOfRows property or TopNumberOfRows method are used to return a relatively small number of
entities, such as the top five, ten, or 100 entities. Therefore, in most cases, the value of the TopNumberOfRows property
and TopNumberOfRows method will be less than the Max Page Size, so that you will not have to change the Max Page
Size setting.

For information about how to change the Max Page Size setting, see Configuring Business Central Server and
Server-Driven Paging in OData Web Services.

Basic Page Operations

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/properties/devenv-topnumberofrows-property
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/methods/devenv-topnumberofrows-method
file:///T:/q4ru/webservices/Server-Driven-Paging-in-OData-Web-Services.html
file:///T:/q4ru/webservices/Basic-Page-Operations.html

Using OData Web Services to Modify Data
3/31/2019 • 2 minutes to read

Modifying Data Using OData Web Services

ODATA CALL DATA IMPACT
TRIGGERS RUN ON PAGE AND TABLE IN
BUSINESS CENTRAL

POST Creates a new entity. OnNewRecord and OnInsert

PUT and MERGE Modifies the specified existing entity. OnModify

DELETE Deletes the specified existing entity. OnDelete

Company-Specific and Tenant-Specific OData Calls

See Also

You can write to the Business Central database using an OData web service that exposes a writable page. For
example, you can expose a page as an OData web service and implement it in a portal that is based on Microsoft
SharePoint Online. Users of the portal can then modify the data.

If an editable page is exposed as a web service, the data in the underlying table can be accessed and modified by
an OData call. Business Central supports the following OData operations for modifying data.

All calls fail if the user does not have the relevant permissions, and if the relevant property on the page,
InsertAllowed, ModifyAllowed, or DeleteAllowed, is set to No.

You can use an OData web service in applications where you want users to be able to modify Business Central
data the Business Central Web client. For example, you can show fields from the Customer table on a mobile
device or in a browser so that a user can create, update, or delete customers in the Business Central database.

In your implementation of the web service, you can specify which company in the database that a user can write to
in the URIs that expose the web services. Similarly, you can specify the specific tenant that the change applies to if
the database handles more than one tenant.

If you do not specify a company, Business Central will identify a default company. The default company is found in
the following order of sequence:

1. The ServicesDefaultCompany setting in the Tenants.config file.

2. The ServicesDefaultCompany setting in the CustomSettings.config file for Business Central Server.

3. The company in the current tenant when there is only one company.

If the OData request is for modifying metadata, Business Central will return the first company in the tenant
database because metadata applies to all companies in the database.

If no default company can be found based on the criteria, an error message appears.

OData Web Services
Using OData to Return-Obtain a JSON Document

file:///T:/q4ru/webservices/OData-Web-Services.html

Walkthrough: Creating and Interacting With an
OData V4 Bound Action
3/31/2019 • 4 minutes to read

About This Walkthrough

Prerequisites

Publishing a Function as a Web Service

To create the function
Create a Copy action on the Sales Invoice page.

This walkthrough illustrates how you can publish a Business Central function as an OData V4 web service action.

This walkthrough provides an overview of how to expose a function as a web service action and how to verify that
the service is working as expected. The walkthrough illustrates the following tasks:

Publishing a Business Central function as a web service.
Verifying web service availability from a browser.

To complete this walkthrough, you will need:

Microsoft Dynamics NAV 2017 CTP 10 with a developer license.

CRONUS International Ltd. demonstration database.

The Postman app for testing the web service URI.

You publish a function as a Web service action by using the Dynamics NAV Development Environment to create
the function and the Business Central Windows client or the Business Central Web client for publishing the objects
the function is for. The tutorial provides an example that will return a location header. A location header would be
used to later issue a get request for the resulting object. Refer to the Return a Value section for an example that
will return a value specified in your function.

PROPERTY VALUE

Local No

FunctionVisibility External

ServiceEnabled Yes

1. Open the Dynamics NAV Development Environment and then connect to the CRONUS International Ltd.
company.

Object Designer opens automatically in the development environment.

2. Open page 43, Sales Invoice.

3. Create a new function on the page named Copy .

4. Open the properties for the function and set the properties to the following values.

To register and publish a page as a Web service

PARAMETER VALUE

VAR Yes

Name ActionContext

DataType DotNet

SubType Microsoft.Dynamics.Nav.Runtime.WebServiceActionContex
t.'Microsoft.Dynamics.Nav.Ncl, Culture=neutral,
PublicKeyToken=31bf3856ad364e35'

NAME DATATYPE SUBTYPE

ToSalesHeader Record 36

FromSalesHeader Record 36

SalesSetup Record 311

ODataActionManagement Codeunit 6711

CopyDocMgt Codeunit 6620

DocType Option OptionString = Quote,Blanket
Order,Order,Invoice,Return
Order,Credit Memo,Posted
Shipment,Posted Invoice,Posted
Return Receipt,Posted Credit Memo

SalesSetup.GET;
CopyDocMgt.SetProperties(
TRUE,FALSE,FALSE,FALSE,FALSE,SalesSetup."Exact Cost Reversing Mandatory",FALSE);

FromSalesHeader.GET(Rec."Document Type",Rec."No.");
ToSalesHeader."Document Type" := FromSalesHeader."Document Type";
ToSalesHeader.INSERT(TRUE);
CopyDocMgt.CopySalesDoc(DocType::Invoice,FromSalesHeader."No.",ToSalesHeader);

// Add the necessary keys of the newly created entity using that entity’s backing table to identify the
field no. and it’s value.
ODataActionManagement.AddKey(Rec.FIELDNO(Id),ToSalesHeader.Id);

// Depending on what the result was of the action
// - Created: SetCreatedPageResponse(ActionContext, PAGE::"Sales Invoice");
// - Updated: SetUpdatedPageResponse(ActionContext,PAGE::"Sales Invoice");
// - Deleted: SetDeleteResponse(ActionContext);
ODataActionManagement.SetCreatedPageResponse(ActionContext,PAGE::"Sales Invoice");

5. Open Locals for the function and set the parameters to the following values.

6. Select the Variables tab and add the following variables.

7. Add the code that copies the sales document, for example.

8. Save and compile the SalesInvoice page.

Verifying the Web Service Availability

To verify availability of a Microsoft Dynamics NAV Web service action

Return a value

1. Open Business Central and connect to the CRONUS International Ltd. company.
2. In the Search box, enter Web services, and then choose the related link.
3. In the Web Services page, on the Home tab, choose New.
4. In the Object Type column, select Page. In the Object ID column, enter 43 , and in the Service Name

column, enter SalesInvoice .
5. Select the check box in the Published column.
6. Choose the OK button.

After publishing a web service, verify that the port that web service applications will use to connect to your web
service is open. The default port for OData V4 web services is 7047. You can configure this value by using the
Server Administration Tool.

1. Start Postman or another tool that can execute a POST command against the web service URI.

2. In the Address field, enter a URI in this format:
http://<Server>:
<WebServicePort>/<ServerInstance>/api/beta/companies(<companyid>)/salesInvoices(<invoiceid>)/Microsoft.NAV.Copy)

.

<Server> is the name of the computer that is running Business Central Server.
<WebServicePort> is the port that OData V4 is running on. The default port is 7047.
<ServiceInstance> is the name of the Business Central Server instance for your solution. The default

name is DynamicsNAV90.
Example if the default Business Central Server is running on your local computer.
http://localhost:7047/BC130/api/beta/companies(b9248a6e-966d-478c-a25d-
d91d28610397)/salesInvoices(8cc52602-3aa4-4256-b2c7-fdfef5248cbf)/Microsoft.NAV.Copy)

3. Postman should now show the web service function that you have published, and perform the action of
copying an invoice.

PROPERTY VALUE

Local No

FunctionVisibility External

ServiceEnabled Yes

6.

1. Open the Dynamics NAV Development Environment and connect to the application database.

2. Open page 43, Sales Invoice.

3. Create a new function called Example.

4. Open Properties for the function and set the properties to the following values.

5. Open Locals for the function parameters to the following values.

https://msdn.microsoft.com/en-us/library/hh165851(v=nav.90).aspx

See Also

PARAMETER VALUE TEST

inParam Text test

8.

NAME RETURNTYPE

outParam Text

{
 "@odata.context":
"http://farpedro.northamerica.corp.microsoft.com:7047/Navision_NAV/ODataV4/$metadata#Edm.String",
 "value": "Hello World Completed"
}

7. Select the Return Value tab and then add the following values.

9. Then add the following code for the Example function:

outParam := inParam + ' Completed';

10. You can now issue a post request:
http://localhost:7047/Navision_NAV/ODataV4/Company('CRONUS International Ltd.')/SalesInvoice('Invoice',
'1004')/NAV.Example

with a JSON body of:
{ "inParam": "Hello World" }

11. The returned value will be returned in the body of the message.

You have now published a Business Central function as an OData V4 web service action and verified that the
service works as expected. To read more about web services, see the See Also section below.

Web Services
SOAP Web Services
Publish a Web Service
Securing Web Service Connections Using Certificates

file:///T:/q4ru/webservices/SOAP-Web-Services.html

Security and Protection in Business Central
3/31/2019 • 2 minutes to read

An enterprise business solution must have a built-in security system that helps protect your database and the
information that it contains from unauthorized access. It must also allow you to specify what authorized users are
allowed to do in the database, such as what data they can read and modify. The following sections help you
understand and improve the security of Business Central.

Application Security

Online Security

On-Premises Security

Application Security in Business Central
3/31/2019 • 2 minutes to read

Authentication

Authorization

This section helps you understand and improve the security of your Business Central application regardless of
where it is hosted. In the articles listed below, you will find guidance and recommended practices related to
authentication, authorization, and auditing, as well as data encryption and secure development practices that can
be applied to any Business Central environment.

Business Central uses a layered approach to application security, as outlined in the following diagram.

Before users can sign-in to the Business Central application, they must be authenticated as valid user in the system.
Business Central On-Premises supports several authentication methods, such as Windows and Azure Active
Directory. Business Central Online uses strictly Azure Active Directory (Azure AD). For more information, see the
following articles:

Managing Users and Permissions

Authentication and Credential Types

Multi-factor Authentication

Once authenticated, authorization determines which areas a user can access, such as the pages and reports that
they can open, and the permissions that they have on associated data. For more information, see the following
articles:

User Permissions in the Application

https://docs.microsoft.com/en-us/dynamics365/business-central/ui-how-users-permissions
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/security/multifactor-authentication
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/security/user-security

Auditing

Data Encryption

Security Development Lifecycle

See Also

Data Security

Removing Elements from the User Interface According to Permissions

Business Central includes several auditing features that help you track information about who is signing-in, what
their permissions are, what data have they changed, and more. For more information, see the following articles:

Authorization Assessment

Data Auditing

Security Auditing

Data Classification

You can encrypt data on the Business Central server by generating new or importing existing encryption keys that
you enable on the Business Central server instance that connects to the database. For more information, see
Encrypting Data in Dynamics 365 Business Central.

Microsoft's Security Development Lifecycle (SDL) is a software development process that helps developers build
more secure software and address security compliance requirements while reducing development cost. For more
information, see Security Development Lifecycle.

Security and Protection
Online Security
On-Premises Security

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/security/Data-Security
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/hide-ui-elements
https://docs.microsoft.com/en-us/dynamics365/business-central/ui-how-users-permissions#to-get-an-overview-of-a-users-permissions
https://docs.microsoft.com/en-us/dynamics365/business-central/across-log-changes
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/security/security-auditing
https://docs.microsoft.com/en-us/dynamics365/business-central/admin-classifying-data-sensitivity
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-encrypting-data
https://www.microsoft.com/en-us/sdl
file:///T:/q4ru/security/Security-and-Protection.html

Business Central Online Security
6/26/2019 • 2 minutes to read

Authentication

Data isolation and encryption

Service integration

See Also

This section helps you understand and improve the security of your Dynamics 365 Business Central tenant. In the
links below you will find information, guidance and recommended practices related to authentication, data
encryption and safely integrating with other services. You will also find information on Business Central’s
certifications and regulatory compliance.

Business Central Online uses Azure Active Directory (Azure AD) as the authentication method, which is
automatically set up and managed for you.

Data belonging to a single tenant is stored in an isolated database and is never mixed with data from other
tenants. This ensures complete isolation of data in day-to-day use as well as in backup-restore scenarios.
Furthermore, Business Central Online uses encryption to help protect tenant data:

Data is encrypted at-rest by using Transparent Data Encryption (TDE) and backup encryption.
Data backups are always encrypted.
All network traffic inside the service is encrypted by using industry standard encryption protocols.

We recommend that you use encrypted network protocols to connect to the PowerBI server and Business Central
web services. For more information, see the following articles:

Connect to Business Central with Power BI

Using Security Certificates with Business Central On-Premises

Microsoft Trust Center (what we do to make the service secure)
Microsoft Dynamics 365 Cloud Services Compliance
Security and Protection

https://docs.microsoft.com/en-us/power-bi/service-connect-to-microsoft-dynamics-nav
https://www.microsoft.com/en-us/trustcenter/security/default.aspx
https://aka.ms/d365-compliance-list
file:///T:/q4ru/security/Security-and-Protection.html

Business Central On-Premises Security
3/31/2019 • 2 minutes to read

Authentication

Server Security

Client Security

Database Security

This section helps you understand and improve the security of Business Central hosted on-premises. In the links
below you will find information, hardening guidance and recommended best practices addressing client, database,
server and network security.

Before users can sign-in to the Business Central application, they must be authenticated as valid user in the
system. Business Central supports several authentication methods. You configure the authentication method on
the server-tiers of Business Central.

For more information, see Authentication and Credential Types.

Business Central Server handles communication between clients and databases, controlling authentication, event
logging, scheduled tasks, reporting and more. The following articles explain how to improve the security of
Business Central Server instances.

Hardening Business Central Server Security

Locking Down Server Communication settings

The following articles explain how to improve the security of connections from the clients to the Business Central
Server.

Configuring SSL to Secure the Client Connections

Using Security Certificates with Business Central On-Premises

The articles in this section explain how to improve database security in Business Central.

The following articles discuss configurations that you can perform on the Business Central Server:

Configuring the Database

Encrypt Traffic

The following are general articles about SQL Server security that can also help secure the database:

Upgrade to TLS 1.2

Data Encryption at Rest

SQL Server Hardening

SQL Server Auditing

Backup Encryption

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/security/enhancing-server-instance-security
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/security/security-lock-down-server-communication
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/security/enhancing-server-instance-security
https://support.microsoft.com/en-us/help/3135244/tls-1-2-support-for-microsoft-sql-server
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/security/transparent-data-encryption
https://docs.microsoft.com/en-us/sql/relational-databases/security/securing-sql-server?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/security/auditing/sql-server-audit-database-engine?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/backup-encryption?view=sql-server-2017

Network Security

See Also

The following articles explain to secure client, web service, and PowerBI connections over a wide area network
using HTTPS and security certificates.

Configuring SSL to Secure the Client Connections

Using Security Certificates with Business Central On-Premises

Connect to Business Central with Power BI

Security and Protection
Data Security

https://docs.microsoft.com/en-us/power-bi/service-connect-to-microsoft-dynamics-nav
file:///T:/q4ru/security/Security-and-Protection.html
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/security/Data-Security

Upgrading to Dynamics 365 Business Central
3/31/2019 • 2 minutes to read

TIP

See Also

This section provides an overview of how to upgrade to Business Central. The upgrade process depends on
different factors, including on your decision to deploy Business Central on-premises or move your solution
online.

Before you decide how to upgrade your solution, make sure that you read the upgrade considerations at Important
Information and Considerations for Before Upgrading to Dynamics 365 Business Central.

Depending on your decision to upgrade to either Business Central online or on-premises, different scenarios
are supported. Read the upgrade considerations, and then revise the supported scenarios in the respective
sections. If you cannot find guidance for your migration scenario, you can check at the Ideas site if someone
else has already suggested support for the same migration path. For more information, see
https://aka.ms/businesscentralideas.

Upgrading to Dynamics 365 Business Central Online
Upgrading to Dynamics 365 Business Central On-Premises
Before You Upgrade
Migrate Legacy Help to the Business Central Format
Product and Architecture Overview
Migrating to Multitenancy
Deployment

file:///T:/q4ru/upgrade/Upgrade-Considerations.html
https://aka.ms/businesscentralideas
file:///T:/q4ru/upgrade/Upgrade-Considerations.html
file:///T:/q4ru/deployment/Migrating-to-Multitenancy.html
file:///T:/q4ru/deployment/Deployment.html

Upgrading to Dynamics 365 Business Central Online
3/31/2019 • 2 minutes to read

SCENARIO PROCEDURES

Upgrade from Dynamics NAV Upgrading from Dynamics NAV to Business Central online is
only partially supported.
For more information, see Upgrading from Dynamics NAV to
Business Central online.

Set up a company based on questionnaires Use RapidStart Services.
For more information, see Setting Up a Company With
RapidStart Services.

Import data from any system Use Excel or configuration packages to import data.
For more information, see Importing Business Data from
Other Finance Systems.

Import data from Dynamics GP Use the data migration wizard to import master data.
For more information, see The Dynamics GP Data Migration
Extension.

Import data from Intuit QuickBooks Use the data migration wizard to import master data.
For more information, see The QuickBooks Data Migration
Extension.

See Also

If you want to move your current solution to Business Central online, the path depends on your current solution. In
all cases, it's a matter of migration rather than upgrade due to the nature of online services. The core scenario is to
import existing data to an empty company in a Business Central online tenant. For more information, see Take
prospects and customers online.

Use the following table to determine the procedures that you must complete for your migration scenario:

Upgrading to Dynamics 365 Business Central
Upgrading to Dynamics 365 Business Central On-Premises
The Lifecycle of Apps and Extensions for Business Central
Upgrading Extensions
Product and Architecture Overview
Deployment

file:///T:/q4ru/deployment/Deployment.html#take-prospects-and-customers-online
file:///T:/q4ru/upgrade/Upgrade-Considerations.html#upgrading-from--to--online
https://docs.microsoft.com/dynamics365/business-central/admin-set-up-a-company-with-rapidstart?toc=/dynamics365/business-central/dev-itpro/toc.json
https://docs.microsoft.com/dynamics365/business-central/across-import-data-configuration-packages?toc=/dynamics365/business-central/dev-itpro/toc.json
https://docs.microsoft.com/dynamics365/business-central/ui-extensions-dynamicsgp-data-migration?toc=/dynamics365/business-central/dev-itpro/toc.json
https://docs.microsoft.com/dynamics365/business-central/ui-extensions-quickbooks-data-migration?toc=/dynamics365/business-central/dev-itpro/toc.json
file:///T:/q4ru/deployment/Deployment.html

Upgrading to Dynamics 365 Business Central On-
Premises
5/6/2019 • 2 minutes to read

SCENARIO TASKS

Full upgrade from one of the following versions: From these versions, you can upgrade directly to the latest
version of Business Central by following these tasks:

Full upgrade from one of the following versions:

The upgrade process depends on different factors, such as the version of Dynamics NAV that you are upgrading
from, and the degree to which your solution differs from the standard version of Dynamics NAV. The mains tasks
range from converting the database to upgrading application code and data.

Use the following table to determine the procedures that you must complete for your upgrade scenario:

Microsoft Dynamics NAV 2015
Microsoft Dynamics NAV 2016
Microsoft Dynamics NAV 2017
Microsoft Dynamics NAV 2018
Business Central October 2018

1. Upgrade the Application Code
2. Upgrade the Data

Microsoft Dynamics NAV 2013
Microsoft Dynamics NAV 2013 R2

1. Upgrade to Microsoft Dynamics NAV 2018.
For more information, see Upgrading to Microsoft
Dynamics NAV 2018.

2. Upgrade to Business Central.
a. Upgrade the Application Code
b. Upgrade the Data: Single-Tenant Deployment

or Upgrade the Data: Multitenant Deployment

file:///T:/q4ru/upgrade/Upgrading-the-Application-Code.html
file:///T:/q4ru/upgrade/Upgrading-the-Data.html
https://docs.microsoft.com/dynamics-nav/upgrading-to-microsoft-dynamics-nav
file:///T:/q4ru/upgrade/Upgrading-the-Application-Code.html
file:///T:/q4ru/upgrade/Upgrading-the-Data.html
file:///T:/q4ru/upgrade/Upgrading-the-Data-Multitenant.html

Full upgrade from one of the following versions: There are two different upgrade paths to Business Central,
depneding on the version you are upgrading from. For
Microsoft Dynamics NAV 5.0 and Microsoft Dynamics NAV
4.0, you must go through Microsoft Dynamics NAV 2013. For
Microsoft Dynamics NAV 2009 SP1 and Microsoft Dynamics
NAV 2009 R2, you can choose to go through Microsoft
Dynamics NAV 2013 or Microsoft Dynamics NAV 2015

Through Microsoft Dynamics NAV 2013

Through Microsoft Dynamics NAV 2015

After the upgrade, links between interaction records and
logged email messages is lost. To resolve this issue, the
administrator has to log all mails again to restore the links.
For more information, see Logging Interaction Links are Lost
When You Upgrade from Microsoft Dynamics NAV 2009 R2.

Platform-only upgrade of Dynamics NAV or Business Central
to a new platform version, such as with a cummulative update

You can also use this procedure to convert a database to
Business Central technical requirements, and then upgrade
the application and data later.

SCENARIO TASKS

See Also

Microsoft Dynamics NAV 2009 SP1
Microsoft Dynamics NAV 2009 R2
Microsoft Dynamics NAV 5.0
Microsoft Dynamics NAV 4.0

1. Upgrade to Microsoft Dynamics NAV 2013.
For more information, see Upgrading to Microsoft
Dynamics NAV 2013 in the MSDN Library.

2. Upgrade to Microsoft Dynamics NAV 2018.
For more information, see Upgrading to Microsoft
Dynamics NAV 2018.

3. Upgrade to Business Central.
a. Upgrade the Application Code
b. Upgrade the Data: Single-Tenant Deployment

or Upgrade the Data: Multitenant Deployment

1. Upgrade to Microsoft Dynamics NAV 2015.
For more information, see Dynamics NAV Team Blog.

2. Upgrade to Business Central.
a. Upgrade the Application Code
b. Upgrade the Data: Single-Tenant Deployment

or Upgrade the Data: Multitenant Deployment

Technical Upgrade

Before you begin the upgrade process, see Important Information and Considerations for Before Upgrading for
tips about things to consider when you prepare to upgrade to Business Central.

Upgrading to Dynamics 365 Business Central
Upgrading to Dynamics 365 Business Central Online Product and Architecture Overview
Migrating to Multitenancy
Deployment

http://go.microsoft.com/fwlink/?LinkId=510382
https://docs.microsoft.com/dynamics-nav/upgrading-to-microsoft-dynamics-nav
file:///T:/q4ru/upgrade/Upgrading-the-Application-Code.html
file:///T:/q4ru/upgrade/Upgrading-the-Data.html
file:///T:/q4ru/upgrade/Upgrading-the-Data-Multitenant.html
https://blogs.msdn.microsoft.com/nav/2014/11/09/cumulative-update-1-for-microsoft-dynamics-nav-2015-has-been-released/
file:///T:/q4ru/upgrade/Upgrading-the-Application-Code.html
file:///T:/q4ru/upgrade/Upgrading-the-Data.html
file:///T:/q4ru/upgrade/Upgrading-the-Data-Multitenant.html
https://msdn.microsoft.com/en-us/library/hh167032%28v=nav.90%29.aspx#LoggingInteractionLinks
file:///T:/q4ru/upgrade/Converting-a-Database.html
file:///T:/q4ru/upgrade/Upgrade-Considerations.html
file:///T:/q4ru/deployment/Migrating-to-Multitenancy.html
file:///T:/q4ru/deployment/Deployment.html

Transitioning from Codeunit 1 to System Codeunits
3/31/2019 • 3 minutes to read

Overview

About system codeunits

Mapping Codeunit 1 method triggers to events

CODEUNIT 1 TRIGGER NEW CODEUNIT ID NEW METHOD

CompanyClose 40 CompanyClose

With Business Central, codeunit 1 Application Management has been removed and replaced with new System
codeunits. No functionality has been removed by this change. All system method triggers, event publishers, and
their code have been moved to other codeunits.

However, this change will affect the upgrade process from Dynamics NAV and how you develop going forward.

The foundation of this change is events - publishers and subscribers. System codeunits do not contain code. They
only contain event publishers. Instead of running codeunit 1 and calling respective functions, Business Central
Server runs system codeunits. The system codeunits will in turn raise published events. There are various
management codeunits that subscribe to these events. Like codeunit 1, these subscriber codeunits contain method
triggers and integration event publishers, which means that they can call application functionality and raise events.
The following figure illustrates the process:

They have IDs in the 2 billion range.
You cannot modify them.
Currently, we do not recommend that code subscribes to the events in the new system codeunits
2000000001..2000000010 directly. Although this is not blocked, it might be in a future release. Instead, you
should subscribe to one of the integration events which now reside next to the business logic.

The following table lists the mappings between the codeunit 1 triggers and event publishers and the new method
trigger and publishers in the management codeunits.

CompanyOpen 40 CompanyOpen

GetSystemIndicator 40 GetSystemIndicator

OnAfterCompanyClose 40 OnAfterCompanyClose

OnAfterCompanyOpen 40 OnAfterCompanyOpen

OnBeforeCompanyClose 40 OnBeforeCompanyClose

OnBeforeCompanyOpen 40 OnBeforeCompanyOpen

FindPrinter 44 GetPrinterName

ApplicationVersion 9015 ApplicationVersion

CustomApplicationVersion N/A N/A

ReleaseVersion 9015 ReleaseVersion

ApplicationBuild 9015 ApplicationBuild

CustomApplicationBuild N/A N/A

ApplicationLanguage 43 ApplicationLanguage

DefaultRoleCenter 9170 DefaultRoleCenterID

MakeDateTimeText 41 MakeDateTimeText

GetSeparateDateTime 41 GetSeparateDateTime

MakeDateText 41 MakeDateText

MakeTimeText 41 MakeTimeText

MakeText 41 MakeText

MakeDateTimeFilter 41 MakeDateTimeFilter

MakeDateFilter 41 MakeDateFilter

MakeTextFilter 41 MakeTextFilter

MakeCodeFilter 41 MakeTextFilter

MakeTimeFilter 41 MakeTimeFilter

CODEUNIT 1 TRIGGER NEW CODEUNIT ID NEW METHOD

AutoFormatTranslate 45 AutoFormatTranslate

ReadRounding 45 ReadRounding

CaptionClassTranslate 42 CaptionClassTranslate

GetCueStyle 9701 GetCueStyle

SetGlobalLanguage 43 SetGlobalLanguage

ValidateApplicationlLanguage 43 ValidateApplicationLanguage

LookupApplicationlLanguage 43 LookupApplicationLanguage

GetGlobalTableTriggerMask 49 GetGlobalTableTriggerMask

OnGlobalInsert 49 OnGlobalInsert

OnGlobalModify 49 OnGlobalModify

OnGlobalDelete 49 OnGlobalDelete

OnGlobalRename 49 OnGlobalRename

GetDatabaseTableTriggerSetup 49 GetDatabaseTableTriggerSetup

OnDatabaseInsert 49 OnDatabaseInsert

OnDatabaseModify 49 OnDatabaseModify

OnDatabaseDelete 49 OnDatabaseDelete

OnDatabaseRename 49 OnDatabaseRename

OnDebuggerBreak 9500 ProcessOnDebuggerBreak

LaunchDebugger 9500 OpenDebugger

OpenSettings 9170 OpenSettings

OpenContactMSSales 50 OpenContactMSSales

InvokeExtensionInstallation 2501 InvokeExtensionInstallation

CustomizeChart 9180 CustomizeChart

HasCustomLayout 44 HasCustomLayout

MergeDocument 44 MergeDocument

CODEUNIT 1 TRIGGER NEW CODEUNIT ID NEW METHOD

ReportGetCustomRdlc 44 ReportGetCustomRdlc

ReportScheduler 44 ScheduleReport

OnBeforeOpenSettings 9170 OnBeforeOpenSettings

OnAfterGetApplicationVersion 9015 OnAfterGetApplicationVersion

OnRoleCenterOpen 9170 OnRoleCenterOpen

OnAfterGetSystemIndicator 79 OnAfterGetSystemIndicator

OnAfterFindPrinter 44 OnAfterGetPrinterName

OnAfterGetDefaultRoleCenter 9170 OnAfterGetDefaultRoleCenter

OnAfterMakeDateText N/A N/A

OnAfterMakeTimeText N/A N/A

OnAfterMakeText N/A N/A

OnAfterMakeDateTimeFilter 41 OnAfterMakeDateTimeFilter

OnAfterMakeDateFilter 41 OnAfterMakeDateFilter

OnAfterMakeTextFilter 41 OnAfterMakeTextFilter

OnAfterMakeCodeFilter N/A N/A

OnAfterMakeTimeFilter 41 OnAfterMakeTimeFilter

OnAfterAutoFormatTranslate 45 OnAfterAutoFormatTranslate

OnAfterCaptionClassTranslate 42 OnAfterCaptionClassTranslate

OnAfterGetGlobalTableTriggerMask 49 OnAfterGetGlobalTableTriggerMask

OnAfterOnGlobalInsert 49 OnAfterOnGlobalInsert

OnAfterOnGlobalModify 49 OnAfterOnGlobalModify

OnAfterOnGlobalDelete 49 OnAfterOnGlobalDelete

OnAfterOnGlobalRename 49 OnAfterOnGlobalRename

OnAfterGetDatabaseTableTriggerSetup 49 OnAfterGetDatabaseTableTriggerSetup

OnAfterOnDatabaseInsert 49 OnAfterOnDatabaseInsert

CODEUNIT 1 TRIGGER NEW CODEUNIT ID NEW METHOD

OnAfterOnDatabaseModify 49 OnAfterOnDatabaseModify

OnAfterOnDatabaseDelete 49 OnAfterOnDatabaseDelete

OnAfterOnDatabaseRename 49 OnAfterOnDatabaseRename

OnAfterHasCustomLayout 44 OnAfterHasCustomLayout

OnAfterReportGetCustomRdlc 9650 OnAfterReportGetCustomRdlc

OnBeforeOnDatabaseInsert 49 OnBeforeOnDatabaseInsert

OnBeforeOnDatabaseModify 49 OnBeforeOnDatabaseModify

OnBeforeOnDatabaseDelete 49 OnBeforeOnDatabaseDelete

OnBeforeOnDatabaseRename 49 OnBeforeOnDatabaseRename

OnEditInExcel 6710 OnEditInExcel

OnInstallAppPerDatabase N/A N/A

OnInstallAppPerCompany N/A N/A

OnCheckPreconditionsPerDatabase 9900 OnCheckPreconditionsPerDatabase

OnCheckPreconditionsPerCompany 9900 RaiseOnCheckPreconditionsPerCompan
y

OnUpgradePerDatabase 9900 OnUpgradePerDatabase

OnUpgradePerCompany 9900 OnUpgradePerCompany

OnValidateUpgradePerDatabase 9900 OnValidateUpgradePerDatabase

OnValidateUpgradePerCompany 9900 OnValidateUpgradePerCompany

CODEUNIT 1 TRIGGER NEW CODEUNIT ID NEW METHOD

What does this mean for upgrade?

See Also

For a full upgrade (application code and data), you have to move any custom logic that was included in the old
codeunit 1 into the management codeunits and methods described in the previous section. Any custom code that
called into codeunit 1 will also have to be changed to call or subscribe to the new methods. You can this as part of
the application code upgrade.

For a technical upgrade, after you convert your old database to the Business Central platform, you must import
and compile a replacement codeunit 1 object, which you can get from Codeunit 1 Replacement.

Converting a Database

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/upgrade/codeunit1-replacement
file:///T:/q4ru/upgrade/Converting-a-Database.html

Converting a Database to Business Central - Technical
Upgrade
5/28/2019 • 13 minutes to read

About technical upgrade and database conversion

IMPORTANT

Tools

Task 1: (Dynamics NAV upgrade only) Preparation

See print-friendly quick reference

This article describes how to convert a database from one of the following versions to the latest Business Central
platform:

Microsoft Dynamics NAV 2015

Microsoft Dynamics NAV 2016

Microsoft Dynamics NAV 2017

Microsoft Dynamics NAV 2018

This article can also be used to update your current Business Central database to the latest cumulative update (CU)
platform.

Converting a database, which is often referred to as a technical upgrade, changes the database so that it works on
the latest Business Central platform. The conversion updates the system tables of the old database to the new
schema (data structure), and upgrades of all reports to support Report Viewer 2015. It provides you with the latest
platform features and performance enhancements.

The process is slightly different when you have multitenant deployment compared to a single-tenant deployment.
The steps that follow indicate the differences where applicable.

Before you begin, read the article Important Information and Considerations for Before Upgrading. This article contains
information about limitations in a technical upgrade, such as using V1 extensions or Dynamics 365 for Sales integration.

If you are upgrading a single-tenant database to Business Central Cumulative Update 02, 03, 04, or 05, read Tenant
synchronization issue with technical upgrade to Business Central Cumulative Updates 02–05 on the Business Central for
Partners blog before starting the upgrade.

To complete the steps in the article, you will use the following tools:

Dynamics NAV Development Environment (the version that matches your old database and the new
version)

Dynamics NAV Server Administration tool and/or Business Central Server Administration tool

SQL Server Management Studio

1. Transition from the use of codeunit 1

file:///T:/q4ru/upgrade/Upgrade-Considerations.html
https://community.dynamics.com/business/b/businesscentraldevitpro/archive/2019/03/29/technical-upgrade-to-business-central-cumulative-updates-02-05-tenant-synchronization-issue

Task 2: Preparing the Old Database

With Business Central, codeunit 1 Application Management is no longer used and has been replaced. For
more information, see Transitioning from Codeunit 1. To prepare for this change when doing a technical
upgrade, do the following:

a. If you have any custom code in codeunit 1, export the existing codeunit 1 as a .fob or .txt file.
b. Go to Codeunit 1 Replacement, and make a .txt file that includes the replacement code for codeunit 1. You

will use this file later.
 2. Convert V1 extensions to V2 extensions

Business Central does not support V1 extensions. If you are updating a Dynamics NAV database that
includes custom V1 extensions, and you want to continue to use them, you have to convert them to V2
extensions. For more information, see Converting Extensions V1 to Extensions V2.

V1 extensions that are produced by Microsoft (first-party extensions, publisher=Microsoft) are now available
as V2 extensions on the Business Central installation media (DVD), so you do not have to convert these. If
you want to keep the functionality provided and data collected by these V1 extensions, you will have to
publish the V2 versions as part of the technical upgrade later in Task 4.

You will have to uninstall all V1 extension to successfully completes the technical upgrade.

Before you convert the old database to Business Central, complete the following steps.

Get-NAVAppInfo -ServerInstance <ServerInstanceName> -Tenant <TenantID>

Uninstall-NAVApp -ServerInstance <ServerInstanceName> -Name <Name> -Version <N.N.N.N>

Get-NAVAppInfo -ServerInstance <ServerInstanceName> -Tenant default | % { Uninstall-NAVApp -
ServerInstance <ServerInstanceName> -Name $_.Name -Version $_.Version }

Unpublish-NAVApp -ServerInstance dynamicsnav110 -Name System -Version 11.0.12925.0

1. Make a copy of the old database or create full database backup.

For more information, see Create a Full Database Backup (SQL Server).

 2. For single-tenant mode, uninstall all extensions. For multitenant mode, uninstall all V1 extensions.

You can do this from Extension Management page in the Dynamics NAV client or by using the Uninstall-
NAVApp cmdlet of the Dynamics NAV Administration Shell.

To get a list of the extensions that are installed, run this command:

For a single-tenant mode, set the -Tenant parameter to default . V1 extensions are indicated by
ExtensionType: CSIDE .

For each extension, run this command to uninstall it:

Alternately, to remove them all at once, you can run this command:

3. Unpublish extensions versions that you do not want to use in the upgraded database. This is optional and
typically done for V1 extensions because they are no longer supported.

For example:

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/upgrade/codeunit1-replacement
http://go.microsoft.com/fwlink/?LinkID=296465
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.apps.management/uninstall-navapp

IMPORTANT

Dismount-NAVTenant -ServerInstance <serverinstance> -Tenant <tenantID>

Set-NAVServerInstance –ServerInstance <ServerInstanceName> -Stop

DELETE FROM [<My NAV Database Name>].[dbo].[Server Instance]
DELETE FROM [<My NAV Database Name>].[dbo].[Debugger Breakpoint]

 4. Open the Dynamics NAV Development Environment that matches the Dynamics NAV or Business Central
version of the old database, and then connect to the old application database.

For more information, see Open Databases.

5. In Object Designer, verify that all objects are compiled and no objects are locked.

For more information about compiling objects, see Compiling Objects.

If one or more objects are locked, the conversion process cannot update the database version number. As a
result, the conversion does not complete. For more information, see Locking and Unlocking Objects.

6. On the Tools menu, choose Build Server Application Objects, and then choose the Yes button.

7. If any errors occur, they are shown in the Error List window. Make sure that you address all compilation
errors before you continue.

8. Run the schema synchronization with validation to synchronize the database schema changes.

For more information, see Synchronizing the Tenant Database and Application Database.

 9. Upload the Business Central Partner license to the database.

For more information, see Uploading a License File for a Specific Database.

The license that you upload must be a developer license. During the conversion, the development environment will
convert the report objects that are stored in the old database to the RDL format.

 10. (Multitenant only) Dismount tenants.

Use the Dynamics NAV Server Administration tool or Dismount-NAVTenant cmdlet of the Dynamics NAV
Administration Shell to dismount all tenants from the Dynamics NAV Server instance.

11. Stop the Dynamics NAV Server instance, and close the development environment.

You can use the Dynamics NAV Server Administration tool or Set-NAVServerInstance cmdlet of the
Dynamics NAV Administration Shell.

To use the Set-NAVServerInstance cmdlet, run the following command:

 12. Clear all records from the dbo.Server Instance and dbo.Debugger Breakpoint tables in the old
application database in SQL Server.

Using SQL Server Management Studio, open and clear the dbo.Server Instance and dbo.Debugger
Breakpoint tables of the old database. For example, you can run the following SQL query:

13. Close all to connections to the database.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-open-database
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-compiling-objects
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-lock-unlock-objects
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/synchronize-tenant-database-and-application-database
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-upload-license-file
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.management/dismount-navtenant
https://go.microsoft.com/fwlink/?linkid=401395

Task 3: Run Technical Upgrade on the Old Database

TIP

This includes but is not limited to Dynamics NAV client tools and SQL Server Management Studio.

Next, you will convert the old database so that it can be used with Business Central.

If you want to write a script that helps you convert databases, you can use the Invoke-NAVDatabaseConversion function in
the Dynamics NAV Development Shell.

IMPORTANT

1. If the database is on Azure SQL Database, add your user account to the dbmanager database role on the
master database.

This membership is only required for converting the database, and can be removed afterwards.

2. Install Business Central.

Run the Business Central Setup, and install the following components as a minimum:

Server
SQL Server Database Components
Administration Tool
Dynamics NAV Development Environment

For a multitenant installation, configure the Business Central Server instance to be a multitenant instance.

 3. Run the newly installed Dynamics NAV Development Environment as an administrator.

If the Dynamics NAV Development Environment is already connected to the old application database,
a dialog box about converting the database appears. Go to the next step.

Otherwise, connect to the old application database that you prepared in the previous task, and then
go to the next step.

For more information, see Open Databases.

4. In the dialog box that appears, read the instructions about converting the database carefully because this
action cannot be reversed. When you are ready, choose the OK button, and then choose the OK button to
confirm that you want to convert the database.

Dynamics NAV Development Environment will now convert the database. This includes an upgrade of
system tables and reports.

5. When you are notified that the conversion was successful, choose the OK button.

 6. If the database references any assemblies (such as client control add-ins) that are not included on the
Business Central installation media (DVD), then add the assemblies to the Add-ins folder on Business
Central Server.

For Business Central Server, the default path is the C:\Program Files\Microsoft Dynamics 365 Business
Central\140\Service\Add-ins folder.

 7. Connect a Business Central Server instance to the converted database.

Use the Business Central Server Administration tool or the Set-NAVServerConfiguration cmdlet to connect

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-open-database
https://go.microsoft.com/fwlink/?linkid=401394

Task 4: Post-upgrade

IMPORTANT

Get-NAVAppInfo -ServerInstance <ServerInstanceName> | Repair-NAVApp

Mount-NAVTenant -ServerInstance <serverinstance> -Tenant <tenantID> -DatabaseName <tenantdatabasename>

a Business Central Server instance to the converted database.

The service account that is used by the Business Central Server instance must be a member of the db_owner role in
the Dynamics NAV database on SQL Server or Azure SQL Database.

For more information, see Connect a Server Instance to a Database and Giving the account necessary
database privileges in SQL Server.

8. Go to the development environment, and set it to use the Business Central Server instance that connects to
the database.

For more information, see Change the Server Instance.

9. If upgrading from Dynamics NAV, import the codeunit 1 replacement text file you created earlier.

10. Compile all objects without table schema synchronizing (Synchronize Schema set to Later); you will do
this later.

For more information, see Compiling Objects.

 11. Fix compilation errors.

If any errors occur, they are shown in the Error List window. For help on resolving the errors, see the
following:

Resolving Compilation Errors
You can find all objects which did not compile in the Object Designer window, by setting a field filter on the
Compiled field.

12. Recompile V2 extensions that you uninstalled previously.

Use the Repair-NAVApp cmdlet of the Business Central Administration Shell to compile the published
extensions to make sure they are work with the new platform.

For example, you can run the following command to recompile all extensions:

 13. (Multitenant only) Mount the tenant.

Use the Mount-NAVTenant cmdlet.

-AllowAppDatabaseWrite is optional but is required for some post-upgrade tasks, like upgrading the control
add-ins. When you are done upgrading, you can dismount and mount the tenant without this parameter as
needed.

 14. Run the schema synchronization with validation to complete the database conversion.

For more information, see Synchronizing the Tenant Database and Application Database.

 1. Upgrade Javascript-based control add-ins to new versions.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/connect-server-to-database
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-change-server-instance
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-compiling-objects
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/upgrade/resolve-compile-errors-when-converting-dynamics-nav-2018-Database
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.apps.management/repair-navapp
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.management/mount-navtenant
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/synchronize-tenant-database-and-application-database

Install-NAVApp -ServerInstance <ServerInstanceName> -Name <Name> -Version <N.N.N.N>

The Business Central Server installation includes new versions of Microsoft-provided Javascript-based
control add-ins, such as the Business Chart control add-in. If you application is using any of these add-ins,
you must upgrade them to the new versions as follow:

a. Open the Business Central client.

b. Search for and open the Control Add-ins page.

c. Choose Actions > Control Add-in Resource > Import.

d. Locate and select the .zip file for the control add-in and choose Open.

The .zip files are located in the Add-ins folder of the Business Central Server installation. There is a
sub-folder for each add-in. For example, the path to the Business Chart control add-in is
C:\Program Files\Microsoft Dynamics 365 Business Central\140\Service\Add-
ins\BusinessChart\Microsoft.Dynamics.Nav.Client.BusinessChart.zip

.

e. After you have imported all the new control add-in versions, restart Web Server instance.

 2. (Single tenant only) Install the V2 extensions that you uninstalled previously.

Use the Install-NAVApp cmdlet to compile the published extensions to make sure they are work with the
new platform.

For each V2 extension, run the following command to install it:

3. (Dynamics NAV 2017 or 2018 upgrade only) If the old database used first-party V1 extensions (publisher
Microsoft), then you should publish and install the corresponding V2 extensions that are found on the
installation media (DVD). For example, Sales and Inventory Forecast and PayPal Payment Standards
were available as V1 extensions. Now, they are available as V2 extensions.

Publish-NAVApp -ServerInstance <ServerInstanceName> -Path <SymbolFilePath> -PackageType
SymbolsOnly

finsql.exe Command=generatesymbolreference, ServerName=<DatabaseServerName>\<DatabaseInstance>,
Database="<MyDatabaseName>"

 a. Publish the system.app and test.app symbol files.

If you installed the AL Development Environment, you can find the symbol files where you
installed the environment, which by default is C:\Program Files (x86)\Microsoft Dynamics 365
Business Central\140. Otherwise, you can find the files in the ModernDev folder on the installation
media.

To publish the symbols, open the Business Central Administration Shell as an administrator, and run
the following command for each of the symbol files:

 b. Generate the application symbol references by using the finsql.exe file.

Open a command prompt as an administrator, change to the directory where the finsql.exe file has
been installed as part of Dynamics NAV Development Environment, and then run the following
command:

Replace values for the Database and ServerName settings to suit.

https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.apps.management/install-navapp

finsql.exe command=generatesymbolreference, ServerName=<DatabaseServerName>\<DatabaseInstance>,
Database="<MyDatabaseName>, filter="Object ID=1..129999"

finsql.exe command=generatesymbolreference, ServerName=<DatabaseServerName>\<DatabaseInstance>,
Database="<MyDatabaseName>, filter="Object ID=140000..1999999999"

NOTE

Publish-NAVApp -ServerInstance <ServerInstanceName> -Path <ExtensionFileName>

Sync-NAVApp -ServerInstance <ServerInstanceName> -Name <Name> -Version <N.N.N.N>

Install-NAVApp -ServerInstance <ServerInstanceName> -Name <Name> -Version <N.N.N.N>

If the application database contains test objects (ID 130000-139999), then make sure to exclude these
objects when generating symbols. You can do this by using the -Filter parameter and running the
command twice:

This command does not generate a file. It populates the Object Metadata table in the database.

When you run the command, the console returns to an empty command prompt, and does not
display or provide any indication about the status of the run. However, the finsql.exe may still be
running in the background. It can take several minutes for the run to complete, and the symbols will
not be generated until such time. You can see whether the finsql.exe is still running by using Task
Manager and looking on the Details tab for finsql.exe.

When the process ends, a file named navcommandresult.txt is saved to the Dynamics NAV Client
connected to Business Central installation folder. If the command succeeded, the file will contain text
like [0] [06/12/17 14:36:17] The command completed successfully in '177' seconds. If the command
failed, another file named naverrorlog.txt will be generated. This file contains details about the
error(s) that occurred.

For more information about generation symbols, see Running C/SIDE and AL Side-by-Side.

c. Configure the Enable loading application symbol references at server startup
(EnableSymbolLoadingAtServerStartup) setting on the Business Central Server instance, and restart
the instance.

For more information, see Configuring Business Central Server.

d. Publish the new V2 extension by running the Publish-NAVApp cmdlet for each extension:

e. Synchronize the schema with the database by running the Sync-NAVApp cmdlet for each extension:

f. For each V2 extension, run the following command to install it:

4. (Dynamics NAV upgrade only) Transition the custom code in the old codeunit 1 to use the new system event
implementation.

For more information, see Transitioning from Codeunit 1.

5. (Microsoft Dynamics NAV 2016 upgrade only) Modify C/AL code to ensure that the My Settings page

https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.apps.management/publish-navapp
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.apps.management/sync-navapp

Database and Windows collations

See Also

works properly in the Business Central Web client.

For more information, see Resolving My Settings Page Implementation After a Database Conversion.

6. (Dynamics NAV upgrade only) Configure pages and reports included in the MenuSuite to be searchable in
the Web client.

The MenuSuite is no longer used to control whether a page or report can be found in the search feature of
the Web client. This is now determined by specific properties on the page and report objects. For more
information, see Making Pages and Reports Searchable in Web client After an Upgrade.

7. Build the object search index to make objects able to be searched from Tell Me in the client. If you
completed step 6, you can skip this step.

In the Tools menu of the Dynamics NAV Development Environment, select Build Object Search Index.

8. Upload the customer license to the converted database.

For more information, see Uploading a License File for a Specific Database.

You have now completed the conversion of the database to be accessed from Business Central. To test the
converted database, you can connect it to the Business Central Server instance that is used by Dynamics
NAV clients, and then open a client.

Starting from SQL Server 2008, SQL Server collations are fully aligned with the collations in Windows Server. If
you upgrade to Business Central from Microsoft Dynamics NAV 2009, the step to convert the database includes
upgrading the database from using SQL collations to using Windows collation. This collation change provides
users with the most up-to-date and linguistically accurate cultural sorting conventions. For more information, see
Collation and Unicode Support.

Upgrading the Application Code Upgrading the Data
Upgrading to Business Central

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/upgrade/resolve-mysettings-page-after-upgrade
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/upgrade/upgrade-pages-report-for-search
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-upload-license-file
http://go.microsoft.com/fwlink/?LinkID=247971
file:///T:/q4ru/upgrade/Upgrading-the-Application-Code.html
file:///T:/q4ru/upgrade/Upgrading-the-Data.html

Business Central Technical Upgrade Quick Reference
3/31/2019 • 2 minutes to read

Prerequisites
STEP MORE INFO DONE

Convert custom V1 extensions to V2
extensions.

See...

Prepare for transitioning from codeunit
1.

See...

Prepare the old application database
STEP MORE INFO DONE

Backup the database(s). See...

(Single-tenant mode only) Uninstall all
extensions. (Multitenant mode)
Unintsall all V1 extensions.

See...

(Optional) Unpublish unwanted
extension versions .

See...

Ensure all objects are complied,
unlocked, and tables are synchronized.

See...

Upload a Business Central partner
license.

See...

(Multitenant mode only) Dismount the
tenant

See...

Stop the Dynamics NAV or old Business
Central Server Instance

Clear the dbo.Server Instance and
dbo.Debugger Breakpoint tables in
SQL Server.

See...

Close all connections to the database.

Run the technical upgrade

This article provides an overview of the technical upgrade process for Business Central. For more detailed steps,
see Technical Upgrade.

file:///T:/q4ru/upgrade/Converting-a-Database.html
http://go.microsoft.com/fwlink/?LinkID=296465
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.apps.management/uninstall-navapp
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.apps.management/unpublish-navapp
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-compiling-objects
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-upload-license-file
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.management/dismount-navtenant?view=dynamicsnav-ps-2018
file:///T:/q4ru/upgrade/Converting-a-Database.html#clearsql

STEP MORE INFO DONE

Install Business Central. See...

Open the Dynamics NAV Development
Environment as an administrator.

Connect to and convert the application
database.

See...

Add custom control add-ins to the
server instance.

See...

Connect a Business Central Server
instance to the converted application
database.

See...

Connect development environment to
the server instance.

See...

Import codeunit 1 replacement. See...

Compile all objects. Important: Choose
to synchronize schema later.

See...

Fix compilation errors. See...

Repair published V2 extensions. See...

(Multitenant mode only) Mount the
tenant database.

See...

Synchronize the tenant/database. See...

Post-upgrade tasks
STEP MORE INFO DONE

Upgrade Javascript-based control add-
ins to new versions available on
Business Central Server.

See...

(Single-tenant mode only) Install the V2
extensions that were previously
uninstalled.

See...

If the old database used first-party V1
extensions, publish and install the V2
extensions that replace them.

See...

Transition custom code from old
codeunit 1 to management codeunits.
(Dynamics NAV 2018 and earlier)

See...

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-open-database
file:///T:/q4ru/upgrade/Converting-a-Database.html#controladdins
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/connect-server-to-database
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-change-server-instance
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/upgrade/codeunit1-replacement
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-compiling-objects
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/upgrade/resolve-compile-errors-when-converting-dynamics-nav-2018-Database
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.apps.management/repair-navapp
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.management/mount-navtenant
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/synchronize-tenant-database-and-application-database
file:///T:/q4ru/upgrade/Converting-a-Database.html#extensions
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.apps.management/install-navapp
file:///T:/q4ru/upgrade/Converting-a-Database.html#extensions

Configure pages and reports included
in the MenuSuite to be searchable in
the Web client (Dynamics NAV 2018
and earlier)

See...

Build object search index.

Upload the customer license. See...

STEP MORE INFO DONE

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/upgrade/upgrade-pages-report-for-search
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-upload-license-file

Upgrading the Application Code in Dynamics 365
Business Central
6/4/2019 • 18 minutes to read

IMPORTANT

Application Upgrade Overview

VERSION DESCRIPTION

Original version This is the baseline version of the solution that you want to
upgrade, such as the original release of Business Central
October 2018 or Microsoft Dynamics NAV 2018.

Modified version This is the version that you want to upgrade, such as a
customer's Business Central October 2018 or Microsoft
Dynamics NAV 2018 database with customizations and add-
on solutions.

Target version This is the target of the merge process that you want to
upgrade your application to, such as the standard version of
the Business Central database.

Single-tenant and multitenant deployments

Typically, customers want all the customizations that have been implemented in their existing databases to be
migrated to their new Business Central databases. Depending on the version of Business Central that a database is
being upgraded from, the amount of code changes between the two versions can vary. To upgrade the application
code, you must merge code from different versions of the application. This merge process is known as a code
upgrade or application upgrade. You must upgrade the application before you upgrade the data.

Before you begin, read the article Important Information and Considerations for Before Upgrading. This article contains
information about limitations and things that might require you to perform extra tasks before you upgrade, such as the use
of extensions V1 and the deprecation of codeunit 1.

During an upgrade, you have to first identify which changes you have to make, and then you'll have to upgrade the
application objects and the application code, and finally, you might have to upgrade data so that it fits the new
database schema.

For the application portion of the upgrade, you must analyze and process code changes by comparing and merging
three separate versions of the database:

When you merge the application objects from these three versions, you can import the result into a new Business
Central database that then contains the upgraded application. At the end of the process, you export the merged
Business Central objects from this database to a .fob file that you will use during the data upgrade.

The process for upgrading the application code is basically the same for a single-tenant and multitenant
deployment. However, there are some inherent differences because with a single-tenant deployment, the
application and business data is included in the same database, while with a multitenant deployment application
code is in a separate database than the business data (tenants). Here is the general process for each deployment
type. In the tasks that follow this section, tasks are marked as Single-tenant only or Multitenant only where

file:///T:/q4ru/upgrade/Upgrade-Considerations.html

Different ways of upgrading application code

Task 1: Install the Prerequisites and Tools

Dynamics NAV to Business Central upgrade

TOOL/COMPONENT

Old Dynamics NAV version

Business Central

Business Central to Business Central upgrade

applicable.

Single-tenant

1. Upgrade the application code.
2. Create a new database on the new platform.
3. Import the upgraded application to the new database.
4. Export the application to a .fob file.
5. Upgrade the data. Here you will import the .fob file.

Multitenant

1. Upgrade the application code.
2. Create a new database on the new platform.
3. Import the upgraded application to the new database.
4. Upgrade the data by mounting the tenant on the application database.

With a multitenant deployment, you will perform the steps in this article on the application database, that is, the
database that contains the application object definitions.

You can use any tool or set of tools to help you compare and merge code. Dynamics NAV and Business Central
include Windows PowerShell cmdlets and sample scripts that can help you upgrade your application. The cmdlets
are available through the Microsoft Dynamics NAV Development Shell and Dynamics NAV Development Shell, or
by importing the Microsoft.Dynamics.NAV.Model.Tools.psd1 module into the Windows PowerShell Integrated
Scripting Environment (ISE). You can find the sample scripts on the product installation media, in the
WindowsPowerShellScripts\ApplicationMergeUtilities folder. We recommend that you use these cmdlets and
sample scripts because they can make it faster to merge most changes. For example, you can combine several steps
in a command that uses a cmdlet such as the Merge-NAVApplicationObject. The sections in this article describe
how you can use the Merge-NAVApplicationObject cmdlet and other Windows PowerShell cmdlets. For more
information, see Comparing and Merging Application Object Source Files.

To complete the tasks in this article, you will use various tools and components of the old Dynamics NAV version
and Business Central. Ensure that you have the following installed:

Dynamics NAV Development Environment
Dynamics NAV Development Shell

Business Central Server
Dynamics NAV Development Shell
Business Central Administration Shell
Dynamics NAV Development Environment
Dynamics NAV Development Environment

https://go.microsoft.com/fwlink/?linkid=398884
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/upgrade/Comparing-and-Merging-Application-Object-Source-Files

TOOL/COMPONENT

Old Business Central version

New Business Central version

Task 2: Prepare the Application Object Text Files

Create the application text files

NOTE

Dynamics NAV Development Environment
Dynamics NAV Development Shell

Business Central Server
Dynamics NAV Development Shell
Business Central Administration Shell
Dynamics NAV Development Environment

You must prepare text files that contain the application objects for the different application versions previously
described (original, modified, and target). The text files provide the input for the application merge process.

There are three ways to export application objects to text files:

Use the Dynamics NAV Development Environment version that matches the application database version.

For more information see To export objects by using the development environment UI .

Use the finsql.exe that matches the application database version to run the ExportObjects command.

For more information, see To export objects by running finsql.exe with the ExportObjects command .

Use the Microsoft Dynamics NAV Development Shell or Dynamics NAV Development Shell version that
matches the application database version.

This is the way that is described in the tasks of this article. Note that the Microsoft Dynamics NAV
Development Shell is not available for Microsoft Dynamics NAV 2013 and Microsoft Dynamics NAV 2013
R2. For these versions, you must use development environment or finsql.exe.

Be sure to upload a valid developer license to the database before doing the following steps.

1. Create four folders on the computer, and name them as follows:

ORIGINAL

This folder will be used to store the application object text file(s) from the baseline version, such as the
original release of Business Central October 2018, Microsoft Dynamics NAV 2018, or Microsoft
Dynamics NAV 2017.

MODIFIED

This folder will be used to store the application object text file(s) from the modified version, such as
the customer's database.

TARGET

This folder will be used to store the application object text file(s) from the latest Business Central
version.

RESULT

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-import-objects
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-import-objects

Task 3: Merge Versions

Export-NAVApplicationObject –DatabaseServer MyServer –DatabaseName "Demo Database NAV (11-0)" –Path
C:\Upgrade\ORIGINAL\OldBaseVersion.txt -Filter 'Id=1..1999999999'

Export-NAVApplicationObject –DatabaseServer MyServer –DatabaseName "MyCustomerNAV2018Database" –Path
C:\Upgrade\MODIFIED\OldCUSTOMVersion.txt -Filter 'Id=1..1999999999'

TIP

Export-NAVApplicationObject –DatabaseServer MyServer –DatabaseName "Demo Database BC (14-0)" –Path
C:\Upgrade\Target\NewBaseVersion.txt -Filter 'Id=1..1999999999'

This folder will be used to store the application object text file(s) that are the result of the application
merge. It will also contain zero or more .CONFLICT files that describe conflicting code.

2. Export all application objects except system tables from the original version of the old application database,
such as the original Microsoft Dynamics NAV 2018 database.

Do not export system tables, which have the IDs in the 2000000000 range. Name the file
OldBaseVersion.txt, and then save the file in the ORIGINAL folder that you created earlier.

For example, start the Microsoft Dynamics NAV Development Shell version that matches the database
version, and run the Export-NAVApplicationObject function as follows:

3. Export all application objects, except system tables, from the old modified application database, such as the
customer's customized Microsoft Dynamics NAV 2018 database.

Name the file OldCustomVersion.txt, and then save the file in the MODIFIED folder that you created
earlier.

For example (using the Microsoft Dynamics NAV Development Shell version that matches the database
version), if the customer's database is called MyCustomerNAV2016Database, you can run the following
command:

In some cases, existing customizations might be irrelevant after the upgrade because they correspond to new
functionality in Business Central.

4. Export all application objects, except system tables, from the new base version, such as the original Business
Central database.

Name the file NewBaseVersion.txt, and then save the file in the TARGET folder that you created earlier.

For example, using the Dynamics NAV Development Shell for Business Central, run the following command:

Optionally, you can use the Split-NAVApplicationObjectFile cmdlet to split each text file into separate text files for
each application object. This can make it easier to keep track of the process. The end result at this stage is three
folders with one or more text files that contain the three sets of application objects that you want to merge.

You now merge the three sets of application objects to create the application for the new database. This section
illustrates how to do this by using the Merge-NAVApplicationObject cmdlet.

The product installation media contains sample scripts that provide examples of how you can use the Merge-
NAVApplicationObject cmdlet to merge application objects. For more information, see Merge Application Changes.

https://go.microsoft.com/fwlink/?linkid=398885
https://go.microsoft.com/fwlink/?linkid=398884
https://go.microsoft.com/fwlink/?linkid=398884
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/upgrade/merge-application-changes

NOTE

Merge the application object versions into text files

Task 4: Handling Conflicts

Task 5: Import and Compile Merged Objects in an Empty Database

In certain scenarios, you can choose to use the Compare-NAVApplicationObject cmdlet to identify the changes between the
existing customized application and the new application. You can then choose to use the Update-NAVApplicationObject
cmdlet to apply all or some of the changes to the new version. For more information, see Compare and Update Application
Object Source Files. However, we recommend that you use the Merge-NAVApplicationObject cmdlet in most cases.

Merge-NAVApplicationObject -OriginalPath ORIGINAL -TargetPath TARGET -ModifiedPath MODIFIED -ResultPath
RESULT

Merge-NAVApplicationObject -OriginalPath C:\Upgrade\ORIGINAL -TargetPath C:\Upgrade\TARGET -ModifiedPath
C:\Upgrade\MODIFIED -ResultPath C:\Upgrade\RESULT

1. Run the new Dynamics NAV Development Shell as an administrator.

2. At the command prompt, change to the directory that contains the four folders that contain the application
text files, and then run the following command:

For example:

Depending on the number of objects that you are merging and the number of differences found, this can take a few
seconds, a few minutes, or longer. When the cmdlet completes, the result of the merge is shown, including a
description of any application objects with conflicting code. The RESULT folder will contain a text file (.TXT) for
each merged application object and possibly one or more .CONFLICT files that describe the code conflicts that
occurred during the merge.

At this point, you can either go to Task 4 to analyze and eventually resolve the conflicts, or you can go directly to
Task 5 to import the merged objects as-is from the RESULT folder to the new Business Central database.

Depending on the application that you are upgrading, you can choose to analyze and fix the conflicting code before
you import the merged objects into the Dynamics NAV Development Environment for Business Central. The
conflicts are shown in the merged text files but are also identified in .CONFLICT files in the subfolders of the
RESULT folder. The subfolders ConflictOriginal, ConflictModified, and ConflictTarget folders then contain
copies of the source files from the versions that have conflicting code.

You can analyze the conflicts in any tool, make the relevant changes, and then run the merge operation again. For
more information, see Handling Merge Conflicts. Alternatively, you can go directly to task 5 to import the merged
files into the Dynamics NAV Development Environment, and resolve the conflicts there.

After you have completed the merge, you import the new merged application objects as text files into a new
(empty) Business Centraldatabase, and then compile all objects. You must resolve any compilation errors before
you can continue. The text files include successfully merged code, and code that is partially merged. You can import
the partially merged objects into the Business Central development environment and resolve the conflicts there.

1. Create a new Business Central database for the new upgraded application. The database should be empty,
except for the system tables.

For example, give the database the name My Upgraded App. For more information, see Creating and
Altering Databases.

https://go.microsoft.com/fwlink/?linkid=398882
https://go.microsoft.com/fwlink/?linkid=398886
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/upgrade/compare-update-application-object-source-files
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/upgrade/handling-merge-conflicts

IMPORTANT
You must set the collation of the new database to match the collation of the old application database. To see the
collation of the old database, open it in the old Dynamics NAV Development Environment version, then choose File >
Database > Alter > Collation.

2. Make sure the database includes a valid Business Central license.

For more information, see Uploading a License File for a Specific Database

3. Import the new merged application object text files (.TXT) from the Result folder into the new database.

There are three ways to import the files:

Join-NAVApplicationObjectFile –Source C:\Upgrade\RESULT*.txt -Destination C:\Upgrade\all-
merged.txt

Import-NAVApplicationObject –DatabaseServer MyServer –DatabaseName "My Upgraded App" –Path
C:\Upgrade\all-merged.txt

Use the [Dynamics NAV Development Environment for Business Central.

For more information see To import objects by using the development environment UI .

Use the finsql.exe to run the ImportObjects command.

For more information, see To import objects by running finsql.exe with the ImportObjects command .

Use the Dynamics NAV Development Shell (or Microsoft.Dynamics.NAV.Model.Tools.psd1 module).

The shell includes the Join-NAVApplicationObjectFile cmdlet and Import-
NAVApplicationObject function. The Join-NAVApplicationObjectFile cmdlet combines multiple
application object text files into one text file. The Import-NAVApplicationObject function runs the
ImportObjects command to import an object file.

This means that you can run a command similar to following to create a single text file from the
merge application text files in the Result folder :

Then, you can run this command to import the text file:

4. Connect the new Business Central Server instance to the database.

You can do this with the Business Central Server Administration tool or the Set-NAVServerConfiguration
cmdlet in the Dynamics NAV Administration Shell. In addition, you must add the service account that is used
by the Business Central Server instance as a member of the db_owner role in the Business Central database
on SQL Server.

For more information about how to do this using the Business Central Server Administration tool, see How
to: Connect a Microsoft Dynamics NAV Server Instance to a Database and Giving the account necessary
database privileges in SQL Server.

5. Compile all the newly imported objects. Choose to synchronize later.

You can use the Dynamics NAV Development Environment or finsql.exe. For more information, see
Compiling Objects.

If you use the Dynamics NAV Development Environment, you will first have to set it to use the Business

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-upload-license-file
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-import-objects
https://docs.microsoft.com/en-us/dynamics-nav/importobjects
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-import-objects
https://docs.microsoft.com/en-us/dynamics-nav/importobjects
https://go.microsoft.com/fwlink/?linkid=401394
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/connect-server-to-database
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-compiling-objects

Task 6: (Multitenant mode only) Check/change the application family
and version

Get-NAVApplication -ServerInstance BC

Set-NAVApplication -ServerInstance <ServerInstanceName> -ApplicationFamily <Family>

Set-NAVApplication -ServerInstance <ServerInstanceName> -IncrementApplicationVersion

Set-NAVApplication -ServerInstance <ServerInstanceName> -ApplicationVersion <N.N.N.N> -Force

Task 7: (Dynamics NAV upgrade only) Configure pages and reports to
be searchable

Task 8: Build object search index

Task 9. (Dynamics NAV upgrade only) Transition the custom code from

Central Server instance that connects to the database. For more information, see Change the Server Instance
Used in C/SIDE.

When you compile the objects, an error is thrown for each code conflict, and you can use the tools that are
available in the development environment to resolve the conflicts.

The application and tenant databases are tagged with Family and Version . To perform the data upgrade, the
Family on the application must match that tenant's Family . The Version of the application must be greater than

or equal to the tenant's Version . The easiest way to ensure that Family and Version of the upgraded application
are compatible for data upgrade is to set Family to the same value as the old application, and set the Version to a
higher value than the old application.

To get the Family and Version , use the Get-NAVApplication cmdlet, for example:

To set the Family and Version , use the Set-NAVApplication cmdlet. For example, to set the family, run the
following command:

To increase the version by 1, run the following command:

Or, to specify change to another version, run the following command:

The MenuSuite is no longer used to control whether a page or report can be found in the search feature of the Web
client. This is now determined by specific properties on the page and report objects. This task is not required at this
point, and can be done after the data upgrade as well.

For more information, see Making Pages and Reports Searchable After an Upgrade.

Build the object search index to make objects able to be searched from Tell Me in the client. If you completed step
6, you can skip this step.

In the Tools menu of the Dynamics NAV Development Environment, select Build Object Search Index.

For more information, see Making Pages and Reports Searchable After an Upgrade.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-change-server-instance
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.management/get-navapplication
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.management/set-navapplication
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/upgrade/upgrade-pages-report-for-search
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/upgrade/upgrade-pages-report-for-search

old codeunit 1 to use the new implementation

Task 10: (Single-tenant mode only) Export all objects

Export-NAVApplicationObject c:\Upgrade\objects.fob -DatabaseName "My Upgraded App" -DatabaseServer
[server_name]\[database_instance]

Task 11: (Multitenant mode only) Import the upgrade toolkit objects

FROM TO BUSINESS CENTRAL APRIL 2019 TO BUSINESS CENTRAL OCTOBER 2018

Microsoft Dynamics NAV 2015 Upgrade80014x.FOB Upgrade800130.FOB

Microsoft Dynamics NAV 2016 Upgrade90014x.FOB Upgrade900130.FOB

Microsoft Dynamics NAV 2017 Upgrade100014x.FOB Upgrade1000130.FOB

Microsoft Dynamics NAV 2018 Upgrade110014x.FOB Upgrade1100130.FOB

Business CentralFall 2018] Upgrade13x14x.FOB Not applicable

Task 12: (Multitenant mode only) Publish extensions

Because codeunit 1 has been deprecated in Business Central, you must move any custom logic that was included in
the old codeunit 1 into the management codeunits and methods described in the article Transitioning from
Codeunit 1.

You now have a new database with a fully upgraded application. For a multitenant deployment, you can start the
data upgrade. For this, you will use the new server instance that connects to the upgraded application database. See
Upgrading the Data.

With a single-tenant deployment, export all objects of the new database to a .fob type file, such as objects.fob file.
You will use this .fob file as part of the data upgrade process. The export must include customized objects,
upgraded reget-helpports, and all other Business Central objects.

As with exporting objects in Task 1, you can use either the development environment, finsql.exe, or Dynamics NAV
Development Shell.

With the Dynamics NAV Development Shell, you can run a command that is similar to the following:

This completes the upgrade of the application code for single-tenant deployment. Next, you must upgrade the data
in the database. See Upgrading the Data.

The upgrade toolkit includes upgrade codeunits for handling the data upgrade.

For W1 versions, you can find the default upgrade toolkit objects in the UpgradeToolKit\Data Conversion Tools
folder on the Business Central installation media (DVD). Choose the FOB that matches the Dynamics NAV version
from which you are upgrading:

For local versions, you will find the upgrade toolkit objects in the UpgradeToolKit\Local Objects folder. The files
follow the same naming convention except they include the 2-letter local version, such as
Upgrade110014x.DK.fob for Denmark or Upgrade110014x.DE.fob for Germany.

For information about importing objects, see Importing Objects.

file:///T:/q4ru/upgrade/Upgrading-the-Data.html
file:///T:/q4ru/upgrade/Upgrading-the-Data.html
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-import-objects

Publish-NAVApp -ServerInstance <ServerInstanceName> -Path <SymbolFilePath> -PackageType SymbolsOnly

1. Import upgrade toolkit.

2. Publish the system and test symbols.

Symbols are a prerequisite for extensions. If you installed the AL Development Environment, you can find
the symbol files where your installed the environment, which by default is C:\Program Files (x86)\Microsoft
Dynamics 365 Business Central\140. Otherwise, you can find the files in the ModernDev folder on the
installation media.

To publish the symbols, open the Business Central Administration Shell as an administrator, and run the
following command for each of the symbol files:

3. Generate the application symbol references by using the finsql.exe file as follows:

finsql.exe Command=generatesymbolreference, Database="<MyDatabaseName>", ServerName=
<DatabaseServerName>\<DatabaseInstance>

finsql.exe command=generatesymbolreference, ServerName=<DatabaseServerName>\<DatabaseInstance>,
Database="<MyDatabaseName>, filter="Object ID=1..129999"

finsql.exe command=generatesymbolreference, ServerName=<DatabaseServerName>\<DatabaseInstance>,
Database="<MyDatabaseName>, filter="Object ID=140000..1999999999"

NOTE

a. Make sure that Enable loading application symbol references at server startup
(EnableSymbolLoadingAtServerStartup) is set on the Business Central Server instance.

For more information, see Configuring Dynamics NAV Server.

b. Open a command prompt as an administrator, change to the directory where the finsql.exe file has
been installed as part of Dynamics NAV Development Environment, and then run the following
command:

Replace values for the Database and ServerName settings to suit.

If the application database contains test objects (ID 130000-139999), then make sure to exclude these
objects when generating symbols. You can do this by using the -Filter parameter and running the
command twice:

This command does not generate a file. It populates the Object Metadata table in the database.

c. When you run the command, the console returns to an empty command prompt, and does not
display or provide any indication about the status of the run. However, the finsql.exe may still be
running in the background. It can take several minutes for the run to complete, and the symbols will
not be generated until such time. You can see whether the finsql.exe is still running by using Task
Manager and looking on the Details tab for finsql.exe.

When the process ends, a file named navcommandresult.txt is saved to the Dynamics NAV Client
connected to Business Central installation folder. If the command succeeded, the file will contain text
like [0] [06/12/17 14:36:17] The command completed successfully in '177' seconds. If the command

See Also

IMPORTANT

NAM E EX TENSION PACKAGE

OIOUBL OIOUBL.app

Payroll Data Import Definitions (DK) ImportDKPayroll.app

Payment and Reconciliation Formats (DK) FIK.app

Tax File Formats (DK) VATReportsDK.app

NAM E EX TENSION PACKAGE

ELSTER VAT Localization for Germany Elster.app

Publish-NAVApp -ServerInstance <ServerInstanceName> -Path <ExtensionFileName>

failed, another file named naverrorlog.txt will be generated. This file contains details about the
error(s) that occurred.

For more information about generation symbols, see Running C/SIDE and AL Side-by-Side.

 4. Publish new versions of the Microsoft extensions.

The Business Central installation media (DVD) includes several new versions of Microsoft extensions (that is,
extensions that have Microsoft as the publisher). If your old deployment uses these extensions, you have to
upgrade the old versions to the new versions.

For Denmark (DK) and German (DE) versions. Some of the local functionality has been moved from the base
application to extensions.

If you are upgrading from a Denmark (DK) version of Dynamics NAV 2017 or earlier, you must publish and install the
following extensions to get the local functionality:

If you are upgrading from a German (DE) version of Dynamics NAV or Business Central October 2018 (Cumulative
Update 2 or earlier), you must publish and install the following extensions to get the local functionality:

The new versions are found in the \Extensions folder of the installation media.

To publish the new extension version, run the Publish-NAVApp cmdlet:

Upgrading the Data
Upgrading to Business Central

https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.apps.management/publish-navapp
file:///T:/q4ru/upgrade/Upgrading-the-Data.html

Upgrading the Data to Business Central: Single-
Tenant Deployment
5/28/2019 • 19 minutes to read

About Data Upgrade

Prerequisites

See print-friendly quick reference

This article describes the tasks required for upgrading the data of a Dynamics NAV or Business Central database to
a Business Central major version or cumulative update.

This article pertains to a single-tenant deployment. For upgrade instructions for a multitenant deployment, see
Upgrading the Data: Multitenant Deployment.

You use data conversion tools provided with Business Central to convert the old data with the old version’s table
and field structure, so that it functions together with the new version’s table and field structure. Mainly, only table
objects and table data are modified during the data upgrade process. Other objects, such as pages, reports,
codeunits, and XMLports are upgraded as part of the application code upgrade process.

The data upgrade process described in this article leads you through the database conversion (technical upgrade)
and then the upgrade of the actual data, which is achieved by using the upgrade toolkit/upgrade codeunits.

Before you start the upgrade tasks, make sure you meet the following prerequisites:

1. Your computer uses the same codepage as the data that will be upgraded.

If you use conflicting codepages, some characters will not display in captions, and you might not be able to
access the upgraded database. This is because Dynamics NAV must remove incorrect metadata characters to
complete the data upgrade. In this case, after upgrade, you must open the database in the development
environment on a computer with the relevant codepage and compile all objects. This adds the missing
characters again.

Optionally, you can export the captions before the upgrade. For more information, see How to: Add
Translated Strings for Conflicting Text Encoding Formats.

2. (Upgrading from Dynamics NAV only) Custom V1 extensions used in the old deployment have been
converted to V2 extensions.

For more information, see Converting Extensions V1 to Extensions V2.

3. You have upgraded the application code, and have the FOB files that contain the upgraded application code.

For more information about upgrading the application code, see Upgrading the Application Code.

4. You have the upgrade toolkit FOB files for the version that you are upgrading from.

The upgrade toolkit includes upgrade codeunits for handling the data upgrade. The upgrade toolkit can be in
the same FOB file as the application code or in a separate FOB file.

For W1 versions, you can find the default upgrade toolkit objects in the UpgradeToolKit\Data Conversion
Tools folder on the Business Central installation media (DVD). Choose the FOB that matches the Dynamics
NAV version from which you are upgrading:

file:///T:/q4ru/upgrade/Upgrading-the-Data-Multitenant.html
https://docs.microsoft.com/dynamics-nav/How-to--Add-Translated-Strings-for-Conflicting-Text-Encoding-Formats
file:///T:/q4ru/upgrade/Upgrading-the-Application-Code.html

FROM TO BUSINESS CENTRAL APRIL 2019 TO BUSINESS CENTRAL OCTOBER 2018

Microsoft Dynamics NAV 2015 Upgrade80014x.FOB Upgrade800130.FOB

Microsoft Dynamics NAV 2016 Upgrade90014x.FOB Upgrade900130.FOB

Microsoft Dynamics NAV 2017 Upgrade100014x.FOB Upgrade1000130.FOB

Microsoft Dynamics NAV 2018 Upgrade110014x.FOB Upgrade1100130.FOB

Business CentralFall 2018] Upgrade13x14x.FOB Not applicable

For local versions, you will find the upgrade toolkit objects in the UpgradeToolKit\Local Objects folder.
The files follow the same naming convention except they include the 2-letter local version, such as
Upgrade110014x.DK.fob for Denmark or Upgrade110014x.DE.fob for Germany.

5. You have exported the customized permission sets (except SUPER) and permissions from the old database
that you want to reuse in the upgraded database.

When upgrading from Dynamics NAV

To export permission sets and permissions, you run running XMLPort 9171 and 9172.

It is important that you exclude the SUPER permission set when running XMLPort 9171. You can do
this by adding the filter Role ID is <>SUPER .

For more information, see Exporting and Importing Permission Sets and Permissions.

When upgrading from an earlier version of Business Central

In the client, search for and open the Permission Sets page, select the user-defined permission sets
that you want to keep, and then choose Export Permission Sets.

6. If the old deployment uses data encryption, you have exported the encryption key file that it used for the
data encryption.

For more information, see How to: Export and Import Encryption Keys.

7. (Optional) Make a copy of the configuration file (web.config or navsettings.json) for all Business Central Web
Server instances in the old deployment.

8. Business Central has been installed.

As a minimum, you must install the following components:

Server
SQL Server Components

AL Development Environment
(optionally) Business Central Server Administration tool

Business Central Web Server components

Dynamics NAV Development Environment

For more information, see Installing Business Central Using Setup.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/upgrade/How-to--Import-Export-Permission-Sets-Permissions
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/upgrade/how-to-export-and-import-encryption-keys

NOTE

Task 1: Create full SQL backup of old database

Task 2 Uninstall all extensions in old database

Task 3: Upload Business Central partner license to old database

Task 4: Delete all objects except tables in old database

If the old Dynamics NAV application uses Payment Services for Microsoft Dynamics ERP, be aware that this was discontinued
in Microsoft Dynamics NAV 2017. This means that most of the objects that are associated with this feature will be deleted
during the upgrade. Some objects you will have to manually delete.

Create a full backup of the old database in the SQL Server. Alternatively, you can make a copy of the old database
and perform the upgrade tasks on the copy.

For more information, see Create a Full Database Backup (SQL Server).

Open the Dynamics NAV Administration Shell or Business Central Administration Shellthat matches to old
database, and run these commands:

Get-NAVAppInfo -ServerInstance <ServerInstanceName> -Tenant default

Uninstall-NAVApp -ServerInstance <ServerInstanceName> -Name <Name> -Version <N.N.N.N>

Get-NAVAppInfo -ServerInstance <ServerInstanceName> -Tenant default | % { Uninstall-NAVApp -
ServerInstance <ServerInstanceName> -Name $_.Name -Version $_.Version }

1. To get a list of the extensions that are installed, run this command:

Replace <ServerInstanceName> with the name of the Dynamics NAV Server instance that the database
connects to.

2. For each extension, run this command to uninstall it:

Replace <ServerInstanceName> with the name of the Dynamics NAV Server instance that the database
connects to.

Replace <Name> and <N.N.N.N> with the name and version of the Extension V1 as it appeared in the
previous step.

Alternately, to remove them all at once, you can run this command:

By using the Dynamics NAV Development Environment that matches the old database, upload the Business
Central license to the database.

For more information, see [Uploading a License File for a Specific Database.

In the development environment version that matches the database, open the old database, open Object Designer,
select all objects except tables, and then choose Delete.

You can also use the DeleteObjects command of the finsql.exe.

http://msdn.microsoft.com/en-us/library/ms187510.aspx
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-upload-license-file
https://docs.microsoft.com/en-us/dynamics-nav/deleteobjects

Task 5: Clear server instance and debugger breakpoint records in old
database

Task 6: Convert old database to Business Central

IMPORTANT

Task 7: Import upgraded application objects to converted database

Task 8: Connect a Business Central Server instance to converted
database

Clear all records from the dbo.Server Instance and dbo.Debugger Breakpoint tables in the database in SQL
Server.

DELETE FROM [<My NAV Database Name>].[dbo].[Server Instance]
DELETE from [<My NAV Database Name>].[dbo].[Debugger Breakpoint]

1. Make sure that you stop the old server instance, and close any tools that connect to the database, such as the
Dynamics NAV Administration Tool and development environment.

2. Using SQL Server Management Studio, open and clear the dbo.Server Instance and dbo.Debugger
Breakpoint tables of the old database. For example, you can run the following SQL query:

If the database is on Azure SQL Database, you must first add your user account to the dbmanager database role
on master database. This membership is only required for converting the database, and can be removed
afterwards.

To convert the old database to the Business Central format, open the old database in the new Dynamics NAV
Development Environment for Business Central, and follow the conversion instructions.

For more information about how to open a database, see Open a Database.

Do not run schema synchronization at this time. Choose to run it later.

Using Dynamics NAV Development Environment for Business Central, import the application objects that you
want in the database. This includes the application objects FOB file (from the application code upgrade) and the
upgrade toolkit objects FOB file.

1. Import the application objects FOB file first, and then import the upgrade toolkit FOB file.

For more information, see Importing Objects.

2. IMPORTANT When prompted about table synchronization, set the Synchronize Schema option to Later.

3. When you import the FOB file, if you experience metadata conflicts, the Import Worksheet windows
appears.

Review the Worksheet page. For more information, see Import Worksheet.

Choose Replace All, and then OK to continue.

You use the Business Central Server Administration tool or Set-NAVServerConfiguration cmdlet in the Business
Central Administration Shell to connect a Business Central Server instance to the converted database.

The service account that is used by the Business Central Server instance must be a member of the db_owner role

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-open-database
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-import-objects
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-import-worksheet
https://go.microsoft.com/fwlink/?linkid=401394

IMPORTANT

Task 9: Compile all objects in converted database

in the Business Central database on SQL Server or Azure SQL Database.

For more information, see Connecting a Server Instance to a Database and Giving the account necessary database
privileges in SQL Server.

When upgrading a large database, you should increase the SQL Command Timeout setting for the Business Central Server
instance, to avoid timeouts during schema synchronization. The default setting is 30 minutes.

IMPORTANT

IMPORTANT

1. In the Dynamics NAV Development Environment, set it to use the server instance that connects to the
database.

For more information, see Changing the Server Instance.

2. Use the Dynamics NAV Development Environment or finsql.exe to compile all objects. This includes the
imported application objects, data tables, and system tables.

Choose to run schema synchronization later. For example, in Object Designer, choose Tools, choose Compile, set the
Synchronize Schema option to Later, and then choose OK. For more information, see Compiling Objects.

3. (Upgrade from Microsoft Dynamics NAV 2016 and earlier only) If you get errors on the following table
objects, use the Object Designer to delete the objects because they are no longer used.

Table 470 Job Queue (replaced by the Task Scheduler)
Table 824 DO Payment Connection Details
Table 825 DO Payment Connection Setup
Table 827 DO Payment Credit Card
Table 828 DO Payment Credit Card Number
Table 829 DO Payment Trans. Log Entry
Table 1510 Notification Template

When you delete a table object, in the Delete confirmation dialog box that appears, set the Synchronize
Schema option to Force.

In this step, it is very important that you do not use the Sync. Schema For All Tables option from the Tools menu.

4. (Upgrade from Microsoft Dynamics NAV 2016 and earlier only) If the old database includes test runner
codeunits, you will get errors on these codeunits that the OnBeforeTestRun and OnAfterTestRun trigger
signatures are not valid. To fix these issues, you change the signature of the OnBeforeTestRun and
OnAfterTestRun triggers to include the TestPermission parameter.

For more information, see Resolving OnBeforeTestRun and OnAfterTestRun Trigger Errors When
Converting a Database.

The triggers for codeunit 130400 CAL Test Runner and 130402 CAL Command Line Test Runner will be
updated for you during the data upgrade.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/connect-server-to-database
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-change-server-instance
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-compiling-objects
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/upgrade/Resolve-OnBeforeTestRun-OnAfterTestRun-Compile-Errors

Task 10: (Upgrade from Dynamics NAV 2018 or Business Central Fall
2018 only) Increase the application version of converted database

Get-NAVApplication -ServerInstance <ServerInstanceName>

Set-NAVApplication -ServerInstance <ServerInstanceName> -IncrementApplicationVersion

Set-NAVApplication -ServerInstance <ServerInstanceName> -ApplicationVersion <N.N.N.N> -Force

Task 11: Run the schema synchronization on converted database

Sync-NAVTenant -ServerInstance <ServerInstanceName>

Get-NAVTenant -ServerInstance <ServerInstanceName> -tenant default

Task 12: Run data upgrade on converted database

Start-NavDataUpgrade -ServerInstance <ServerInstanceName>

You must increase the application version that is assigned to the database.

Use the Set-NAVApplication cmdlet of the Business Central Administration Shell to increase the application version
number of the database from its current version.

To see the current version, use the following command:

To increase the version by 1, run the following command:

Or, to specify change to another version, run the following command:

For example, if the old version was 11.0.24279.0 , then you could change the version to 14.0.24279.0 .

Synchronize the database schema with validation.

For example, run the Sync-NAVTenant cmdlet from the Business Central Administration Shell.

When completed, the tenant (database) should have the status OperationalDataUpgradePending. To verify this,
run the following cmdlet:

For more information, see Synchronizing the Tenant Database and Application Database.

A data upgrade runs the upgrade toolkit objects, such as upgrade codeunits and upgrade tables, to migrate
business data from the old table structure to the new table structure. You can start the data upgrade from the
Dynamics NAV Development Environment or Business Central Administration Shell.

Open the Business Central Administration Shell as an administrator, and then run Start-NavDataUpgrade cmdlet
as follows:

Replace <ServerInstanceName> with the name of the Business Central Server instance that is connected to the
database.

https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.management/set-navapplication
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.management/sync-navtenant
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/synchronize-tenant-database-and-application-database
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.management/start-navdataupgrade

NOTE

Task 13: Upgrade Javascript-based control add-ins to new versions

Task 14: Publish and install/upgrade extensions

In the last phase of data upgrade, all companies will be initialized by running codeunit 2 Company Initialization. This is done
automatically. If you want to skip company initialization, then use the Start-NavDataUpgrade with the
-SkipCompanyIntitialization parameter.

To view the progress of the data upgrade, you can run Get-NavDataUpgrade cmdlet with the –Progress switch.

The data upgrade process runs CheckPreconditions and Upgrade functions in the upgrade codeunits. If any of the
preconditions are not met or an upgrade function fails, you must correct the error and resume the data upgrade
process. If CheckPreconditions and Upgrade functions are executed successfully, codeunit 2 is automatically run to
initialize all companies in the database unless you set the -SkipCompanyIntitialization parameter.

The Business Central Server installation includes new versions of Microsoft-provided Javascript-based control add-
ins, such as the Business Chart control add-in. If you application is using any of these add-ins, you must upgrade
them to the new versions as follow:

1. Open the Business Central client.

If the application uses the Business Chart control add-in, you will get an error about High Charts.
Upgrading the Business Chart control add-in will clear this error.

2. Search for and open the Control Add-ins page.

The page lists all the registered control add-ins.

3. Choose Actions > Control Add-in Resource > Import.

4. Locate and select the .zip file for the control add-in and choose Open.

The .zip files are located in the Add-ins folder of the Business Central Server installation. There is a sub-
folder for each add-in. For example, the path to the Business Chart control add-in is
C:\Program Files\Microsoft Dynamics 365 Business Central\140\Service\Add-
ins\BusinessChart\Microsoft.Dynamics.Nav.Client.BusinessChart.zip

.

5. After you have imported all the new control add-in versions, restart Web Server instance.

Complete this task if you are upgrading from a Microsoft Dynamics NAV 2018 deployment that uses V2 extensions
or a Denmark (DK) version of Microsoft Dynamics NAV 2017 or earlier.

The Business Central installation media (DVD) includes several new versions of Microsoft extensions (that is,
extensions that have Microsoft as the publisher). If your old deployment uses these extensions, you have to
upgrade the current versions to the new versions.

In addition, other extensions used in the old deployment that you still want to use must be repaired to work on the
new platform.

IMPORTANT

NAM E EX TENSION PACKAGE

OIOUBL OIOUBL.app

Payroll Data Import Definitions (DK) ImportDKPayroll.app

Payment and Reconciliation Formats (DK) FIK.app

Tax File Formats (DK) VATReportsDK.app

NAM E EX TENSION PACKAGE

ELSTER VAT Localization for Germany Elster.app

For Denmark (DK) and German (DE) versions. Some of the local functionality has been moved from the base application to
extensions.

If you are upgrading from a Denmark (DK) version of Dynamics NAV 2017 or earlier, you must publish and install the
following extensions to get the local functionality:

If you are upgrading from a German (DE) version of Dynamics NAV or Business Central October 2018 (Cumulative Update 2
or earlier), you must publish and install the following extensions to get the local functionality:

Get-NAVAppinfo -ServerInstance <ServerInstanceName>

Publish-NAVApp -ServerInstance <ServerInstanceName> -Path <SymbolFilePath> -PackageType SymbolsOnly

1. To get list of the extensions currently published on the application, run the following command from the
Business Central Administration Shell:

 2. Publish the system.app and test.app symbol files.

If you installed the AL Development Environment, you can find the symbol files where your installed the
environment, which by default is C:\Program Files (x86)\Microsoft Dynamics 365 Business Central\140.
Otherwise, you can find the files in the ModernDev folder on the installation media.

To publish the symbols, open the Business Central Administration Shell as an administrator, and run the
following command for each of the symbol files:

 3. Generate the application symbol references by using the finsql.exe file as follows:

finsql.exe Command=generatesymbolreference, Database="<MyDatabaseName>", ServerName=
<DatabaseServerName>\<DatabaseInstance>

a. Make sure that Enable loading application symbol references at server startup
(EnableSymbolLoadingAtServerStartup) is set on the Business Central Server instance.

For more information, see Configuring Business Central Server.

b. Open a command prompt as an administrator, change to the directory where the finsql.exe file has
been installed as part of Dynamics NAV Development Environment, and then run the following
command:

finsql.exe command=generatesymbolreference, ServerName=<DatabaseServerName>\<DatabaseInstance>,
Database="<MyDatabaseName>, filter="Object ID=1..129999"

finsql.exe command=generatesymbolreference, ServerName=<DatabaseServerName>\<DatabaseInstance>,
Database="<MyDatabaseName>, filter="Object ID=140000..1999999999"

NOTE

Replace values for the Database and ServerName settings to suit.

If the application database contains test objects (ID 130000-139999), then make sure to exclude these
objects when generating symbols. You can do this by using the -Filter parameter and running the
command twice:

This command does not generate a file. It populates the Object Metadata table in the database.

c. When you run the command, the console returns to an empty command prompt, and does not
display or provide any indication about the status of the run. However, the finsql.exe may still be
running in the background. It can take several minutes for the run to complete, and the symbols will
not be generated until such time. You can see whether the finsql.exe is still running by using Task
Manager and looking on the Details tab for finsql.exe.

When the process ends, a file named navcommandresult.txt is saved to the Dynamics NAV Client
connected to Business Central installation folder. If the command succeeded, the file will contain text
like [0] [06/12/17 14:36:17] The command completed successfully in '177' seconds. If the command
failed, another file named naverrorlog.txt will be generated. This file contains details about the
error(s) that occurred.

For more information about generation symbols, see Running C/SIDE and AL Side-by-Side.

d. Restart the Business Central Server instance.
4. Upgrade the Microsoft extensions that were published in the old deployment to new versions. For Denmark

(DK) and German (DE), you must also complete this step to install the local functionality extensions
mentioned at the start of this task.

The new extension versions are found in the \Extensions folder of the installation media (DVD). Follow
these steps for each extension by using the Business Central Administration Shell:

Publish-NAVApp -ServerInstance <ServerInstanceName> -Path <ExtensionFileName>

Sync-NAVApp -ServerInstance <ServerInstanceName> -Name <Name> -Version <N.N.N.N>

Start-NAVAppDataUpgrade -ServerInstance <ServerInstanceName> -Name <Name> -Version <N.N.N.N>

a. Publish the new extension version by running the Publish-NAVApp cmdlet:

b. Synchronize the schema with the database by running the Sync-NAVApp cmdlet:

c. Upgrade the data of the extensions. This step is not required for the newly published local
functionality extensions.

To run the data upgrade, run the Start-NAVAppDataUpgrade cmdlet:

https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.apps.management/publish-navapp
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.apps.management/sync-navapp
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.apps.management/start-navappdataupgrade

Task 15: Import permission sets and permissions

Unpublish-NAVApp -ServerInstance <ServerInstanceName> -Name <Name> -Version <N.N.N.N>

Install-NAVApp -ServerInstance <ServerInstanceName> -Name <Name> -Version <N.N.N.N>

Apart from upgrading the data, this command will install the new extension version.

d. Install the newly published local functionality extensions by running the Install-NAVApp cmdlet:

For more information about publishing extensions, see Publish and Install an Extension.

5. Repair, synchronize, and install other currently published extension versions that you still want to use, but
have not been upgraded to new versions.

For each extension, complete the following steps from the Business Central Administration Shell:

Repair-NAVApp -ServerInstance <ServerInstanceName> -Name <Extension Name> -Version <N.N.N.N>

Sync-NAVApp -ServerInstance <ServerInstanceName> -Name <Name> -Version <N.N.N.N>

Install-NAVApp -ServerInstance <ServerInstanceName> -Name <Name> -Version <N.N.N.N>

a. Compile the extension to make it work with the new platform by running the Repair-NAVApp cmdlet.

b. Synchronize the schema with the database by running the Sync-NAVApp cmdlet:

c. Install the extension by running the Install-NAVApp cmdlet:

6. (Optional) Unpublish unused extension versions by running the Unpublish-NAVApp:

Import the permission sets and permissions XML files that you exported from the old database as follows:

Upgrade from Dynamics NAV:

NOTE

1. Open table 2000000004 Permission Sets in the client, and delete all permission sets except SUPER.

You are only required to delete those permission sets that are also included in the permission sets XML file
that you will import. Because if you try to import a permission set with the same name as one already in the
database, you will get an error.

2. Run XMLport 9171 and XMLport 9172 to import the permission sets and permission XML files.

For more information, see How to: Export and Import Permission Sets and Permissions.

Upgrade from an earlier Business Central version:

1. In the client, search for and open the Permission Sets page.
2. Delete all user-defined permissions.
3. Choose Import Permission Sets, then select the permissions set file that you exported previously.

https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.apps.management/install-navapp
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.apps.management/repair-navappSynchronize
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.apps.management/sync-navapp
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.apps.management/install-navapp
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.apps.management/unpublish-navapp
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/upgrade/How-to--Import-Export-Permission-Sets-Permissions

Task 16: (Optional) Import data encryption key

Task 17: Set the language of customer database

Task 18: (Optional) Update Web Server instance configuration file

(Optional) Task 19: Delete upgrade objects

See Also

If you want to use data encryption as before, you must import the data encryption key file that was exported
previously.

For more information, see Exporting and Importing Encryption Keys.

In the Dynamics NAV Development Environment, choose Tools, choose Language, and then select the language
of the original customer database.

If you have installed the Business Central Web Server, populate the navsettings.json file for the Business Central
Web Server instance with the settings of the old web.config file or navsettings.json.

If the old deployment used a web.config file, then you have to manually change the settings in the
navsetting.json file that is used on the new Business Central Web Server instance.

If you upgraded from Business Central October 2018, you can replace the navsettings.json file on the new
Business Central Web Server instance with the old file. However, as of Business Central April 2019, the
following settings are now configured under a root element called ApplicationIdSettings instead of the root
element NAVWebSettings .

AndroidPrivacy

AndroidSoftwareLicenseTerms

AndroidThirdPartyNotice

BaseHelpUrl

BaseSettingsSectionName

CommunityLink

FeedbackLink

IosPrivacy

IosSoftwareLicenseTerms

IosThirdPartyNotice

KeyboardShortcutsLink

PrivacyLink

LegalLink

SignInHelpLink

If the old navsettings.json file uses any of these settings, then you will have to move them from the
NAVWebSettings element to the ApplicationIdSettings element.

For more information about the navsettings.json file, see Configuring Business Central Web Server Instances.

At this point, you have upgraded the database to Business Central. Now, you can delete the upgrade codeunits and
upgrade table objects that you imported in task 9. This task is recommended but not required.

When you delete tables, on the Delete dialog box, set the Synchronize Schema option to Force.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/upgrade/how-to-export-and-import-encryption-keys

Upgrading the Application Code
Upgrading to Business Central

file:///T:/q4ru/upgrade/Upgrading-the-Application-Code.html

Business Central Single-Tenant Full Upgrade Quick
Reference
3/31/2019 • 2 minutes to read

Prerequisite tasks on old database
STEP MORE INFO DONE

Upgrade application code. See...

Convert custom V1 extensions to V2
extensions.

See...

Export permissions and permission sets.
Important: Make sure your computer
uses the same codepage as the data.

See...

Export encryption keys from the old
deployment.

See...

Prepare for transitioning from codeunit
1.
Note: Dynamics NAV upgrade only

See...

Install Business Central components. See...

Prepare the old database for data upgrade
STEP MORE INFO DONE

Backup the database. See...

Uninstall all extensions. See...

Upload a Business Central partner
license.

See...

Delete all objects except tables.
Important Do not synchronize schema
at this point.

See...

Clear server instance and debugger
breakpoint tables.

See...

Run the data upgrade

This article provides an overview of the full upgrade process for Business Central in a single-tenant deployment.
For more detailed steps, see Upgrading the Data: Single-Tenant Mode.

file:///T:/q4ru/upgrade/Upgrading-the-Data.html
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/upgrade/How-to--Import-Export-Permission-Sets-Permissions
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/upgrade/how-to-export-and-import-encryption-keys
http://go.microsoft.com/fwlink/?LinkID=296465
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/devenv-unpublish-and-uninstall-extension-v2
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-upload-license-file
file:///T:/q4ru/upgrade/Upgrading-the-Data.html#DeleteObjects
file:///T:/q4ru/upgrade/Upgrading-the-Data.html#ClearServer

STEP MORE INFO DONE

Open Dynamics NAV Development
Environment for Business Central as an
administrator

Connect to and convert the database. See...

Import upgraded application and
upgrade toolkit objects (.fob files).
Important: Select to synchronize later.

See...

Connect a Business Central Server
instance to the converted database.

See...

Compile all objects.
Important: Choose to synchronize
schema later.

See...

Increase the application version of the
database,
Note: Dynamics NAV 2018 upgrade
only

See...

Synchronize the database. See...

Run the data upgrade. See...

Update Javascipt control add-ins the
data upgrade.

See...

Publish, upgrade, and install extensions
STEP MORE INFO DONE

Publish system and test symbols,
generate application symbols.

See...

Publish, synchronize, and upgrade to
new versions of Microsoft extensions
from installation media.

''

Repair, synchronize, and install old
extension versions that were not
upgraded in previous step.

''

Run the data upgrade on the new
extension versions.

''

Repair other custom extensions to work
on new platform.

''

Post-upgrade tasks

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-open-database
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-import-objects
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/connect-server-to-database
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-compiling-objects
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.management/set-navapplication
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/synchronize-tenant-database-and-application-database
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.management/start-navdataupgrade
file:///T:/q4ru/upgrade/Converting-a-Database.html#JSaddins
file:///T:/q4ru/upgrade/Upgrading-the-Data.html#AddExtensions

STEP MORE INFO DONE

Import permissions and permission
sets.

See...

Import encryption keys See...

Upload the customer license. See...

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/upgrade/How-to--Import-Export-Permission-Sets-Permissions
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/upgrade/how-to-export-and-import-encryption-keys
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-upload-license-file

Upgrading the Data to Business Central: Multitenant
Deployment
3/31/2019 • 10 minutes to read

About Data Upgrade

IMPORTANT

Prerequisites

See print-friendly quick reference

This article describes the tasks required for upgrading data to the latest Business Central in a multitenant
deployment.

In this scenario, you already have an upgraded application that is mounted on a Business Central Server. You will
then mount the old tenants on the server instance and perform the data upgrade.

You use data conversion tools provided with Business Central to convert the old data with the old version’s table
and field structure, so that it functions together with the new version’s table and field structure. Mainly, only table
objects and table data are modified during the data upgrade process. Other objects, such as pages, reports,
codeunits, and XMLports are upgraded as part of the application code upgrade process.

The data upgrade process described in this article leads you through the database conversion (technical upgrade)
and then the upgrade of the actual data, which is achieved by using the upgrade toolkit/upgrade codeunits.

Before you begin, read the article Important Information and Considerations for Before Upgrading. This article contains
information about limitations and things that might require you to perform extra tasks before you upgrade, such as the use
of extensions V1 and the deprecation of codeunit 1.

Before you start the upgrade tasks, make sure you have the following prerequisites:

1. Your computer uses the same codepage as the data that will be upgraded.

If you use conflicting codepages, some characters will not display in captions, and you might not be able to
access the upgraded database. This is because Business Central must remove incorrect metadata characters
to complete the data upgrade. In this case, after upgrade, you must open the database in the development
environment on a computer with the relevant codepage and compile all objects. This adds the missing
characters again.

2. (Upgrading from Dynamics NAV only) Custom V1 extensions used in Dynamics NAV have been converted
to V2 extensions.

For more information, see Converting Extensions V1 to Extensions V2.

3. Business Central has been installed with the upgraded application and upgrade toolkit.

As a minimum, you must install the following components:

Business Central Server instance connected to the application database.

Dynamics NAV Development Environment for Business Central

file:///T:/q4ru/upgrade/Upgrade-Considerations.html

NOTE

Prepare the tenant database for data upgrade

AL Development Environment

This installs the required system and test symbols for V2 extensions.

Business Central Server Administration tool (optional)

Business Central Web Server components (not required for upgrade).

For more information about upgrading the application code, see Upgrading the Application Code.

4. Permission sets (except SUPER) and permissions have been exported from the old tenant database.

When upgrading from Dynamics NAV

To export permission sets and permissions, you run running XMLPort 9171 and 9172.

It is important that you exclude the SUPER permission set when running XMLPort 9171. You can do
this by adding the filter Role ID is <>SUPER .

For more information, see Exporting and Importing Permission Sets and Permissions.

When upgrading from an earlier version of Business Central

In the client, search for and open the Permission Sets page, select the user-defined permission sets
that you want to keep, and then choose Export Permission Sets.

5. If the old application uses data encryption, you have the encryption key file that it used for the data
encryption.

For more information, see Export and Import Encryption Keys.

If the old Dynamics NAV application uses Payment Services for Microsoft Dynamics ERP, be aware that this was discontinued
in Microsoft Dynamics NAV 2017. This means that most of the objects that are associated with this feature will be deleted
during the upgrade. Some objects you will have to manually delete.

You perform these tasks on each tenant that you want to upgrade.

Get-NAVAppInfo -ServerInstance <OldServerInstanceName> -Tenant <TenantID>

1. Backup the tenant database.

Create a full backup of the old database in the SQL Server. Alternatively, you can make a copy of the old
database and perform the upgrade tasks on the copy.

For more information, see Create a Full Database Backup (SQL Server).

2. (Dynamics NAV upgrade only) Uninstall all V1 extensions.

Make sure that all V1 extensions are uninstalled. Open the Dynamics NAV Administration Shell that
matches to old database, and run these commands:

a. To get a list of the V1 extensions that are installed, run this command:

V1 extensions are indicated by CSIDE in the Extension Type column. 2. For each extension, run the
Uninstall-NAVApp cmdlet to uninstall it:

file:///T:/q4ru/upgrade/Upgrading-the-Application-Code.html
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/upgrade/How-to--Import-Export-Permission-Sets-Permissions
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/upgrade/how-to-export-and-import-encryption-keys
http://go.microsoft.com/fwlink/?LinkID=296465
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.apps.management/uninstall-navapp

Run the data upgrade on the tenant

Uninstall-NAVApp -ServerInstance <OldServerInstanceName> -Name <Name> -Version <N.N.N.N>

Dismount-NAVTenant -ServerInstance <OldServerInstanceName> -Tenant <TenantID>

3. Dismount the tenant.

Before you upgrade the tenant, you must dismount it from the old server instance. To dismount the tenant,
run the Dismount-NAVTenant cmdlet:

You perform these tasks on each tenant that you want to upgrade.

Mount-NAVTenant -ServerInstance <ServerInstanceName> -DatabaseName <Database name> -DatabaseServer
<server\instance> -Tenant <TenantID> -AllowAppDatabaseWrite

IMPORTANT

NOTE

Sync-NAVTenant -ServerInstance <ServerInstanceName> -Tenant <TenantID>

Get-NAVTenant -ServerInstance <ServerInstanceName> -tenant default -ForceRefresh

1. Mount the tenant.

Mount the tenant on the new Business Central Server instance that connects to the newly application
database. To mount the tenant, use the Mount-NAVTenant cmdlet:

You must use the same tenant ID for the tenant that was used in the old deployment; otherwise you will get an error
when mounting or syncing the tenant. If you want to use a different ID for the tenant, you can either use the
-AlternateId parameter now or after upgrading, dismount the tenant, then mount it again using the new ID and

the OverwriteTenantIdInDatabase parameter.

For upgrade, we recommend that you use the -AllowAppDatabaseWrite parameter. After upgrade, you can
dismount and mount the tenant again without the parameter if needed.

2. Synchronize the tenant.

Synchronize the tenant database schema with validation by running the Sync-NAVTenant cmdlet from the
Business Central Administration Shell.

When completed, the tenant should have the status OperationalDataUpgradePending or, if there are
published extensions with newer versions than on the tenant, OperationalSyncPending. To verify this, run
the following cmdlet:

3. If there are published extensions with newer versions than on the tenant, synchronize all published
extensions with the tenant database.

Synchronize the schema with the database by running the Sync-NAVApp cmdlet for each extension version:

https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.management/dismount-navtenant
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.management/mount-navtenant
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.management/sync-navtenant
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.apps.management/sync-navapp

Post-upgrade tasks

Sync-NAVApp -ServerInstance <ServerInstanceName> -Name <Name> -Version <N.N.N.N> -Tenant <TenantID>

Get-NAVAppInfo -ServerInstance <ServerInstanceName> -Tenant <TenantID> | % { Sync-NAVApp -ServerInstance
<ServerInstanceName> -Name $_.Name -Version $_.Version }

Start-NavDataUpgrade -ServerInstance <ServerInstanceName>

Start-NavDataUpgrade -ServerInstance <ServerInstanceName> -Tenant <tenantID> -FunctionExecutionMode
Serial

Install-NAVApp -ServerInstance <ServerInstanceName> -Name <Name> -Version <N.N.N.N>

Or, to synchronize all published extensions using one command:

When completed, the tenant should have the status OperationalDataUpgradePending.

4. Run the data upgrade.

A data upgrade runs the upgrade toolkit objects, such as upgrade codeunits and upgrade tables, to migrate
business data from the old table structure to the new table structure. It will also upgrade the published
extensions.

You can start the data upgrade by running the run Start-NavDataUpgrade cmdlet the Business Central
Administration Shell:

Important: If you have extensions, then you must run the data upgrade so that it executes functions in the
serial mode as follows.

To view the progress of the data upgrade, you can run Get-NavDataUpgrade cmdlet with the –Progress

switch.

The data upgrade process runs CheckPreconditions and Upgrade functions in the upgrade codeunits. If any
of the preconditions are not met or an upgrade function fails, you must correct the error and resume the
data upgrade process. If CheckPreconditions and Upgrade functions are executed successfully, codeunit 2 is
automatically run to initialize all companies in the database unless you set the -SkipCompanyIntitialization

parameter.

5. Install extensions on the tenant.

Install the desired extensions on the tenant by running the Install-NAVApp cmdlet:

1. Import permission sets and permissions

Import the permission sets and permissions XML files that you exported from the old database as follows:

For upgrade from Dynamics NAV:

a. Open table 2000000004 Permission Sets in the client, and delete all permission sets except
SUPER.

https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.management/start-navdataupgrade
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.management/get-navdataupgrade
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.apps.management/install-navapp

NOTE
You are only required to delete those permission sets that also included in the permission sets XML file
that you will import. Because if you try to import a permission set with the same name as on already
in the database, you will get an error.

b. Run XMLport 9171 and XMLport 9172 to import the permission sets and permission XML
files.

For more information, see How to: Export and Import Permission Sets and Permissions.

For upgrade from an earlier Business Central version:

a. In the client, search for and open the Permission Sets page.
b. Delete all user-defined permissions.
c. Choose Import Permission Sets, then select the permissions set file that you exported previously.

2. Import encryption keys.

For more information, see Exporting and Importing Encryption Keys.

3. (Optional) Update Web Server instance configuration file

If you have installed the Business Central Web Server, populate the navsettings.json file for the Business
Central Web Server instance with the settings of the old web.config file or navsettings.json.

If the old deployment used a web.config file, then you have to manually change the settings in the
navsetting.json file that is used on the new Business Central Web Server instance.

If you upgraded from Business Central October 2018, you can replace the navsettings.json file on the
new Business Central Web Server instance with the old file. However, as of Business Central April
2019, the following settings are now configured under a root element called ApplicationIdSettings

instead of the root element NAVWebSettings .

AndroidPrivacy

AndroidSoftwareLicenseTerms

AndroidThirdPartyNotice

BaseHelpUrl

BaseSettingsSectionName

CommunityLink

FeedbackLink

IosPrivacy

IosSoftwareLicenseTerms

IosThirdPartyNotice

KeyboardShortcutsLink

PrivacyLink

LegalLink

SignInHelpLink

If the old navsettings.json file uses any of these settings, then you will have to move them from the
NAVWebSettings element to the ApplicationIdSettings element.

For more information about the navsettings.json file, see Configuring Business Central Web Server
Instances.

4. Upload the customer license.

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/upgrade/How-to--Import-Export-Permission-Sets-Permissions
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/upgrade/how-to-export-and-import-encryption-keys

See Also

For more information, see Uploading the License File

Upgrading the Application Code
Upgrading to Business Central

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-upload-license-file
file:///T:/q4ru/upgrade/Upgrading-the-Application-Code.html

Business Central Multitenant Full Upgrade Quick
Reference
3/31/2019 • 2 minutes to read

Prerequisite tasks
STEP MORE INFO DONE

In the old deployment, convert custom
V1 extensions to V2 extensions.

See...

Export permissions and permission sets
from the old deployment. Important:
Make sure computer uses the same
codepage as the data.

See...

Export encryption keys from the old
deployment.

See...

Prepare for transitioning from codeunit
1.

See...

Install Business Central components. See...

Upgrade the application and prepare it for data upgrade
STEP MORE INFO DONE

Upgrade the application code. See...

Mount the upgraded application on the
Business Central Server instance.

See...

Import upgrade toolkit (.fob) See...

Publish system and test symbols from
the installation media, and generate
application symbols.

See...

Publish the new Microsoft extension
versions from the installation media.

See...

Upload a Business Central partner
license.

See...

Prepare the tenant database for data upgrade

This article provides an overview of the full upgrade process for Business Central in a multitenant deployment. For
more detailed steps, see Upgrading the Data: Multitenant Mode.

file:///T:/q4ru/upgrade/Upgrading-the-Data-Multitenant.html
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/upgrade/How-to--Import-Export-Permission-Sets-Permissions
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/upgrade/how-to-export-and-import-encryption-keys
file:///T:/q4ru/upgrade/Upgrading-the-Application-Code.html
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.management/mount-navapplication
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-import-objects
file:///T:/q4ru/upgrade/Upgrading-the-Application-Code.html#AddExtensions
file:///T:/q4ru/upgrade/Upgrading-the-Application-Code.html#PublishNew
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-upload-license-file

STEP MORE INFO DONE

Backup the tenant database. See...

Uninstall all V1 extensions. See...

Dismount the tenant from the old
server instance.

See...

Run the data upgrade on the tenant
STEP MORE INFO DONE

Mount the tenant on the Business
Central Server instance. Important: Use
the -AllowAppDatabaseWrite

parameter.

See...

Synchronize the tenant. See...

Synchronize all extensions. See..

Run the data upgrade. Important: If
there are V2 extensions, you must use
the -FunctionExecutionMode Serial

parameter.

See...

Install the new V2 extensions that were
not installed in the old tenant.

See...

Post-upgrade tasks
STEP MORE INFO DONE

Import permissions and permission
sets.

See...

Import encryption keys See...

Upload the customer license. See...

http://go.microsoft.com/fwlink/?LinkID=296465
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.apps.management/uninstall-navapp
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.management/dismount-navtenant
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.management/mount-navtenant
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/administration/synchronize-tenant-database-and-application-database
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.apps.management/sync-navapp
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.management/start-navdataupgrade
https://docs.microsoft.com/en-us/powershell/module/microsoft.dynamics.nav.apps.management/install-navapp
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/upgrade/How-to--Import-Export-Permission-Sets-Permissions
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/upgrade/how-to-export-and-import-encryption-keys
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/cside/cside-upload-license-file

Important Information and Considerations for Before
Upgrading to Dynamics 365 Business Central
4/4/2019 • 5 minutes to read

Upgrading from Dynamics NAV to Business Central online

IMPORTANT

Upgrading from Dynamics NAV
Codeunit 1 has been deprecated and replaced

V1 Extensions have been discontinued

MenuSuite not used for page and report search

Depending on which version you are upgrading from, and the degree to which your solution differs from the
standard version of Business Central, you may want to prepare your solution for the upgrade. This topic provides
important information and tips for things to consider when you prepare to upgrade to Business Central.

You can upgrade to Business Central online from supported versions of Dynamics NAV on-premises, provided that
your application customization is handled by extensions. Any data from tables with code customizations cannot be
carried forward from Dynamics NAV.

Upgrading from Dynamics NAV to Business Central online is only partially supported. In the current version of Business
Central, when you connect your on-premises solution to the intelligent cloud, the on-premises deployment remains the
primary application, and the cloud tenant is, with very few exceptions, read-only. For more information, see Connect to the
intelligent cloud.

The process consists of two parts:

Upgrade from Dynamics NAV to Business Central using the tools described in Upgrading to Business Central
on-premises.
Convert non-standard functionality and customizations to apps and per-tenant extensions. For more
information, see Deploying a Tenant Customization.
Enable replication to a cloud tenant as described in Connect to the intelligent cloud, and then switch to use the
Business Central online tenant going forward.

Dynamics NAV included codeunit 1 ApplicationManagement. In Business Central, this codeunit has been retired,
and new ‘system’ codeunits have been introduced in the 2 billion range.

For information, see Transitioning from Codeunit 1 to System Codeunits.

With Business Central, extensions V1 are no longer supported for on-premise installations. As a result, any custom
extensions V1 must be converted to extensions V2 in the old environment before upgrading to Business Central.

For information about how to convert to extensions V2, see Converting Extensions V1 to Extensions V2.

With Business Central, the MenuSuite is no longer used to control whether a page or report can be found in the
search feature of the Web client. This is now determined by specific properties on the page and report objects. As
part of the application code upgrade process, you change these properties on existing pages and reports used by
the MenuSuite to ensure that they are still searchable from the Web client. For more information, see Making

https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/upgrade/upgrade-pages-report-for-search

Dynamics 365 for Sales integration

New and changed application features

Changes to profiles in the CRONUS International Ltd. demonstration database and promoted actions

Names of variables

Deprecated or redesigned functionality

Deprecated fields and fields marked as obsolete

Upgrade codeunits

Pages and Reports Searchable After an Upgrade.

Because of changes in Dynamics 365 for Sales and the integration since pervious releases, if your application is
integrating with Dynamics 365 for Sales, then you must perform a full upgrade instead of just a technical upgrade.

There a several new and changed application features available in Business Central April 2019 for users,
administrators, and developers. For an overview of these features, see Overview of Dynamics 365 Business Central
April '19 release.

To take advantage of these all these features, you will have to perform an application code upgrade, not just a
technical (platform) upgrade.

With the Business Central April 2019 release, profiles that are part of the CRONUS International Ltd.
demonstration database, such as the Sales Order Processor profile, customize fewer pages compared to earlier
releases. For customers that rely on these profiles, their users might experience slight differences in the layout of
actions in the action bar on pages. Additionally, the layout of promoted actions on over 380 core application pages
has been fine-tuned.

To ensure that users are not disrupted by these changes, we recommend that administrators and partners who are
upgrading a customer to Business Central April 2019, review the layout of promoted actions when combined with
their own code and profile customization.

Business Central introduces new methods and statements. If your solution includes variables where the name is
now used by a standard AL method or statement such as REGISTERTABLECONNECTION or FOREACH, you must
change the variables before you upgrade to Business Central. Alternatively, you can enclose the variable names in
quotation marks. If you do not, and you import an object that has this code in text format, you cannot compile the
object.

If you are upgrading a solution that depends on functionality that is deprecated or changed in the default version of
Business Central, you must verify that the upgrade codeunits migrate data correctly. See the See Also section for
links to descriptions of deprecated functionality.

Sometimes Microsoft will refactor code so that fields are no longer used, or the functionality is moved from the
base application to an extension, for example. Typically, the upgrade toolkit will manage the upgrade impact, but for
transparency, you can find a list of fields that are deprecated in the current release or marked to be obsolete in a
later release. For more information, see Deprecated Fields, and Fields Marked as Obsolete.

When you introduce changes to the database schema, Business Central will check if these changes are destructive
or not. If the database check indicates that the change may lead to data deletion, such as if you are dropping a table
column so that the contents of that column will be deleted, this is considered a destructive change. You will be
prompted to handle the situation using upgrade codeunits.

https://docs.microsoft.com/en-us/business-applications-release-notes/April19/dynamics365-business-central

Company names

System tables with non-English names

See Also

If a company name includes a special character, an error may display during the upgrade. In this context, special
characters include the following:
[~ @ # $ % & * () . ! % - + / = ?]

If you are going to upgrade a database where one or more company name includes a special character, we
recommend that you rename the company before you start the upgrade process. After the upgrade is successfully
finished, you can rename the company again.

In older versions of Dynamics NAV, you could translate the columns in system tables to a language other than
English. Starting with version 3.0, we advised heavily against this, and versions later than Microsoft Dynamics NAV
2013 R2 require that all columns in all system tables are in English. As a result, if you try to open a database with
non-English system tables in Microsoft Dynamics NAV 2013 R2 or later, an error displays, saying that one or more
columns do not exist.

Make sure that all objects where compiled in a development environment with the right .ETX and .STX files. You
can verify that you are running in the correct environment with English (US) as the base language by opening the
ndo$dbproperty table in SQL Server Management Studio. In the Identifiers column, the word Object must be
written exactly as shown here.

Upgrading the Application Code
Upgrading the Data
Deprecated Fields, and Fields Marked as Obsolete

file:///T:/q4ru/upgrade/Upgrading-the-Application-Code.html
file:///T:/q4ru/upgrade/Upgrading-the-Data.html

Deprecated Fields, and Fields Marked as Obsolete
5/28/2019 • 18 minutes to read

Definitions

Fields marked as ObsoleteState:Pending in Business Central

Austria

TABLE ID TABLE NAME FIELD ID FIELD NAME COMMENTS

98 General Ledger Setup 11011 Sales VAT Advance
Notif. Nos.

Will be removed in a
later release.

242 Source Code Setup 5005350 Phys. Invt. Order Will be removed in a
later release.

257 VAT Statement Name 11000 Sales VAT Adv.
Notification

Will be removed in a
later release.

313 Inventory Setup 5005350 Phys. Inv. Order Nos. Will be removed in a
later release.

313 Inventory Setup 5005352 Posted Phys. Inv.
Order Nos.

Will be removed in a
later release.

11011 Sales VAT Advance
Notification

All All Will be removed in a
later release.

In the latest version of Business Central, a number of fields have been deprecated in the current release or
marked to be obsolete in a later release.

Deprecated fields fall into one of the following groups:

1. Fields moved to an extension by Microsoft

Partner impact: Remember to install the extension when you upgrade an existing solution from an earlier
version of Business Central.
Specifically for the extensions that are required for connecting on-premises solutions with Business
Central online for intelligent insights, you must install the Intelligent Cloud Base Extension extension
first, and then the product-specific extension or extensions.

2. Fields marked as Obsolete:Pending

Partner impact: None in the current release, this is just a heads-up that a change is coming.

3. Fields no longer in use in Microsoft code

Partner impact: Refactor your code as soon as possible.

A number of fields are marked as ObsoleteState:Pending. There is no impact on code in this release.

The following fields are marked as ObsoleteState:Pending in the AT version.

11012 Transmission Log
Entry

All All Will be removed in a
later release.

11013 Electronic VAT Decl.
Setup

All All Will be removed in a
later release.

11014 Certificate All All Will be removed in a
later release.

5005350 Phys. Inventory
Order Header

All All Will be removed in a
later release.

5005351 Phys. Inventory
Order Line

All All Will be removed in a
later release.

5005352 Phys. Invt. Recording
Header

All All Will be removed in a
later release.

5005353 Phys. Invt. Recording
Line

All All Will be removed in a
later release.

5005354 Post. Phys. Invt.
Order Header

All All Will be removed in a
later release.

5005355 Posted Phys. Invt.
Order Line

All All Will be removed in a
later release.

5005356 Posted Phys. Invt.
Rec. Header

All All Will be removed in a
later release.

5005357 Posted Phys. Invt.
Rec. Line

All All Will be removed in a
later release.

5005358 Phys. Inventory
Comment Line

All All Will be removed in a
later release.

5005359 Posted Phys. Invt.
Track. Line

All All Will be removed in a
later release.

5005360 Phys. Invt. Tracking
Buffer

All All Will be removed in a
later release.

5005361 Expect. Phys. Inv.
Track. Line

All All Will be removed in a
later release.

5005362 Post. Exp. Ph. In.
Track. Line

All All Will be removed in a
later release.

TABLE ID TABLE NAME FIELD ID FIELD NAME COMMENTS

Belgium
The following fields are marked as ObsoleteState:Pending in the BE version.

TABLE ID TABLE NAME FIELD ID FIELD NAME COMMENTS

4 Currency 2000000 ISO Currency Code Will be removed in a
later release.

9 Country/Region 2000000 ISO Country/Region
Code

Will be removed in a
later release.

11306 Electronic Banking
Setup

22 Notification E-mail
address

Will be removed in a
later release.

11306 Electronic Banking
Setup

23 Language Will be removed in a
later release.

11306 Electronic Banking
Setup

31 IBS Service Version Will be removed in a
later release.

11306 Electronic Banking
Setup

21 IBS Version Will be removed in a
later release.

11306 Electronic Banking
Setup

24 Upload Integration
Mode

Will be removed in a
later release.

11306 Electronic Banking
Setup

29 IBS Log Download
Nos.

Will be removed in a
later release.

11306 Electronic Banking
Setup

40 Test Environment Will be removed in a
later release.

11306 Electronic Banking
Setup

30 IBS Request ID Will be removed in a
later release.

11306 Electronic Banking
Setup

28 IBS Log Upload Nos. Will be removed in a
later release.

11306 Electronic Banking
Setup

25 Upload Path Will be removed in a
later release.

11306 Electronic Banking
Setup

26 Download
Integration Mode

Will be removed in a
later release.

11306 Electronic Banking
Setup

27 Download Path Will be removed in a
later release.

2000010 IBS Log All All Will be removed in a
later release.

2000011 IBS Contract All All Will be removed in a
later release.

2000012 IBS Account All All Will be removed in a
later release.

2000013 IBS Account Conflict All All Will be removed in a
later release.

Canada

TABLE ID TABLE NAME FIELD ID FIELD NAME COMMENTS

98 General Ledger Setup 10004 SAT Certificate
Thumbprint

Will be removed in a
later release.

10000 PAC Web Service 22 Certificate
Thumbprint

Will be removed in a
later release.

Germany

TABLE ID TABLE NAME FIELD ID FIELD NAME COMMENTS

98 General Ledger Setup 11011 Sales VAT Advance
Notif. Nos.

Will be removed in a
later release.

242 Source Code Setup 5005350 Phys. Invt. Order Will be removed in a
later release.

257 VAT Statement Name 11000 Sales VAT Adv.
Notification

Will be removed in a
later release.

313 Inventory Setup 5005352 Posted Phys. Inv.
Order Nos.

Will be removed in a
later release.

313 Inventory Setup 5005350 Phys. Inv. Order Nos. Will be removed in a
later release.

11011 Sales VAT Advance
Notification

All All Will be removed in a
later release.

11012 Transmission Log
Entry

All All Will be removed in a
later release.

11013 Electronic VAT Decl.
Setup

All All Will be removed in a
later release.

11014 Certificate All All Will be removed in a
later release.

5005350 Phys. Inventory
Order Header

All All Will be removed in a
later release.

5005351 Phys. Inventory
Order Line

All All Will be removed in a
later release.

5005352 Phys. Invt. Recording
Header

All All Will be removed in a
later release.

5005353 Phys. Invt. Recording
Line

All All Will be removed in a
later release.

The following fields are marked as ObsoleteState:Pending in the CA version.

The following fields are marked as ObsoleteState:Pending in the DE version.

5005354 Post. Phys. Invt.
Order Header

All All Will be removed in a
later release.

5005355 Posted Phys. Invt.
Order Line

All All Will be removed in a
later release.

5005356 Posted Phys. Invt.
Rec. Header

All All Will be removed in a
later release.

5005357 Posted Phys. Invt.
Rec. Line

All All Will be removed in a
later release.

5005358 Phys. Inventory
Comment Line

All All Will be removed in a
later release.

5005359 Posted Phys. Invt.
Track. Line

All All Will be removed in a
later release.

5005360 Phys. Invt. Tracking
Buffer

All All Will be removed in a
later release.

5005361 Expect. Phys. Inv.
Track. Line

All All Will be removed in a
later release.

5005362 Post. Exp. Ph. In.
Track. Line

All All Will be removed in a
later release.

TABLE ID TABLE NAME FIELD ID FIELD NAME COMMENTS

Mexico

TABLE ID TABLE NAME FIELD ID FIELD NAME COMMENTS

98 General Ledger Setup 10004 SAT Certificate
Thumbprint

Will be removed in a
later release.

10000 PAC Web Service 22 Certificate
Thumbprint

Will be removed in a
later release.

Netherlands

TABLE ID TABLE NAME FIELD ID FIELD NAME COMMENTS

312 Purchases & Payables
Setup

11312 Show Totals on
Purch. Inv./CM.

Will be removed in a
later release.

Spain

TABLE ID TABLE NAME FIELD ID FIELD NAME COMMENTS

The following fields are marked as ObsoleteState:Pending in the MX version.

The following fields are marked as ObsoleteState:Pending in the NL version.

The following fields are marked as ObsoleteState:Pending in the ES version.

10751 SII Setup 9 IntracommunityEndp
ointUrl

Will be removed in a
later release.

TABLE ID TABLE NAME FIELD ID FIELD NAME COMMENTS

Switzerland

TABLE ID TABLE NAME FIELD ID FIELD NAME COMMENTS

4 Currency 3010541 ISO Currency Code Will be removed in a
later release.

98 General Ledger Setup 11011 Sales VAT Advance
Notif. Nos.

Will be removed in a
later release.

98 General Ledger Setup 11011 Sales VAT Advance
Notif. Nos.

Will be removed in a
later release.

98 General Ledger Setup 11004 Post Pmt.Disc Tol. to
Pmt.Disc

Will be removed in a
later release.

242 Source Code Setup 5005350 Phys. Invt. Order Will be removed in a
later release.

257 VAT Statement Name 11000 Sales VAT Adv.
Notification

Will be removed in a
later release.

311 Sales & Receivables
Setup

11501 Line Amt. Round LCY Will be removed in a
later release.

313 Inventory Setup 5005350 Phys. Inv. Order Nos. Will be removed in a
later release.

313 Inventory Setup 5005352 Posted Phys. Inv.
Order Nos.

Will be removed in a
later release.

11011 Sales VAT Advance
Notification

All All Will be removed in a
later release.

11012 Transmission Log
Entry

All All Will be removed in a
later release.

11013 Electronic VAT Decl.
Setup

All All Will be removed in a
later release.

11014 Certificate All All Will be removed in a
later release.

5005350 Phys. Inventory
Order Header

All All Will be removed in a
later release.

5005351 Phys. Inventory
Order Line

All All Will be removed in a
later release.

The following fields are marked as ObsoleteState:Pending in the CH version.

5005352 Phys. Invt. Recording
Header

All All Will be removed in a
later release.

5005353 Phys. Invt. Recording
Line

All All Will be removed in a
later release.

5005354 Post. Phys. Invt.
Order Header

All All Will be removed in a
later release.

5005355 Posted Phys. Invt.
Order Line

All All Will be removed in a
later release.

5005356 Posted Phys. Invt.
Rec. Header

All All Will be removed in a
later release.

5005357 Posted Phys. Invt.
Rec. Line

All All Will be removed in a
later release.

5005358 Phys. Inventory
Comment Line

All All Will be removed in a
later release.

5005359 Posted Phys. Invt.
Track. Line

All All Will be removed in a
later release.

5005360 Phys. Invt. Tracking
Buffer

All All Will be removed in a
later release.

5005361 Expect. Phys. Inv.
Track. Line

All All Will be removed in a
later release.

5005362 Post. Exp. Ph. In.
Track. Line

All All Will be removed in a
later release.

TABLE ID TABLE NAME FIELD ID FIELD NAME COMMENTS

United Kingdom

TABLE ID TABLE NAME FIELD ID FIELD NAME COMMENTS

10533 MTD-Liability All All Will be removed in a
later release.

10534 MTD-Payment All All Will be removed in a
later release.

10535 MTD-Return Details All All Will be removed in a
later release.

United States

The following fields are marked as ObsoleteState:Pending in the GB version.

The following fields are marked as ObsoleteState:Pending in the US version.

TABLE ID TABLE NAME FIELD ID FIELD NAME COMMENTS

98 General Ledger Setup 10004 SAT Certificate
Thumbprint

Will be removed in a
later release.

10000 PAC Web Service 22 Certificate
Thumbprint

Will be removed in a
later release.

Fields no longer in use in Microsoft code in Business Central

TABLE ID FIELD ID COMMENTS

18 Customer 89 Picture Will be removed in a
later release.

23 Vendor 89 Picture Will be removed in a
later release.

130 Incoming Document 20 URL2 Will be removed in a
later release.

130 Incoming Document 21 URL3 Will be removed in a
later release.

130 Incoming Document 22 URL4 Will be removed in a
later release.

156 Resource 52 Picture Will be removed in a
later release.

167 Job 57 Picture Will be removed in a
later release.

270 Bank Account 89 Picture Will be removed in a
later release.

5050 Contact 89 Picture Will be removed in a
later release.

5200 Employee 19 Picture Will be removed in a
later release.

5600 Fixed Asset 22 Picture Will be removed in a
later release.

A number of fields that are related to pictures are no longer in use, because the pictures are now stored in Image
fields that are of Media type, in Business Central. The fields are marked as ObsoleteState:Pending.

For more information about Media Data Type, see Media Data Type documentation.

A field that is related to VAT Registration Number validation is no longer in use, because the feature was
replaced EU VAT Registration No. Validation Service Setup Business Central. The field is marked as
ObsoleteState:Pending.

https://docs.microsoft.com/dev-itpro/developer/methods-auto/media/media-data-type.md

TABLE ID FIELD ID COMMENTS

98 General Ledger Setup 161 VAT Reg. No.
Validation URL

Will be removed in a
later release.

TABLE ID FIELD ID COMMENTS

9153 My Account 4 Balance Will be removed in a
later release.

Fields moved to an extension by Microsoft in Business Central

Denmark

TABLE ID TABLE NAME OLD FIELD ID NEW FIELD ID OLD FIELD NAME NEW FIELD NAME

23 Vendor 13650 13651 Giro Acc No. GiroAccNo

25 Vendor Ledger
Entry

13650 13651 Giro Acc No. GiroAccNo

38 Purchase Header 13650 13651 Giro Acc No. GiroAccNo

79 Company
Information

13600 13651 Bank Creditor
No.

BankCreditorNo

81 General Journal
Line

13650 13651 Giro Acc No. GiroAccNo

122 Purchase Invoice
Header

13650 13651 Giro Acc No. GiroAccNo

273 Bank Acc.
Reconciliation

13600 13601 FIK Payment
Reconciliation

FIKPaymentReco
nciliation

274 Bank Acc.
Reconciliation
Line

13600 13601 Payment
Reference

PaymentReferenc
e

289 Payment
Method

13601 13652 Payment Type
Validation

PaymentTypeVali
dation

For more information about validation of VAT Registration Numbers, see Setting Up Calculations and Posting
Methods for Value-Added Tax documentation.

A flow field that was used to calculate Balance in My Account page is no longer in use in Business Central and
has been replaced with Account Balance field to improve performance. The field is marked as
ObsoleteState:Pending.

A number of fields have been moved from the base application to an extension.

The functionality for payments and reconciliation in the Danish version (FIK) has been moved to the Payments
and Reconciliations (DK) extension. For more information, see The Payments and Reconciliations (DK) Extension
in the Dynamics 365 Business Central documentation.

https://docs.microsoft.com/dynamics365/business-central/finance-setup-vat#to-verify-vat-registration-numbers
https://docs.microsoft.com/dynamics365/business-central/ui-extensions-payments-reconciliation-formats-dk

372 Payment Buffer 13650 13651 Giro Acc No. GiroAccNo

1226 Payment Export
Data

13650 13651 Recipient Giro
Acc No.

RecipientGiroAcc
No

1250 Bank Statement
Matching Buffer

13601 13652 Match Status MatchStatus

1250 Bank Statement
Matching Buffer

13600 13653 Description DescriptionBankS
tatement

TABLE ID TABLE NAME OLD FIELD ID NEW FIELD ID OLD FIELD NAME NEW FIELD NAME

Fields marked as ObsoleteState:Pending in Business Central

Iceland

TABLE ID FIELD ID COMMENTS

21 10900 Will be removed in a later release.

311 10900 Will be removed in a later release.

United Kingdom

TABLE ID FIELD ID COMMENTS

18 10500 Will be removed in a later release.

23 10500 Will be removed in a later release.

36 10501 Will be removed in a later release.

38 10501 Will be removed in a later release.

112 10501 Will be removed in a later release.

114 10501 Will be removed in a later release.

122 10501 Will be removed in a later release.

124 10501 Will be removed in a later release.

5107 10501 Will be removed in a later release.

5109 10501 Will be removed in a later release.

A number of fields are marked as ObsoleteState:Pending. There is no impact on code in this release.

The following fields are mareded as ObsoleteState:Pending in the IS version.

The following fields are marked as ObsoleteState:Pending in the UK version.

A number of fields are also deleted in the UK version. For more information, see Deprecated Features in the UK
Version.

Denmark

TABLE ID FIELD ID COMMENTS

3 13600 Will be removed in a later release.

4 13600 Will be removed in a later release.

9 13600 Will be removed in a later release.

18 13605 Will be removed in a later release.

36 13600 Will be removed in a later release.

36 13601 Will be removed in a later release.

36 13602 Will be removed in a later release.

36 13604 Will be removed in a later release.

36 13605 Will be removed in a later release.

36 13606 Will be removed in a later release.

36 13607 Will be removed in a later release.

36 13620 Will be removed in a later release.

37 13600 Will be removed in a later release.

295 13600 Will be removed in a later release.

295 13602 Will be removed in a later release.

295 13605 Will be removed in a later release.

295 13606 Will be removed in a later release.

295 13607 Will be removed in a later release.

295 13608 Will be removed in a later release.

295 13620 Will be removed in a later release.

296 13600 Will be removed in a later release.

297 13600 Will be removed in a later release.

297 13601 Will be removed in a later release.

297 13602 Will be removed in a later release.

The following fields are marked as ObsoleteState:Pending in the Danish version.

297 13605 Will be removed in a later release.

297 13606 Will be removed in a later release.

297 13607 Will be removed in a later release.

297 13608 Will be removed in a later release.

297 13620 Will be removed in a later release.

298 13600 Will be removed in a later release.

302 13600 Will be removed in a later release.

302 13601 Will be removed in a later release.

302 13602 Will be removed in a later release.

302 13605 Will be removed in a later release.

302 13606 Will be removed in a later release.

302 13607 Will be removed in a later release.

302 13608 Will be removed in a later release.

302 13620 Will be removed in a later release.

303 13600 Will be removed in a later release.

304 13600 Will be removed in a later release.

304 13601 Will be removed in a later release.

304 13602 Will be removed in a later release.

304 13605 Will be removed in a later release.

304 13606 Will be removed in a later release.

304 13607 Will be removed in a later release.

304 13608 Will be removed in a later release.

304 13620 Will be removed in a later release.

305 13600 Will be removed in a later release.

311 13600 Will be removed in a later release.

TABLE ID FIELD ID COMMENTS

311 13601 Will be removed in a later release.

311 13602 Will be removed in a later release.

311 13603 Will be removed in a later release.

311 13604 Will be removed in a later release.

5107 13600 Will be removed in a later release.

5107 13601 Will be removed in a later release.

5107 13602 Will be removed in a later release.

5107 13605 Will be removed in a later release.

5107 13606 Will be removed in a later release.

5107 13607 Will be removed in a later release.

5107 13608 Will be removed in a later release.

5107 13620 Will be removed in a later release.

5108 13602 Will be removed in a later release.

5900 13600 Will be removed in a later release.

5900 13601 Will be removed in a later release.

5900 13604 Will be removed in a later release.

5900 13608 Will be removed in a later release.

5900 13620 Will be removed in a later release.

5902 13600 Will be removed in a later release.

5911 13600 Will be removed in a later release.

5911 13601 Will be removed in a later release.

5992 13600 Will be removed in a later release.

5992 13601 Will be removed in a later release.

5992 13602 Will be removed in a later release.

5992 13604 Will be removed in a later release.

TABLE ID FIELD ID COMMENTS

5992 13608 Will be removed in a later release.

5992 13620 Will be removed in a later release.

5993 13600 Will be removed in a later release.

5994 13600 Will be removed in a later release.

5994 13601 Will be removed in a later release.

5994 13602 Will be removed in a later release.

5994 13604 Will be removed in a later release.

5994 13608 Will be removed in a later release.

5994 13620 Will be removed in a later release.

5995 13600 Will be removed in a later release.

TABLE ID FIELD ID COMMENTS

Fields no longer in use in Microsoft code in Business Central

TABLE ID FIELD ID COMMENTS

5723 All Deprecated. Do not use.

27 5704 Will be removed in a later release.

32 5707 Will be removed in a later release.

37 5712 Will be removed in a later release.

83 5707 Will be removed in a later release.

111 5712 Will be removed in a later release.

113 5712 Will be removed in a later release.

115 5712 Will be removed in a later release.

123 5712 Will be removed in a later release.

125 5712 Will be removed in a later release.

246 5705 Will be removed in a later release.

753 5707 Will be removed in a later release.

A number of fields that are related to product groups are no longer in use, because the feature was replaced by
item categories in Microsoft Dynamics NAV 2017. The fields are marked as ObsoleteState:Pending.

5108 5712 Will be removed in a later release.

5110 5712 Will be removed in a later release.

5741 5712 Will be removed in a later release.

5745 5707 Will be removed in a later release.

5747 5707 Will be removed in a later release.

5902 5712 Will be removed in a later release.

5991 5712 Will be removed in a later release.

5993 5712 Will be removed in a later release.

6651 5712 Will be removed in a later release.

6661 5712 Will be removed in a later release.

TABLE ID FIELD ID COMMENTS

See Also

For more information about the impact, see The new Item Categories feature replaced the Product Group
feature in Dynamics NAV 2017 on the Dynamics NAV team blog. For more information about item categories,
see How to: Categorize Items in the Dynamics 365 Business Central documentation.

Upgrading to Business Central
Upgrading the Application Code
Important Information and Considerations for Before Upgrading to Dynamics 365 Business Central

https://blogs.msdn.microsoft.com/nav/2017/03/30/the-new-item-categories-feature-replaced-the-product-group-feature-in-dynamics-nav-2017/
https://docs.microsoft.com/dynamics365/financials/inventory-how-categorize-items
file:///T:/q4ru/upgrade/Upgrading-the-Application-Code.html
file:///T:/q4ru/upgrade/Upgrade-Considerations.html

Deprecated Features in the Austrian Version of
Dynamics 365 Business Central
6/25/2019 • 2 minutes to read

Copy Existing Items to Create New Items

MOVED, REMOVED, OR REPLACED? WHY?

Moved The Copy Item feature is no longer specific to Austria, so we
have made it generally available in the standard product.

Physical Inventory Order

MOVED, REMOVED, OR REPLACED? WHY?

Moved The Physical Inventory Order feature is no longer specific to
Austria, so we have made it generally available in the standard
product.

Blanket Order Archiving and Document Line Tracking

MOVED, REMOVED, OR REPLACED? WHY?

Moved Blanket Order Archiving and Document Line Tracking features
are no longer specific to Austria, so we have made them
generally available in the standard product.

See Also

This topic lists and describes the local functionality for Austria that has been removed from Business Central, made
available from a new page or report, or replaced by a new feature.

When you add a new item, to save time, you can use the Copy Item function to copy an existing item to use as a
template for a new item.

You can take inventory of your items by using the Physical Inventory Order and Physical Inventory
Recording pages. The physical inventory order contains data for planning, realizing, and analyzing physical
inventory. The physical inventory recording contains the items and quantities to be counted and forms the basis of
the print-out to be used in the warehouse.

You can archive and delete blanket sales and purchase orders. You can view documents that are related to sales
order lines and purchase order lines, including from archived order lines. Related documents that you can track
include quotes, shipments, receipts, and blanket orders. This helps you to identify documents used to process
orders.

Upgrading to Business Central
Upgrading the Application Code
Deprecated Fields, and Fields Marked as Obsolete
Austria Local Functionality

file:///T:/q4ru/upgrade/Upgrading-the-Application-Code.html
https://docs.microsoft.com/dynamics365/business-central/LocalFunctionality/Austria/austria-local-functionality

Deprecated Features in the Belgian Version of
Microsoft Dynamics 365 Business Central
5/28/2019 • 2 minutes to read

Isabel integration

MOVED, REMOVED, OR REPLACED? WHY?

Removed This feature uses an automation that is not supported by the
Dynamics 365 Business Central compiler and blocks the C/AL
to AL conversion. In an earlier release we made this
functionality unavailable, and now we have removed it.
Microsoft partners can provide their solutions for customers
who need to integrate with Isabel.

See Also

This topic lists and describes the local functionality for Belgium that has been removed from Dynamics 365
Business Central, made available from a new page or report, or replaced by a new feature.

You can integrate with Isabel to make it easy to upload and download bank files.

Upgrading to Microsoft Dynamics 365 Business Central
Upgrading the Application Code
Deprecated Fields, and Fields Marked as Obsolete
Belgium Local Functionality

file:///T:/q4ru/upgrade/Upgrading-the-Application-Code.html
https://docs.microsoft.com/dynamics365/business-central/LocalFunctionality/Belgium/belgium-local-functionality

Deprecated Features in the Canadian Version of
Dynamics 365 Business Central
6/4/2019 • 2 minutes to read

Customer Statement Report

MOVED, REMOVED, OR REPLACED? WHY? WHEN?

Replaced The Standard Statement report (report
1316) provides the same capabilities as
the Customer Statement report (report
10072), plus the ability to customize
layouts in Word, and it is available for all
countries.

2019 release wave 2

See Also

This topic lists and describes the local functionality for Canada that has been removed from Business Central, made
available from a new page or report, or replaced by a new feature.

Shows a list of financial transactions for a selected customer statements for a given period of time. For example,
use the report as part of your payment collection process.

Upgrading Business Central
Upgrading the Application Code
Deprecated Fields, and Fields Marked as Obsolete
Canadian Local Functionality in Business Central

file:///T:/q4ru/upgrade/Upgrading-the-Application-Code.html
https://docs.microsoft.com/dynamics-nav-app/LocalFunctionality/Canada/canada-local-functionality

Deprecated Features in the Dutch Version of
Dynamics 365 Business Central
5/28/2019 • 2 minutes to read

Checking Totals for Purchase Invoices and Purchase Credit Memos

NOTE

MOVED, REMOVED, OR REPLACED? WHY?

Moved The feature to check totals for purchase invoices and credit
memos is no longer specific to the Netherlands, so we have
made it generally available in the standard product.

Standard Sales and Purchase Codes

MOVED, REMOVED, OR REPLACED? WHY?

Removed The feature has been removed from the Dutch version
because it is generally available in the standard product.

See Also

This topic lists and describes the local functionality for the Netherlands that has been removed from Business
Central, made available from a new page or report, made available to one or more additional countries, or replaced
by a new feature.

If the total amount on a purchase document does not match the total amount from the purchase lines, you can find
out why by letting Business Central calculate the total amount, total base amount, total VAT amount, and total
amount including VAT for the purchase lines. The totals display in fields at the bottom of the Purchase Invoice or
Purchase Credit Memo pages.

By default, Business Central does not show these totals. To display them, on the Purchases & Payables Setup
page, choose the Show Totals on Purch. Inv./CM. check box.

To use this feature, your purchase invoices or purchase credit memos must have at least one purchase line, and a quantity.
Additionally, when you turn on this feature Business Central recalculates totals on all purchase invoices and credit memos.
Depending on the number of documents, this can take some time.

If you often need to create sales and purchase lines with similar information, you can set up standard codes
representing sales and purchase lines that you can then insert on recurring sales and purchase documents, for
example, for recurring replenishment orders.

Upgrading to Dynamics 365 Business Central
Upgrading the Application Code
Deprecated Fields, and Fields Marked as Obsolete
Netherlands Local Functionality

file:///T:/q4ru/upgrade/Upgrading-the-Application-Code.html
https://docs.microsoft.com/dynamics365/business-central/LocalFunctionality/Netherlands/netherlands-local-functionality

Deprecated Features in the Finnish Version of
Dynamics 365 Business Central
5/28/2019 • 2 minutes to read

Multiple Interest Rates

MOVED, REMOVED, OR REPLACED? WHY?

Moved The Multiple Interest Rates feature is no longer specific to
Finland, so we have made it generally available in the standard
product.

See Also

This topic lists and describes the local functionality for Finland that has been removed from Business Central, made
available from a new page or report, or replaced by a new feature.

When you create finance charge terms and reminder terms, for delayed payment penalty, you can specify multiple
interest rates so that the penalty fee is calculated from different interest rates in different periods.

Upgrading to Business Central
Upgrading the Application Code
Deprecated Fields, and Fields Marked as Obsolete
Finland Local Functionality

file:///T:/q4ru/upgrade/Upgrading-the-Application-Code.html
https://docs.microsoft.com/dynamics365/business-central/LocalFunctionality/Finland/finland-local-functionality

Deprecated Features in the German Version of
Dynamics 365 Business Central
6/25/2019 • 2 minutes to read

Copy Existing Items to Create New Items

MOVED, REMOVED, OR REPLACED? WHY?

Moved The Copy Item feature is no longer specific to Germany, so we
have made it generally available in the standard product.

Physical Inventory Order

MOVED, REMOVED, OR REPLACED? WHY?

Moved The Physical Inventory Order feature is no longer specific to
Germany, so we have made it generally available in the
standard product.

Blanket Order Archiving and Document Line Tracking

MOVED, REMOVED, OR REPLACED? WHY?

Moved Blanket Order Archiving and Document Line Tracking features
are no longer specific to Germany, so we have made them
generally available in the standard product.

See Also

This topic lists and describes the local functionality for Germany that has been removed from Business Central,
made available from a new page or report, or replaced by a new feature.

When you add a new item, to save time, you can use the Copy Item function to copy an existing item to use as a
template for a new item.

You can take inventory of your items by using the Physical Inventory Order and Physical Inventory
Recording pages. The physical inventory order contains data for planning, realizing, and analyzing physical
inventory. The physical inventory recording contains the items and quantities to be counted and forms the basis of
the print-out to be used in the warehouse.

You can archive and delete blanket sales and purchase orders. You can view documents that are related to sales
order lines and purchase order lines, including from archived order lines. Related documents that you can track
include quotes, shipments, receipts, and blanket orders. This helps you to identify documents used to process
orders.

Upgrading to Business Central
Upgrading the Application Code
Deprecated Fields, and Fields Marked as Obsolete
Germany Local Functionality

file:///T:/q4ru/upgrade/Upgrading-the-Application-Code.html
https://docs.microsoft.com/dynamics365/business-central/LocalFunctionality/Germany/germany-local-functionality

Deprecated Features in the Icelandic Version of
Dynamics 365 Business Central
5/28/2019 • 2 minutes to read

Icelandic Tax Regulations of Conditional Discounts

MOVED, REMOVED, OR REPLACED? WHY?

Moved This feature is no longer specific to Iceland, so we have made it
generally available in the standard product. There is a field for
number series for credit invoices on the Sales and
Receivables Setup form, and a field on the Customer
Ledger Entry table to link the appropriate entries to a credit
invoice.

See Also

This topic lists and describes the local functionality for Iceland that has been removed from Business Central, made
available from a new page or report, or replaced by a new feature.

The local tax regulation of conditional discounts feature enables you to issue a credit memo if a conditional
discount is given to a customer. The payment for a conditional discount must be made within a specified period.

Upgrading to Business Central
Upgrading the Application Code
Deprecated Fields, and Fields Marked as Obsolete
Iceland Local Functionality

file:///T:/q4ru/upgrade/Upgrading-the-Application-Code.html
https://docs.microsoft.com/dynamics365/business-central/LocalFunctionality/Iceland/iceland-local-functionality

Deprecated Features in the Italian Version of
Dynamics 365 Business Central
6/25/2019 • 2 minutes to read

Report Trade with Customers and Vendors in Blacklist
Countries/Regions

MOVED, REMOVED, OR REPLACED? WHY?

Removed The functionality for blacklisted countries/regions has been
removed from the Italian version.

Multiple Interest Rates

MOVED, REMOVED, OR REPLACED? WHY?

Moved The Multiple Interest Rates feature is no longer specific to
Italy, so we have made it generally available in the standard
product.

See Also

This topic lists and describes the local functionality for Italy that has been removed from Business Central, made
available from a new page or report, or replaced by a new feature.

You must submit a periodic report of transactions with customers and vendors in certain countries/regions that the
Italian government has identified in a blacklist.

When you create finance charge terms and reminder terms, for delayed payment penalty, you can specify multiple
interest rates so that the penalty fee is calculated from different interest rates in different periods.

Upgrading to Business Central
Upgrading the Application Code
Deprecated Fields, and Fields Marked as Obsolete
Italy Local Functionality

file:///T:/q4ru/upgrade/Upgrading-the-Application-Code.html
https://docs.microsoft.com/dynamics365/business-central/LocalFunctionality/Italy/italy-local-functionality

Deprecated Features in the Mexican Version of
Microsoft Dynamics 365 Business Central
6/4/2019 • 2 minutes to read

Customer Statement Report

MOVED, REMOVED, OR REPLACED? WHY? WHEN?

Replaced The Standard Statement report (report
1316) provides the same capabilities as
the Customer Statement report (report
10072), plus the ability to customize
layouts in Word, and it is available for all
countries.

2019 release wave 2

See Also

This topic lists and describes the local functionality for the Mexico that has been removed from Business Central,
made available from a new page or report, or replaced by a new feature.

Shows a list of financial transactions for a selected customer statements for a given period of time. For example,
use the report as part of your payment collection process.

Upgrading Business Central
Upgrading the Application Code
Deprecated Fields, and Fields Marked as Obsolete
Mexican Local Functionality in Business Central

file:///T:/q4ru/upgrade/Upgrading-the-Application-Code.html
https://docs.microsoft.com/dynamics-nav-app/LocalFunctionality/Mexico/mexico-local-functionality

Deprecated Features in the Norwegian Version of
Dynamics 365 Business Central
5/28/2019 • 2 minutes to read

Multiple Interest Rates

MOVED, REMOVED, OR REPLACED? WHY?

Moved The Multiple Interest Rates feature is no longer specific to
Norway, so we have made it generally available in the
standard product.

Paper Sources and Tray Numbers

MOVED, REMOVED, OR REPLACED? WHY?

Removed The feature is not used.

See Also

This topic lists and describes the local functionality for Norway that has been removed from Business Central,
made available from a new page or report, or replaced by a new feature.

When you create finance charge terms and reminder terms, for delayed payment penalty, you can specify multiple
interest rates so that the penalty fee is calculated from different interest rates in different periods.

When printing Norwegian sales documents, you can set up different tray numbers and paper sources on the first,
last, and other pages.

Upgrading to Business Central
Upgrading the Application Code
Deprecated Fields, and Fields Marked as Obsolete
Norway Local Functionality

file:///T:/q4ru/upgrade/Upgrading-the-Application-Code.html
https://docs.microsoft.com/dynamics365/business-central/LocalFunctionality/Norway/norway-local-functionality

Deprecated Features in the Swedish Version of
Dynamics 365 Business Central
5/28/2019 • 2 minutes to read

Multiple Interest Rates

MOVED, REMOVED, OR REPLACED? WHY?

Moved The Multiple Interest Rates feature is no longer specific to
Sweden, so we have made it generally available in the
standard product.

See Also

This topic lists and describes the local functionality for Sweden that has been removed from Business Central,
made available from a new page or report, or replaced by a new feature.

When you create finance charge terms and reminder terms, for delayed payment penalty, you can specify multiple
interest rates so that the penalty fee is calculated from different interest rates in different periods.

Upgrading to Business Central
Upgrading the Application Code
Deprecated Fields, and Fields Marked as Obsolete
Sweden Local Functionality

file:///T:/q4ru/upgrade/Upgrading-the-Application-Code.html
https://docs.microsoft.com/dynamics365/business-central/LocalFunctionality/Sweden/sweden-local-functionality

Deprecated Features in the Swiss Version of Dynamics
365 Business Central
6/25/2019 • 2 minutes to read

Copy Existing Items to Create New Items

MOVED, REMOVED, OR REPLACED? WHY?

Moved The Copy Item feature is no longer specific to Switzerland, so
we have made it generally available in the standard product.

Physical Inventory Order

MOVED, REMOVED, OR REPLACED? WHY?

Moved The Physical Inventory Order feature is no longer specific to
Switzerland, so we have made it generally available in the
standard product.

Blanket Order Archiving and Document Line Tracking

MOVED, REMOVED, OR REPLACED? WHY?

Moved Blanket Order Archiving and Document Line Tracking features
are no longer specific to Switzerland, so we have made them
generally available in the standard product.

See Also

This topic lists and describes the local functionality for Switzerland that has been removed from Business Central,
made available from a new page or report, or replaced by a new feature.

When you add a new item, to save time, you can use the Copy Item function to copy an existing item to use as a
template for a new item.

You can take inventory of your items by using the Physical Inventory Order and Physical Inventory
Recording pages. The physical inventory order contains data for planning, realizing, and analyzing physical
inventory. The physical inventory recording contains the items and quantities to be counted and forms the basis of
the print-out to be used in the warehouse.

You can archive and delete blanket sales and purchase orders. You can view documents that are related to sales
order lines and purchase order lines, including from archived order lines. Related documents that you can track
include quotes, shipments, receipts, and blanket orders. This helps you to identify documents used to process
orders.

Upgrading to Business Central
Upgrading the Application Code
Deprecated Fields, and Fields Marked as Obsolete
Switzerland Local Functionality

file:///T:/q4ru/upgrade/Upgrading-the-Application-Code.html
https://docs.microsoft.com/dynamics365/business-central/LocalFunctionality/Switzerland/switzerland-local-functionality

Deprecated Features in the UK Version of Dynamics
365 Business Central
5/28/2019 • 4 minutes to read

Accounting periods and system calendar

MOVED, REMOVED, OR REPLACED? WHY?

Removed Lack of use. Additionally, there are standard features for
accounting periods that provide most of the same
functionality as the UK accounting periods.

Create and export a Bankers' Automated Clearing Service file

MOVED, REMOVED, OR REPLACED? WHY?

Removed This banking format standard is no longer used. This
functionality is now covered by extensions such as the
Envestnet Yodlee Bank Feeds, AMC Banking, and various
other formats.

Non-invoiced stock reports

MOVED, REMOVED, OR REPLACED? WHY?

Moved The functionality for the Shipped, Non-Invoiced Sales Orders
and the Received, Not Invoiced Purchase Order reports are no
longer specific to the UK, so we have made them generally
available as views for sales orders and purchase orders. The
views are available in the Navigation Pane as Shipped Not
Invoiced and Shipped Not Received options under Sales
Orders and Purchase Orders, respectively.

Print Unposted Sales and Unposted Purchase reports

This topic lists and describes the local functionality for the United Kingdom that has been removed from Business
Central, made available from a new page or report, or replaced by a new feature.

If your fiscal year is different than the calendar, you can measure your fiscal period in other units of time, such as
months or quarters. To do this, you set up system calendars and accounting periods.

You can use Bankers' Automated Clearing Service (BACS) to process financial transactions electronically. To do so,
you must export vendor payments to a BACS file using the Export BACS option.

For month-end reconciliation and auditing, you can use the Stock Received Not Invoiced report to view stock
that is received but not yet invoiced, and the Stock Shipped Not Invoiced report to see stock that has been
shipped but not yet invoiced.

The Unposted Sales and Unposted Purchase reports let you print a list of sales and purchase documents that are
not yet posted.

MOVED, REMOVED, OR REPLACED? WHY?

Moved The Unposted Sales and Unposted Purchase reports are now
available from the Navigation Pane as views under Sales
Orders and Purchase Orders.

Other VAT reports

MOVED, REMOVED, OR REPLACED? WHY?

Moved These VAT-related reports are no longer specific to the UK, so
we have made them generally available in the standard
product.

Specify the supply type on documents

MOVED, REMOVED, OR REPLACED? WHY?

Removed Lack of use. The business need that this functionality was
introduced to cover is no longer relevant.

Multiple Interest Rates

MOVED, REMOVED, OR REPLACED? WHY?

Moved The Multiple Interest Rates feature is no longer specific to the
UK, so we have made it generally available in the standard
product.

Objects and Fields that are deleted in Dynamics 365 Business Central

TABLE ID FIELD ID COMMENTS

23 10550 Deleted.

81 10550 Deleted.

81 10551 Deleted.

You can use the following reports for VAT reporting:

Day Book VAT Entry - Displays the daily total for VAT entries for a specific period.
Day Book Cust. Ledger Entry - Displays the daily total for customer ledger entries for a specific period.
Day Book Vendor Ledger Entry - Displays the daily total for vendor ledger entries for a specific period.

You can specify supply types such as sales, loan, exchange, hire, lease, rental, sales on commission, on tax invoices.
To do this, you must update the codes and names of the supply types in the Types of Supply window.

When you create finance charge terms and reminder terms, for delayed payment penalty, you can specify multiple
interest rates so that the penalty fee is calculated from different interest rates in different periods.

Table 10505 has been deleted. The following list shows additional fields that are deleted as a result of the features
that have been removed.

81 10552 Deleted.

81 10553 Deleted.

271 10550 Deleted.

312 10550 Deleted.

312 10551 Deleted.

334 10505 Deleted.

363 10550 Deleted.

7118 10505 Deleted.

7152 10550 Deleted.

TABLE ID FIELD ID COMMENTS

See Also
Upgrading to Business Central
Upgrading the Application Code
Deprecated Fields, and Fields Marked as Obsolete
United Kingdom Local Functionality

file:///T:/q4ru/upgrade/Upgrading-the-Application-Code.html
https://docs.microsoft.com/dynamics365/business-central/LocalFunctionality/unitedkingdom/united-kingdom-local-functionality

Deprecated Features in the United States Version of
Dynamics 365 Business Central
6/4/2019 • 2 minutes to read

Customer Statement Report

MOVED, REMOVED, OR REPLACED? WHY? WHEN?

Replaced The Standard Statement report (report
1316) provides the same capabilities as
the Customer Statement report (report
10072), plus the ability to customize
layouts in Word, and it is available for all
countries.

2019 release wave 2

See Also

This topic lists and describes the local functionality for the United States that has been removed from Business
Central, made available from a new page or report, or replaced by a new feature.

Shows a list of financial transactions for a selected customer statements for a given period of time. For example,
use the report as part of your payment collection process.

Upgrading Business Central
Upgrading the Application Code
Deprecated Fields, and Fields Marked as Obsolete
Norway Local Functionality in Business Central

file:///T:/q4ru/upgrade/Upgrading-the-Application-Code.html
https://docs.microsoft.com/dynamics-nav-app/LocalFunctionality/Norway/norway-local-functionality

Migrate Legacy Help to the Dynamics 365 Business
Central Format
3/31/2019 • 4 minutes to read

Reusing existing web content

NOTE

Converting existing content

The standard version of Business Central follows a user assistance model with tooltips to explain all fields and
actions and conceptual descriptions of functionality that is published to a public website. If you are building an
app, you are expected to comply with this model. However, there are many ways in which you can migrate and
reuse any existing Help that you might have.

When you move to Business Central, you can reuse your existing product Help solution in most situations,
especially if the content is already published to an internal or external website. In that case, all you have to do is to
add that website to the configuration of Business Central online or on-premises. For more information, see
Configuring the Help Experience.

More specifically, if you have content that you created for Dynamics NAV then you can choose to reuse that for
your Business Central solution.

For example, you have a Dynamics NAV Help Server website with HTML files that describe your solution
according to the Microsoft Dynamics NAV 2013 R2 documentation model and format. In that scenario, you can
reuse the Help Server website and rebrand that and the content accordingly. You then connect your Business
Central solution with that Help Server website. For more information, see Configuring the Help Experience.

For apps for Business Central online, you must apply tooltips to controls and actions in both page objects and page
extensions, and you must supply context-sensitive links. For more information, see Configuring the Help Experience.

If your existing content is in a different format, such as PDF files, Word documents, or printed manuals, you must
decide if you want to keep the content as-is, or if you want to convert it to a format that can be accessed from
inside Business Central. There are third party tools available that can help you migrate to other formats,
depending on the the current format and the target format.

If you are migrating your solution from Microsoft Dynamics NAV 2013 R2 or later versions of Dynamics NAV
then you most likely have been using the Dynamics NAV Help Server, and your Help content is in HTML format.
That means that you can reuse your existing content as-is, or you can use publicly available third-party solutions
to convert some or all of your HTML files to MarkDown, if you want to follow similar processes to the ones the
Microsoft team follows. For more information, see the Moving to MarkDown section.

If you are migrating from an earlier version of Dynamics NAV then you can choose to first migrate to the
Microsoft Dynamics NAV 2013 R2 format, and then migrate again to MarkDown or similar formats. For more
information, see Upgrading Your Existing Help Content in the legacy docs for Microsoft Dynamics NAV 2013 R2.

If you are migrating your solution from Dynamics GP, you might have content in PDF files. In that case, you can
choose to convert the content to MarkDown as described in the Moving to MarkDown section, and then publish
to a new online library on your current website, for example.

https://docs.microsoft.com/previous-versions/dynamicsnav-2013r2/dn466754(v=nav.71)

Converting legacy Dynamics NAV field Help to tooltips

Moving to MarkDown

See Also

For the default version of Business Central, Microsoft extracted the first paragraph from the HTML files of the
Dynamics NAVHelp for table fields, and then imported the text into the page objects of the base application as
tooltips. You can build a similar tool if you want to reuse your existing content in the same way.

The tooltips play an important role as part of the Business Central user assistance model, and we encourage you
to apply tooltips to your controls and actions as well.

The Microsoft team converted a subset of the legacy Help for Dynamics NAV to build the new Help library at
https://docs.microsoft.com/dynamics365/business-central/. If you want to customize or extend the Microsoft
Help, you can fork our public repo for either the source repo in English (US) at
https://github.com/MicrosoftDocs/dynamics365smb-docs, or one of the related repos with translations into the
supported languages. The readme.md file in the source repo provides tips and tricks for working with the
Microsoft GitHub repos and MarkDown.

Converting your existing content to MarkDown can be done using third-party tools, including but not limited to
PanDoc or the Writage plugin for Word.

When you have converted your content to MarkDown, you can use a Git repo in Azure DevOps as your source
repository, create a private or public repo in GitHub, or set up a project in MkDocs, for example. Then you can use
open source tools such as DocFx to generate content for your website. In general, working in MarkDown means
that you have access to a world of open source tools and do not have a hard dependency on Microsoft providing
you with tools.

If you do not yet have a website that you publish content to, then there are several ways in which you can create
such a site. The MkDocs project generates a website for you, but you can also work with a web designer to build a
site that resembles the Docs.microsoft.com site, if that is what your customers will prefer.

Configuring the Help Experience
User Assistance Model
Development of a Localization Solution
System Requirements

https://docs.microsoft.com/en-us/dynamics365/business-central/
https://github.com/MicrosoftDocs/dynamics365smb-docs
https://pandoc.org
https://writage.com
https://www.mkdocs.org/
https://dotnet.github.io/docfx/
https://www.mkdocs.org/
https://docs.microsoft.com/en-us/dynamics365/business-central/
https://docs.microsoft.com/en-us/dynamics365/business-central/dev-itpro/developer/readiness/readiness-develop-localization

	Cover Page
	Welcome to the Developer and IT-Pro Help for Dynamics 365 Business Central
	Get started
	Frequently asked questions
	Features not implemented in on-premises deployments
	Help and Support
	Resources for Help and Support
	Configuring technical support
	Help system
	User assistance model
	Extend, Customize, and Collaborate on the Help
	Configure Context-Sensitive Help

	Deployment
	Deployment Overview
	Configuring the Help Experience
	Online
	Choosing Your Development Sandbox Environment
	Embed App
	Embed App Overview
	Microsoft Responsibilities
	Qualification and Onboarding
	Managing in Microsoft Lifecycle Services
	Components
	Platform
	Licensing
	Customer Sign-up
	AppSource
	Sandbox
	Ecosystem Features

	On-Premises
	System requirements
	Software lifecycle policy and on-premises releases
	Running a Container-Based Development Environment
	Components
	Planning
	Deployment Topologies
	Deployment Topologies Overview
	Deploying Demonstration Environment
	Deploying Single-Computer
	Deploying on Two-Computers
	Deploying on Three Computers

	Installing Using Setup
	Provisioning a Service Account
	Securing Remote Connections Using Certificates
	Business Central Web Server

	Business Central Web Server Overview
	Configuring Web Server Instances
	Configure IIS
	Configure SSL
	Setting Up Multiple Web Server Instances

	Migrating to Multitenancy
	Database
	Installation Considerations for SQL Server
	Configuring Database Authentication
	Creating and Altering Databases
	Deploying to Azure SQL Database

	Administration
	Online
	Administration of Business Central Online
	Administration Center
	Administration Center Overview
	Managing Environments
	Tenant Notifications
	Environment Telemetry
	Administration Center API

	Automation
	Introduction to Automation APIs
	Automation API Overview

	On-Premises
	Intelligent Insights
	Connect to the Intelligent Cloud from On-Premises
	Replicating On-Premises Data
	Managing your Intelligent Cloud Environment
	Frequently Asked Questions about Connecting to the Intelligent Cloud

	Server Administration Tool
	Windows PowerShell Cmdlets
	Windows PowerShell Cmdlets for Business Central
	Administration Cmdlets
	Administration Cmdlets for Extensions
	Development Cmdlets
	Development Cmdlets for Extensions

	Authentication and Credential Types
	Configuring Business Central Server
	Configuring Business Central Web Server
	Configuring Business Central Web Server Instances
	Setting Up Multiple Web Server Instances

	Configuring Database Authentication
	Monitoring Business Central Server
	Monitoring Performance Counters

	Monitoring Server Events
	Monitoring Server Events Overview
	Trace Events List
	Admin and Operational Events List
	Using Event Viewer
	Using Performance Monitor
	Using PerView
	Using LogMan
	Using PowerShell
	Turn Off or Limit Telemetry

	Monitoring Long Running SQL Queries

	SQL Server Performance
	Optimizing SQL Server Performance
	Compatibility Level
	Data Access
	Table Keys and Performance
	Bulk Inserts
	AL Database Methods
	Query Objects
	Troubleshooting: Analyzing Long Running SQL Queries Involving FlowFields
	Troubleshooting: Using the Event Log to Monitor Long Running SQL Queries

	Understanding Session Timeouts
	Preparing Dynamics 365 for Sales for Integration

	Development
	Development in AL
	Getting Started
	Getting Started with AL
	Choosing Your Development Sandbox Environment
	Building Your First Sample Extension With Extension Objects, Install Code, and Upgrade Code
	Using Designer
	Keyboard Shortcuts
	AL Formatter
	AL Outline View
	AL Code Navigation
	AL Code Actions
	Object Ranges
	Adding Help Links from Pages, Reports, and XMLports
	Working with Translation Files
	Ready to Go
	Getting Onboarded through Ready to Go
	The “Ready to Go” Online Learning Catalog
	Add-On Apps - Getting You Started

	AppSource Validation
	Marketing Validation Checklist
	Technical Validation Checklist
	How to Make Compelling Videos
	How to Create an Effective Sales Landing Page

	Getting Started with AL for On-Premises
	Getting Started with C/SIDE and AL Side-by-Side for On-Premises
	Running C/SIDE and AL Side-by-Side
	Creating Runtime Packages for Business Central On-Premises

	Manifest Files
	JSON Files
	Security Setting and IP Protection
	Developing for Multiple Platform Versions

	Debugging
	Debugging in AL
	RAD publishing in AL

	Converting, Upgrading, and Installing Extensions
	The Lifecycle of Apps and Extensions for Business Central
	Converting from Extensions V1 to Extensions V2
	The Txt2Al Conversion Tool
	Generating Delta Files
	Exporting Data for Extensions
	Writing Extension Install Code
	Upgrading Extensions
	Publish and Install an Extension V2
	Upgrading AppSource Apps in Production

	Signing an App Package File
	Deploying a Tenant Customization
	Extending the Base Application
	Extending Application Areas
	Extending Item Charge Distribution Methods

	Events
	Events in AL
	Event Types
	Publishing Events
	Raising Events
	Subscribing to Events
	Discover Events Using the Event Recorder

	Notifications
	Task Scheduler
	Tables
	Tables Overview
	Table Object
	Table Extension Object
	Setting Relationships Between Tables
	View Table Data
	Insert, Modify, ModifyAll, Delete, and DeleteAll Methods
	Get, Find, and Next Methods
	Retaining Table Data after Publishing
	Classifying Data
	Enabling Sales Tables for Extension Development

	Pages
	Pages Overview
	Page Object
	Page Extension Object
	Page Customization Object
	API Page Type
	Role Centers
	Designing Role Centers
	Sample Role Center
	Adding links to the Navigation menu
	Headlines
	Cues and Action Tiles

	Designing Pages
	List Pages
	Designing List Pages
	Sample List Page
	Displaying Data as Tiles
	Views
	Adding Filter Tokens

	Card Pages
	Designing Card Pages
	Sample Card Page

	FactBoxes
	Adding Pages to Tell Me

	Fields
	Arranging Fields on a FastTab
	Grid Control
	Fixed Control
	Field Groups
	CalcFields, CalcSums, FieldError, FieldName, Init, TestField, and Validate Methods

	Actions
	Actions in AL
	Adding Actions to a Page
	Promoted Actions

	Inspecting and Troubleshooting Pages
	Control Add-in Style Guide

	Reports
	Reports Overview
	Report Design Overview
	Report Object
	Defining a Report Dataset
	Request Pages
	Adding Reports to Tell Me
	Testing a Report
	How to: Create a Word Layout Report
	How to: Create an RDL Layout Report

	Linking to the Web Client and App
	Web Client URL
	Business Central App URL

	Working with Translation Files
	Developing Connect Apps
	Instrumenting for Telemetry
	.NET in AL
	Getting started with Microsoft .NET Interoperability from AL
	.NET Control Add-Ins
	Subscribing to Events in a .NET Framework Type
	Serializing .NET Framework Types

	Exporting Permission Sets
	Creating and Interacting with an OData V4 Bound Action
	AL Programming
	AL Development Environment
	AL Programming Guide
	AL Simple Statements
	FAQ for Developing in AL
	Working with Multiple AL Project Folders within One Workspace
	Code Analysis
	Using the Code Analysis Tool
	Ruleset for the Code Analysis Tool
	Using the Code Analysis Tools with the Ruleset
	AppSourceCop Analyzer Rules
	CodeCop Analyzer Rules
	PerTenantExtensionCop Analyzer Rules
	UICop Analyzer Rules

	Isolated Storage
	File Handling and Text Encoding
	Flowfields
	FlowFields and FlowFilters
	Extensible Enums
	Objects
	Table Object
	Table Extension Object
	Table Keys
	Page Object
	Page Extension Object
	Page Customization Object
	Report Object
	Profile Object
	Codeunit Object
	Query Object
	XMLPort Object
	Control Add-In Object

	Methods
	Methods Overview
	Array Methods
	Method Attributes
	Procedure Overload
	Action Option Type
	Any Data Type
	BigInteger Data Type
	BigText Data Type
	Blob Data Type
	Boolean Data Type
	Byte Data Type
	Char Data Type
	ClientType Option Type
	Code Data Type
	Codeunit Data Type
	CodeunitInstance Data Type
	CompanyProperty Data Type
	Database Data Type
	DataClassification Option Type
	DataScope Option Type
	Date Data Type
	DateFormula Data Type
	DateTime Data Type
	Debugger Data Type
	Decimal Data Type
	DefaultLayout Option Type
	Dialog Data Type
	Dictionary Data Type
	DotNet Data Type
	Duration Data Type
	ExecutionContext Option Type
	ExecutionMode Option Type
	FieldClass Option Type
	FieldRef Data Type
	FieldType Option Type
	File Data Type
	FilterPageBuilder Data Type
	Guid Data Type
	HttpClient Data Type
	HttpContent Data Type
	HttpHeaders Data Type
	HttpRequestMessage Data Type
	HttpResponseMessage Data Type
	InStream Data Type
	Integer Data Type
	IsolatedStorage Data Type
	JsonArray Data Type
	JsonObject Data Type
	JsonToken Data Type
	JsonValue Data Type
	KeyRef Data Type
	Label Data Type
	List Data Type
	Media Data Type
	MediaSet Data Type
	ModuleDependencyInfo Data Type
	ModuleInfo Data Type
	NavApp Data Type
	None Data Type
	Notification Data Type
	NotificationScope Option Type
	ObjectType Option Type
	Option Data Type
	OutStream Data Type
	Page Data Type
	ProductName Data Type
	Query Data Type
	Record Data Type
	RecordID Data Type
	RecordRef Data Type
	Report Data Type
	ReportFormat Option Type
	RequestPage Data Type
	SecurityFilter Option Type
	Session Data Type
	SessionSettings Data Type
	String Data Type
	System Data Type
	TableConnectionType Option Type
	TaskScheduler Data Type
	TestAction Data Type
	TestField Data Type
	TestFilter Data Type
	TestFilterField Data Type
	TestPage Data Type
	TestPart Data Type
	TestPermissions Option Type
	TestRequestPage Data Type
	Text Data Type
	TextBuilder Data Type
	TextConst Data Type
	TextEncoding Option Type
	Time Data Type
	TransactionModel Option Type
	TransactionType Option Type
	Variant Data Type
	Verbosity Option Type
	Version Data Type
	WebServiceActionContext Data Type
	WebSeviceActionResultCode Option Type
	XmlAttribute Data Type
	XmlAttributeCollection Data Type
	XmlCData Data Type
	XmlComment Data Type
	XmlDeclaration Data Type
	XmlDocument Data Type
	XmlDocumentType Data Type
	XmlElement Data Type
	XmlNameSpaceManager Data Type
	XmlNameTable Data Type
	XmlNode Data Type
	XmlNodeList Data Type
	XmlPort Data Type
	XmlProcessingInstruction Data Type
	XmlReadOptions Data Type
	XmlText Data Type
	XmlWriteOptions Data Type

	Properties
	Properties Overview
	Table and Table Extension Properties
	Page and Page Extension Properties
	Codeunit Properties
	Query Properties
	Report Properties
	XMLPort Properties
	Control Add-In Properties
	View Properties
	Integrating with Dynamics 365 for Sales

	Triggers
	Triggers Overview
	Table and Field Triggers
	Page and Action Triggers
	Codeunit Triggers
	Report and Data Item Triggers
	XMLPort Triggers
	Query Triggers

	Rules and Guidelines
	Rules and Guidelines for AL Code
	Best Practices for AL
	Benefits and Guidelines for using a Prefix or Suffix
	Testing your Extension
	User Scenario Documentation
	Restrictions on UI for Objects Exposed as Web Services
	Replacing OnBeforeCompanyOpen and OnAfterCompanyOpen
	Building an Advanced Sample Extension
	Testing the Advanced Sample Extension

	Web Services
	General
	Publishing a Web Service
	Handling UI Interaction
	Managing Timezones
	Working with Static Proxy
	Authentication
	Securing Remote Connections Using Certificates
	Best Practices

	SOAP
	SOAP Service URIs
	Basic Operations
	Create
	CreateMultiple
	Delete
	Delete_<part>
	GetRecIdFromKey
	IsUpdated
	Read
	ReadByRecId
	ReadMultiple
	Update
	UpdateMultiple

	Retrieving Companies
	Indicating That a Value Exists in Field

	OData
	Return or Obtain an AtomPub Document
	Return or Obtain Service Metadata EDMX Document
	Return or Obtain a JSON Document
	Using Filter Expressions in OData URIs
	Using FlowFilters in OData URIs
	Server-Driven Paging
	Containments and Associations
	Using OData on Queries Set with Top Number of Rows
	Using OData to Modify Data
	Walkthrough: Creating and Interacting With an OData V4 Bound Action

	Security
	Security and Protection Overview
	Application
	Online
	On-Premises

	Upgrade
	Upgrading to Business Central
	Online
	Importing Business Data from Other Finance Systems
	The Dynamics GP Data Migration Extension
	The QuickBooks Data Migration Extension

	On-Premises
	Transitioning From Codeunit 1
	Technical Upgrade
	Quick Reference

	Upgrading the Application Code
	Upgrading the Data: Single-Tenant Mode
	Quick Reference

	Upgrading the Data: Multitenant Mode
	Quick Reference

	Before You Upgrade
	Important Information and Considerations for Before Upgrading
	Deprecated Fields, and Fields Marked as Obsolete
	Deprecated Features in the Austrian Version
	Deprecated Features in the Belgian Version
	Deprecated Features in the Canadian Version
	Deprecated Features in the Dutch Version
	Deprecated Features in the Finnish Version
	Deprecated Features in the German Version
	Deprecated Features in the Icelandic Version
	Deprecated Features in the Italian Version
	Deprecated Features in the Mexican Version
	Deprecated Features in the Norwegian Version
	Deprecated Features in the Swedish Version
	Deprecated Features in the Swiss Version
	Deprecated Features in the UK Version
	Deprecated Features in the United States Version

	Migrate Legacy Help to the Business Central Format

	Dynamics 365 Business Central API

